Ph. L. Bykov, V. A. Gordin

National Research University Higher School of Economics

Hydrometeorological Center of Russia

Complex turbulent exchange coefficient in Akerblom-Ekman model

October 15, 2020

The traditional <u>Akerblom – Ekman model</u> describes the dynamics of wind speed in the boundary layer (BL) of the atmosphere or an ocean on a rotating planet:

$$\begin{cases} \frac{d}{dz} \left[k(z) \frac{du}{dz} \right] = -l \left(v - v_g \right), \\ \frac{d}{dz} \left[k(z) \frac{dv}{dz} \right] = l \left(u - u_g \right), \end{cases}$$
(1)

where u(z), v(z) are the required horizontal wind components, u_s, v_s are the geostrophic wind on the BL upper boundary. The vertical variable $z \in [0, H_{\text{max}}]$ is the height above the Earth's surface, H_{max} is the thickness of the boundary layer, $l = \sin \varphi \times 1.45842 \times 10^{-4} / s$ is the Coriolis parameter, φ is the geographic latitude, k(z) > 0 is the coefficient of the turbulent exchange. The system (1) is singular iff $k(z_0) = 0$ for some $z_0 \in (0, H_{\text{max}})$.

If k(z) = const then the wind rotation angle in BL is equal to 45°.

Observed wind rotation angle – histogram

Conditional probability distributions of the wind rotation angle for various latitude zones and various subsamples: 1, 3, 5 – to the South from the 50° N, 2, 4, 6 – to the North from the 50° N; 1, 2 – full subsample, 3, 4 – deep subsample, 5,6 – stable subsample.

The typical rotation degree is $\sim 15^{\circ} - 3$ times less then theoretical.

Eq. (1) is invariant with respect to the group of rotations around the vertical axis SO(2). The group SO(2) commutes only with skew-symmetric operators. Therefore, we will also consider the more general system:

$$\begin{cases} \frac{d}{dz} \left[\gamma(z) \sin(\varphi) \frac{dv}{dz} + k(z) \frac{du}{dz} \right] = -l \left(v - v_g \right), \\ \frac{d}{dz} \left[k(z) \frac{dv}{dz} - \gamma(z) \sin(\varphi) \frac{du}{dz} \right] = l \left(u - u_g \right), \end{cases}$$
⁽²⁾

where the second coefficient of turbulent exchange $\gamma(z)$ plays the role of the regularizator for (1): when the first coefficient $k(z_0) = 0$, (2) does not become degenerate.

The cofactor $\sin(\varphi)$ was added into Eq. (2) to adjust the results of our numerical experiments with data from South hemisphere.

The complex form

Rewrite (2) in a complex form: w = u + iv, $w_g = u_g + iv_g$, and $\kappa = k - i\gamma \sin(\varphi)$:

$$\frac{d}{dz} \left[\kappa(z) \frac{dw}{dz} \right] = il \left(w - w_g \right). \tag{3}$$

For $\kappa(z) = const$ the wind rotation angle is equal $\arg \sqrt{\frac{i}{\kappa}} = \frac{1}{2} \operatorname{atan} \frac{k}{\gamma \sin \varphi}$.

Therefore the observable wind rotation angle 10-20° corresponds to the values of the ratio $\gamma \sin \varphi / k \approx 1.2 - 2.7$

The quadratic programing problem (QPP)

To reduce the order of differentiation, we integrate Eq. 2 with respect to z:

$$\kappa(z)\frac{dw}{dz} = -\psi + c \tag{4}$$

where $c \in \mathbb{C}$ are constant of integration, a function $\Psi(z)$ satisfy the following equations:

$$\frac{d\psi}{dz} = \mathrm{i}l(w_g - w), \quad \int_0^H \psi(z)dz = 0.$$

We will search $\kappa(z)$ as a solution of QPP. This QPP minimizes the mean relative residual of (4) over *N* vertical profiles:

$$L(\kappa(z),c_j) = \frac{1}{N} \sum_{j=1}^N \frac{1}{W_j} \int_0^{H_j} \left| \kappa(z) \frac{dw_j}{dz} + \psi(z) - c_j \right|^2 dz \to \min_{\kappa(z), \{c_j\}},$$
(5)

where $W_j = \int_{0}^{H_j} |\psi(z)|^2 dz$ for the normalization. With this normalization $\min_{c_j} L(0,c_j) = 1$.

