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Elliptic linear differential equations such as Poisson (1) and Helmgoltz (2) equations describe 

stationary solutions (e.g. for diffusion, heat conductivity, and for distribution of the electrostatic 
potential) 

                           ( ( ) ( )) ( ),div x grad u f x x Gϑ− = ∈
  

,                                              (1) 

                                                 ( ( ) ( )) ( ) ( )div x grad u x u f xϑ ρ− + =
  

.                                             (2)   

In many physical and technical cases the media is not homogeneous and its properties 
(described by coefficients ( )xϑ   and ( )xρ  ) are discontinuous.     
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Fig. 1.  Model: domain G – surface of 
the cylinder, jump-line Г – central 

circle at x = 0,  ϑ  - piecewise 
continuous coefficient:  ϑ−  in the left 
part of the cylinder, ϑ+  - in the right. 

Here [ , ]x L L∈ − , [0,2 )y π∈ . 

 

On the edges of the cylinder G the Dirichlet boundary conditions are posed, on the jump-line Г  the 
Kirchhoff conditions are fulfilled: 

 

[ ] 0, (3 ) [ ] 0. (3 )nu a u bϑ= ∂ =                                                                    

Here [  ] is an amplitude of the jump on line Г, n∂  is the normal derivative on Г. We assume that 
L π= , in other cases we should renormalize our domain. 

 

 

 



Compact approximation: 

The cylinder G is covered by a uniform grid with N knots on the circle and N+1 knots 
on its generatrix. Due to the chosen size the grid’s diameter in coordinates <x, y> is equal 

to 2h
N
π

= . Let us define for every point with the too dimensional index j


 of the grid a pair 

of difference operators jA  and jP , which approximate the differential problem (2 - 3) and 

are applied to the functions u and f, respectively, and a pair of stencils for these operators 
(grid points where operators have non-zero coefficients).  

The operators jA  and jP  should be exact on a set of test functions: ( , )k ku f , where k=1,…, 

K, [ ]k kf L u= , L is the differential operator in the left-hand side of Eq. (1). Therefore 

k kj jk A u P f∀ =  . Coefficients of the operators jA  and jP  for any grid index i are found by 

solving a “local SLAE” of order K+1. These coefficients form | |j


-th lines of the “global 
SLAE” U F=A P

 
, where U


 is a finite-difference solution on the grid, ( )1N N K× +  . At 

points at the edge of G boundary conditions are approximated. jA  and jP  have non-zero 

coefficients only at K points of their stencils, all the other elements of line | |j


 in the global 
SLAE are zeros. As K N , matrixes of the global SLAE are rather sparse. 



  The points of the grid are divided in four groups due to approximation method 

Type I – points inside G far from Г 

Type II – points, which templates intersect with Г 

Type III – points on line Г 

Type IV – points on the edges of G 

Points of type I 

 

 

 

Fig. 2. In the left part the scheme’s stencils are presented and a Newton’s diagram in the right part for 

monomials x yα β  



Let us use monomial x yα β  as test functions. Due to the symmetry of the stencils with respect to 

vertical and horizontal axis, the monomials powers ,α β  are even. As the grid’s diameters with respect to 
x and y are equal, the equations for test functions x yα β  and x yβ α  will also be the same. That is why to 

achieve 4-th accuracy order we need to take only the following test functions:   2 4 2 21, , ,x x x y . 

The coefficients will be as follows: 2 21, 0.2, 0.05, 0.2 , 0.025a b c p h q h= = − = − = = . 

Points of type II 

For points near to line Г one should take the same stencils as for point of type I (view Fig.2). 
At the same time one should take in account that the right-hand side f  is not defined on Г, but 
there exist left and right-hand limits: f−  and f+ , respectively. Therefore when constructing the 
global SLAE, we assume for point to the left from Г the right-hand side is equal to f− , and for 
points to the right from Г the right-hand side is equal to f+



Points of type III 

 

 

 
Fig.3. Stencils and a Newton’s diagram for points of type III. Blue points mark two test function: 
one with sign(x) and one without 

We assume that the solution of the differential problem u is a piecewise analytic function, which 
has two different Teylor series on the right and on the left side from line Г:  

( , ) , 0

( , ) , 0

i j
ij

i j
ij

u x y a x y x

u x y b x y x

= ≤

= ≥

∑
∑

 



From the Kirchhoff conditions (3а,b) we get: 0 0j ja b= , 0 0j ja bϑ ϑ− += . We take the following 

test functions:    
2

2 2 3 3 4 4 2 2 2 2 2 41, , , ( ) , , ( ) , , ( ) , , , , ( ) ,x y xx sign x x x sign x x x sign x x y x y sign x x y y
ϑ ϑ

. 

Here we also use the symmetry of the stencils with respect to horizontal axis. 

The right-hand side on line Г is a two valued function ( f+  и f−), that is why the stencil for f  
has two coefficients on the jump-line Г & , &t t p p− + − +). Coefficints ,t p− −  refere to the left-
hand limit ( f−) and ,t p+ +  to the right-hand limit ( f+) . 

After solving the “small SLAE” we obtain the following coefficients for the compact 
approximation: 

1 2 1 2
1 2 21, , , , , ,
5 15( ) 15( )

a c b b d dϑ ϑ ϑ ϑ
ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ

+ + − +

+ − + − + − + −
= = − = − = − = =

+ + + +
 

2 2 2 2

1 2 1 2
7 7, , ,

36( ) 90( ) 60( ) 60( )
h h h hr r q q t t p p

ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ− + − +
+ − + − + − + −

= = − = = − = = = =
+ + + +

. 

