Ph. L. Bykov, V. A. Gordin
National Research University Higher School of Economics
Hydrometeorological Center of Russia

Complex turbulent exchange coefficient in Akerblom-Ekman model

The traditional Akerblom - Ekman model describes the dynamics of wind speed in the boundary layer (BL) of the atmosphere or an ocean on a rotating planet:

$$
\left\{\begin{array}{l}
\frac{d}{d z}\left[k(\mathrm{z}) \frac{d u}{d z}\right]=-l\left(v-v_{g}\right) \tag{1}\\
\frac{d}{d z}\left[k(\mathrm{z}) \frac{d v}{d z}\right]=l\left(u-u_{g}\right)
\end{array}\right.
$$

where $u(z), v(z)$ are the required horizontal wind components, u_{g}, v_{g} are the geostrophic wind on the BL upper boundary. The vertical variable $z \in\left[0, H_{\max }\right]$ is the height above the Earth's surface, $H_{\max }$ is the thickness of the boundary layer, $l=\sin \varphi \times 1.45842 \times 10^{-4} / s$ is the Coriolis parameter, φ is the geographic latitude, $k(z)>0$ is the coefficient of the turbulent exchange. The system (1) is singular iff $k\left(z_{0}\right)=0$ for some $z_{0} \in\left(0, H_{\max }\right)$.

If $k(z)=$ const then the wind rotation angle in BL is equal to 45°.

Observed wind rotation angle - histogram

Conditional probability distributions of the wind rotation angle for various latitude zones and various subsamples: $1,3,5$ - to the South from the $50^{\circ} \mathrm{N}, 2,4,6$ - to the North from the $50^{\circ} \mathrm{N}$; 1, 2 - full subsample, 3,4 - deep subsample, 5,6 - stable subsample.

The typical rotation degree is $\sim 15^{\circ}-\mathbf{3}$ times less then theoretical.

Eq. (1) is invariant with respect to the group of rotations around the vertical axis $\mathbf{S O}(2)$. The group $\mathrm{SO}(2)$ commutes only with skew-symmetric operators. Therefore, we will also consider the more general system:

$$
\left\{\begin{array}{l}
\frac{d}{d z}\left[\gamma(\mathrm{z}) \sin (\varphi) \frac{d v}{d z}+k(\mathrm{z}) \frac{d u}{d z}\right]=-l\left(v-v_{g}\right) \tag{2}\\
\frac{d}{d z}\left[k(\mathrm{z}) \frac{d v}{d z}-\gamma(\mathrm{z}) \sin (\varphi) \frac{d u}{d z}\right]=l\left(u-u_{g}\right)
\end{array}\right.
$$

where the second coefficient of turbulent exchange $\gamma(z)$ plays the role of the regularizator for (1): when the first coefficient $k\left(z_{0}\right)=0$, (2) does not become degenerate.

The cofactor $\sin (\varphi)$ was added into Eq. (2) to adjust the results of our numerical experiments with data from South hemisphere.

The complex form

Rewrite (2) in a complex form: $w=u+\mathrm{i} v, w_{g}=u_{g}+\mathrm{i} v_{g}$, and $\kappa=k-\mathrm{i} \gamma \sin (\varphi)$:

$$
\begin{equation*}
\frac{d}{d z}\left[\kappa(\mathrm{z}) \frac{d w}{d z}\right]=\mathrm{i} l\left(w-w_{g}\right) \tag{3}
\end{equation*}
$$

For $\kappa(z)=$ const the wind rotation angle is equal $\arg \sqrt{\frac{\mathrm{i}}{\kappa}}=\frac{1}{2} \operatorname{atan} \frac{k}{\gamma \sin \varphi}$.
Therefore the observable wind rotation angle 10-20 corresponds to the values of the ratio

$$
\gamma \sin \varphi / k \approx 1.2-2.7
$$

The quadratic programing problem (QPP)

To reduce the order of differentiation, we integrate Eq. 2 with respect to z :

$$
\begin{equation*}
\kappa(z) \frac{d w}{d z}=-\psi+c \tag{4}
\end{equation*}
$$

where $c \in \mathbb{C}$ are constant of integration, a function $\psi(z)$ satisfy the following equations:

$$
\frac{d \psi}{d z}=\mathrm{i} l\left(w_{g}-w\right), \quad \int_{0}^{H} \psi(z) d z=0 .
$$