Let $0 < \Lambda < 1$ be the minimum of the functional *L*. The value $100\%(1-\Lambda)$ is interpreted as the average coefficient of determination. It is presented in Table 2.

Dataset

We use the dataset from 26142 profiles, which satisfy the following conditions:

1. The measurement unit for wind speed is 0.1m/s.

2. The mean vertical resolution is good (more than 25 points in the layer 0-1000 m).

3.The boundary layer thickness $H_i > 100m$.

- 4. The variability of the wind in the boundary layer is greater than 2.5 m/s.
- 5. The absolute value of difference between the altitude of the aerological station and the altitude of the lowest level of the BUFR profile is no more 5m.

Geographical location of the aerological stations

Geographical location of 111 stations, from which the radiosonde data were assimilated. Crosses mark **28 "intensive" stations**, with a large number (more than 400) of the profiles

Boundary layer's thickness

We use a standard definition of the boundary layer's thickness H_j as the minimal positive root of the following equation:

$$\Theta_{j}\left(H_{j}\right) = \Theta_{V,j}(0), \qquad (5)$$

where Θ is a potential temperature and Θ_v is a potential virtual temperature

The dataset of BUFR profiles during the period from Apr. 4, 2018 to Nov. 29, 2019

Subsample name	Addition condition	Profiles	Boundary layer thickness H_{j}
Full	None	26142	671±516m
Deep	$H_{j} > 1000m$	8462	1592±454m
Thin	$H_{j} < 500m$	12051	270±115m
Stable	$Ri(z) > 0.3$ for any $z \in [0; H_j]$	2622	201±105m
Unstable	$Ri(z_0) < 0.2 \text{ for some } z_0 \in [0; H_i]$	22584	742±517m

The Richardson number

The Richardson number Ri is the dimensionless function of the height z:

$$Ri(z) = \frac{g}{\Theta} \frac{\frac{\partial \Theta}{\partial z}}{\left(\frac{\partial u}{\partial z}\right)^2 + \left(\frac{\partial v}{\partial z}\right)^2}.$$
 (6)

The values $Ri > Ri_c = 0.25$ correspond to stable stratifications, $Ri < Ri_c$ correspond to unstable ones, and Ri < 0 correspond to strictly unstable stratifications of an atmospheric column (a temperature inversion layer exists in the column).

The optimal (for different subsamples) coefficient of turbulent exchange K depending on the relative height $S_1 = z / H$: a) the real part $k(S_1)$; b) the imaginary part $\gamma(S_1)$. We consider also normalized parameters: $\kappa = \frac{\tilde{\kappa} \cdot H_j}{1000m}$

The wind rotation angle for the optimal $\kappa = H \tilde{\kappa} (z/H)$

Optimal coefficient of turbulent exchange $\tilde{\kappa}$ (full subsample): the real part $\tilde{k}(S_2)$ (graphs 1, 3); the imaginary part $\tilde{\gamma}(S_2)$ (graphs 2, 4) depending on the wind shear module $S_{2} = shear(z) = \sqrt{(u(z) - u_{g})^{2} + (v(z) - v_{g})^{2}}$ $(m \cdot s^{-1})$: for stable subsample (graphs 1, 2), for unstable subsample (graphs 3,4)

Optimal coefficients of turbulent exchange $\tilde{\kappa}$ (Full subsample): the real part $\tilde{k}(S_3)$ (graph 1); the imaginary part $\tilde{\gamma}(S_3)$ (graph 2) depending on the $S_3 = \arctan(Ri)$, where Ri – Richardson number. Black vertical line shown the critical Richardson number $Ri = Ri_c = 0.25$. For Ri > 0.5 we have the ratio $\gamma / k > 20$

Optimized coefficients		K	$k > 0, \gamma = 0$	$ ilde{\kappa}$	$\tilde{k} > 0, \gamma = 0$	Ratio
Subsample	Atmospheric	The n	$1 - \Lambda (\tilde{\kappa} \in \mathbb{C})$			
	parameter(s) S		$\overline{1 - \Lambda \big(\tilde{\kappa} \in \mathbb{R} \big)}$			
Full		38,5%	11,7%	48,3%	13,8%	3,5
Deep	Relative height S_1	34,6%	7,7%	35,0%	8,0%	4,5
Thin		62,3%	17,4%	72,6%	20,9%	3,3
Stable		65,9%	10,2%	77,5%	11,6%	7,1
Unstable		38,9%	12,3%	48,2%	14,0%	3,5
Full		37,6%	12,2%	46,3%	15,1%	3,1
Deep	Wind shear	29,2%	8,3%	29,8%	8,6%	3,4
Thin	modulus S_2	59,9%	18,2%	67,7%	22,4%	3,0
Stable	2	59,7%	11,6%	67,8%	13,5%	5,5
Unstable		39,1%	12,6%	46,7%	15,3%	3,0
Full		24,4%	11,4%	34,1%	12,6%	2,7
Deep	Richardson number	29,2%	7,4%	29,9%	7,5%	4,1
Thin	Ri	36,0%	16,8%	43,0%	19,8%	2,1
Stable		33,0%	9,7%	39,4%	10,3%	4,0
Unstable		28,6%	11,8%	35,3%	12,8%	2,7

Full	Relative height S_1	41,2%	12,7%	53,4%	15,4%	3,4
Deep		35,2%	8,7%	35,7%	9,1%	4,0
Thin	and wind shear	65,2%	18,9%	76,7%	22,9%	3,3
Stable	modulus S ₂	66,3%	11,7%	78,1%	13,5%	6,3
Unstable		42,0%	13,1%	53,4%	15,7%	3,4
Full	Relative height S.	39,5%	12,4%	50,3%	13,8%	3,6
Deep		34,7%	7,9%	35,1%	8,1%	4,5
Thin	and Richardson	63,6%	18,4%	74,7%	21,4%	3,4
Stable	number <i>Ri</i>	65,9%	10,2%	77,5%	11,6%	7,1
Unstable		40,6%	12,9%	50,1%	14,1%	3,6

Comparison of the BUFR profiles and model's solutions

Let us represent the coefficient of the turbulent exchange κ in the form $\kappa = H\tilde{\kappa}(z/H)$. Then we can find the solution $\hat{w}_j(z,\kappa,w_0)$ of Eq. 2 with the Dirichlet boundary conditions $w(H) = w_g$, $w(0) = w_0$ and estimate the mean error of the profile reconstruction:

$$ABS_{speed}(S_{1},\kappa,w_{0}) = \frac{1}{N} \sum_{j=1}^{N} \left\| \hat{w}_{j}(S_{1}H_{j},\kappa,w_{0}) \right\| - \left\| w_{j}(S_{1}) \right\|,$$

$$ABS_{direction}\left(S_{1},\kappa,w_{0}\right) = \frac{1}{\tilde{N}}\sum_{j=1}^{\tilde{N}}\left|\arg\hat{w}_{j}\left(S_{1}H_{j},\kappa,w_{0}\right) - \arg w_{j}\left(S_{1}\right)\right|,$$

Here we exclude from the formulas for $ABS_{direction}$ the terms with small velocities $|\hat{w}_j|$ or $|w_j| \le 2m / s$, when the determination of the wind's direction is not clear. The limit of the sums in these formulas is smaller: $\tilde{N} \approx 0.69N$.

Conclusion

- 1. The original theory of Akerblom Ekman, predicted 45° wind rotation in the boundary layer. We observed the rotation angle is an average of three times smaller.
- 2. We include the coefficient γ in the model, the consistence with BUFR data increase up to 7 times for stable stratification and up to 3.5 for unstable. The coefficient γ can be interpreted as a coefficient in the imaginary part of coefficient κ ;
- 3. We compare the universal coefficient κ , both on unique parameter: relative height $S_1 = z/H$, or on the wind shear S_2 , or on the Richardson number Ri. The relative height is preferable
- 4. The wind speed bias for model with complex κ is 4 times less then for the model with real k > 0.

http://method.meteorf.ru/ansambl/ansambl.html

Thank you for attention

This article was prepared within the framework of the Academic Fund Program at the National Research University Higher School of Economics (HSE) in 2020 - 2021 (grant N_{2} 20-04-021) and by the Russian Academic Excellence Project 5-100