We will search $\kappa(z)$ as a solution of QPP. This QPP minimizes the mean relative residual of (4) over N vertical profiles:

$$
\begin{equation*}
L\left(\kappa(z), c_{j}\right)=\frac{1}{N} \sum_{j=1}^{N} \frac{1}{W_{j}} \int_{0}^{H_{j}}\left|\kappa(z) \frac{d w_{j}}{d z}+\psi(z)-c_{j}\right|^{2} d z \rightarrow \min _{\kappa(z),\left\{c_{j}\right\}}, \tag{5}
\end{equation*}
$$

where $W_{j}=\int_{0}^{H_{j}}|\psi(z)|^{2} d z$ for the normalization. With this normalization $\min _{c_{j}} L\left(0, c_{j}\right)=1$.
Let $0<\Lambda<1$ be the minimum of the functional L. The value $100 \%(1-\Lambda)$ is interpreted as the average coefficient of determination. It is presented in Table 2.

Dataset

We use the dataset from $\mathbf{2 6 1 4 2}$ profiles, which satisfy the following conditions:
1.The measurement unit for wind speed is $0.1 \mathrm{~m} / \mathrm{s}$.
2. The mean vertical resolution is good (more than 25 points in the layer $0-1000 \mathrm{~m}$).
3. The boundary layer thickness $H_{j}>100 \mathrm{~m}$.
4. The variability of the wind in the boundary layer is greater than $2.5 \mathrm{~m} / \mathrm{s}$.
5. The absolute value of difference between the altitude of the aerological station and the altitude of the lowest level of the BUFR profile is no more 5 m .

Geographical location of the aerological stations

Geographical location of 111 stations, from which the radiosonde data were assimilated. Crosses mark 28 "intensive" stations, with a large number (more than 400) of the profiles

Boundary layer's thickness

We use a standard definition of the boundary layer's thickness H_{j} as the minimal positive root of the following equation:

$$
\begin{equation*}
\Theta_{j}\left(H_{j}\right)=\Theta_{V, j}(0) \tag{5}
\end{equation*}
$$

where Θ is a potential temperature and Θ_{V} is a potential virtual temperature
The dataset of BUFR profiles during the period from Apr. 4, 2018 to Nov. 29, 2019

Subsample name	Addition condition	Profiles	Boundary layer thickness H_{j}
Full	None	26142	$671 \pm 516 \mathrm{~m}$
Deep	$H_{j}>1000 \mathrm{~m}$	8462	$1592 \pm 454 \mathrm{~m}$
Thin	$H_{j}<500 \mathrm{~m}$	12051	$270 \pm 115 \mathrm{~m}$
Stable	$R i(z)>0.3$ for any $z \in\left[0 ; H_{j}\right]$	2622	$201 \pm 105 \mathrm{~m}$
Unstable	$R i\left(z_{0}\right)<0.2$ for some $z_{0} \in\left[0 ; H_{j}\right]$	22584	$742 \pm 517 \mathrm{~m}$

The Richardson number

The Richardson number $\boldsymbol{R} \boldsymbol{i}$ is the dimensionless function of the height z :

$$
\begin{equation*}
R i(z)=\frac{g}{\Theta} \frac{\frac{\partial \Theta}{\partial z}}{\left(\frac{\partial u}{\partial z}\right)^{2}+\left(\frac{\partial v}{\partial z}\right)^{2}} . \tag{6}
\end{equation*}
$$

The values $R i>R i_{c}=0.25$ correspond to stable stratifications, $R i<R i_{c}$ correspond to unstable ones, and $R i<0$ correspond to strictly unstable stratifications of an atmospheric column (a temperature inversion layer exists in the column).

a) the real part $\tilde{k}\left(S_{1}\right)$,

The wind rotation angle for the optimal $\kappa=H \tilde{\kappa}(z / H)$

Optimized coefficients		κ	$k>0$	$\tilde{\kappa}$	$\tilde{k}>0, \gamma=0$	Ratio
Subsample	Atmospheric parameter(s) S	The mean coefficient of determination$100 \%(1-\Lambda)$				$\frac{1-\Lambda(\tilde{\kappa} \in \mathbb{C})}{1-\Lambda(\tilde{\kappa} \in \mathbb{R})}$
Full	Relative height S_{1}	38,5\%	11,7\%	48,3\%	13,8\%	3,5
Deep		34,6\%	7,7\%	35,0\%	8,0\%	4,5
Thin		62,3\%	17,4\%	72,6\%	20,9\%	3,3
Stable		65,9\%	10,2\%	77,5\%	11,6\%	7,1
Unstable		38,9\%	12,3\%	48,2\%	14,0\%	3,5
Full	Wind shear modulus S_{2}	37,6\%	12,2\%	46,3\%	15,1\%	3,1
Deep		29,2\%	8,3\%	29,8\%	8,6\%	3,4
Thin		59,9\%	18,2\%	67,7\%	22,4\%	3,0
Stable		59,7\%	11,6\%	67,8\%	13,5\%	5,5
Unstable		39,1\%	12,6\%	46,7\%	15,3\%	3,0
Full	Richardson number$R i$	24,4\%	11,4\%	34,1\%	12,6\%	2,7
Deep		29,2\%	7,4\%	29,9\%	7,5\%	4,1
Thin		36,0\%	16,8\%	43,0\%	19,8\%	2,1
Stable		33,0\%	9,7\%	39,4\%	10,3\%	4,0
Unstable		28,6\%	11,8\%	35,3\%	12,8\%	2,7

Full	Relative height S_{1} and wind shear modulus S_{2}	41,2\%	12,7\%	53,4\%	15,4\%	3,4
Deep		35,2\%	8,7\%	35,7\%	9,1\%	4,0
Thin		65,2\%	18,9\%	76,7\%	22,9\%	3,3
Stable		66,3\%	11,7\%	78,1\%	13,5\%	6,3
Unstable		42,0\%	13,1\%	53,4\%	15,7\%	3,4
Full	Relative height S_{1} and Richardson number Ri	39,5\%	12,4\%	50,3\%	13,8\%	3,6
Deep		34,7\%	7,9\%	35,1\%	8,1\%	4,5
Thin		63,6\%	18,4\%	74,7\%	21,4\%	3,4
Stable		65,9\%	10,2\%	77,5\%	11,6\%	7,1
Unstable		40,6\%	12,9\%	50,1\%	14,1\%	3,6

Comparison of the BUFR profiles and model's solutions

Let us represent the coefficient of the turbulent exchange κ in the form $\kappa=H \tilde{\kappa}(z / H)$. Then we can find the solution $\hat{w}_{j}\left(z, \kappa, w_{0}\right)$ of Eq. 2 with the Dirichlet boundary conditions $w(H)=w_{g}, w(0)=w_{0}$ and estimate the mean error of the profile reconstruction:

$$
\begin{gathered}
A B S_{\text {speed }}\left(S_{1}, \kappa, w_{0}\right)=\frac{1}{N} \sum_{j=1}^{N}\left\|\hat{w}_{j}\left(S_{1} H_{j}, \kappa, w_{0}\right)|-| w_{j}\left(S_{1}\right)\right\|, \\
A B S_{\text {direction }}\left(S_{1}, \kappa, w_{0}\right)=\frac{1}{\tilde{N}} \sum_{j=1}^{\tilde{N}}\left|\arg \hat{w}_{j}\left(S_{1} H_{j}, \kappa, w_{0}\right)-\arg w_{j}\left(S_{1}\right)\right|,
\end{gathered}
$$

Here we exclude from the formulas for $A B S_{\text {direction }}$ the terms with small velocities $\left|\hat{w}_{j}\right|$ or $\left|w_{j}\right| \leq 2 \mathrm{~m} / \mathrm{s}$, when the determination of the wind's direction is not clear. The limit of the sums in these formulas is smaller: $\tilde{N} \approx 0.69 N$.

The profile reconstruction error
for wind speed modulus

for wind speed angle

Conclusion

1. The original theory of Akerblom - Ekman, predicted 45° wind rotation in the boundary layer. We observed the rotation angle is an average of three times smaller.
2. We include the coefficient γ in the model, the consistence with BUFR data increase up to 7 times for stable stratification and up to 3.5 for unstable. The coefficient γ can be interpreted as a coefficient in the imaginary part of coefficient κ;
3. We compare the universal coefficient κ, both on unique parameter: relative height $S_{1}=z / H$, or on the wind shear S_{2}, or on the Richardson number $R i$. The relative height is preferable
4. The wind speed bias for model with complex κ is 4 times less then for the model with real $k>0$.

http://method.meteorf.ru/ansamb/ansambl.html

Thank you for attention

This article was prepared within the framework of the Academic Fund Program at the National Research University Higher School of Economics (HSE) in 2020-2021 (grant № 20-04-021) and by the Russian Academic Excellence Project 5-100