 

At points of type IV – Dirichlet boundary condition 

 



Constructions of the “global SLAE” 

After calculating the coefficients of difference operators at each point the “global” matrices 
A and P are constructed. A is a square matrix, it’s size is M M×  (M – number of grid’s knots). 
Matrix P counts points on Г two times, as ( f ) is a two-valued function, therefore the size of P is 

( )M M N× + . 

 To solve the SLAE one needs to invert matrix A, that is why it is important to provide good 
conditionality of A. Local operators iA  are exact on the constant test function, therefore 

0ij
j

i a∀ =∑ . If  0iia > , and all other weight are negative, then: 

         | |ij ii
j i

a a
≠

=∑  .                                                            (4) 

 Zero lies on the edge of Gershgorin’s circles, which contain the spectrum of A. At boundary 
points of cylinder G the diagonal of A dominates. Therefore, one can hope that 0 won’t be 
included in A’s spectrum, so the matrix A is invertible. 

 

               

 



Tests, proving the scheme’s order. 

The scheme’s order can be evaluated the following way. We consider a smooth function u  
and construct a new function ( , ) ( , ) ( , )u x y g x y u x y=  , where g – is a piecewise linear function by x:  

( , ) 1 ( )( | |)g x y a y x x= + + . Function a(y) is defined so that u fulfills the Kirchhoff conditions (3 a, 

b). Therefore ( ) (0, )
2 (0, )xa y u y

u y
ϑ ϑ
ϑ
− +

+

−
= ∂ 


. Then we calculate f as [ ]f L u= , so u is the exact solution of 

problem (2-3) with the right hand-side f and suitable non=homogeneous Dirichlet boundary 
conditions. 

 The norm of the error (E) is evaluated as follows: appr C
E u u= − . Here appru  is a 

solution that is calculated by the difference scheme. Below the graphs of errors depending on N 
are presented for three schemes: classic, compact, and compact with Richardson extrapolation. 
Experiments proving the scheme’s accuracy order were made for huge 10000κ = . 

 



 

Fig.4. The schemes’ error 
depending on the number 
N in loglog coordinates. 
The exact solution: 
 

sin( ), 0
sin( ), 0

x y x
u

x y x
ϑ
ϑ
+

−
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=  ≥
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Fig.5. Same results for 
the exact solution: 
 
 6 sin( )u x y= . 
 
 



 

Fig.6. Same results for 
the exact solution: 
 
 sin( ) 2u y x= + + . 

 

 

 



 

Fig.7. Same results for 
the exact solution: 
 
 sin( )u x=  
 
 

 

 

 

 



A sample solution of the Dirichlet problem. 

 

 

Fig.8. Isolines of a sample 
solution at 10κ = , right-hand 
side cos( )f y=  and boundary 
conditions ( , ) ( , ) 1U L y U L y= − ≡  
This picture was drawn for N = 
100. 

 

 

 

 



Experiments for homogeneous media 

In this case the jump-line does not exists and all grid point have either type I or IV. The 
stencils for inner points of G are shown on Fig.2. 

For an exact solution u one can take any function from 4С . Below the results of numerical 
experiments are presented. 

 

Fig.9. Schemes’ 
error depending on 
N in loglog 
coordinates. The 
exact solution: 

sin( )u x=  
 
 



 

 

Fig.10. Same results for 
the exact solution: 

sin( )u x y= +  
 
 

 

 

 



 

Fig.11. Same results for 
the exact solution: 

6 sin( )u x x=  
 

 

   

 

 



Classic divergent scheme (in comparison with the compact one) 

The idea of this scheme is in difference approximation of the derivatives as follows:   

                                 1, , 1
1/2, , 1/2( ') , ( ')ij i j ij i j

x i j y i j
u u u u

u u
h h

− −
− −

− −
≈ ≈ . 

Therefore, we get the following approximation of the Laplace operator: 

                         

( ) ( )

( ) ( )

2
( 1), , , ( 1),

,( 1) , , ,( 1)

1 1( [ ]) , ,
2 2

1 1, ,
2 2

ij i j i j i j i j

i j i j i j i j

L u h i j u u i j u u

i j u u i j u u

ϑ ϑ

ϑ ϑ

−
+ −

+ −

    ≈ + − − − − +         
    + + − − − −         

 

At points of type I and II equation (1) is approximated: [ ]ij ijL u fϑ = .   

At points of type III one can approximate the solution with two quadratic polynomial from 
each side of Г and write the Kirchhoff condition (3), which will give the following relation 
between the polynomials’ coefficients:  

                2 1 1 24 3( ) 4 0i j i j ij i j i ju u u u uϑ ϑ ϑ ϑ ϑ ϑ− − − − − + + + + +− + + − + = .                               (5) 

 



Richardson extrapolation 

 Our algorithm that solves the differential problem depends on the grid’s step 1~h
N

 , and 

the following asymptotic is fulfilled: 

                                           ( ) ( ) ( ) ( )hu x u x C x h o hν ν= + +
                                                            (6) 

Therefore, we obtain for the step 2h: 

                                         2 ( ) ( ) ( )2 ( )hu x u x C x h o hν ν ν= + +
                                                        (7) 

      We obtain from estimations (6-7):  2( ) ( )( )
(1 2 )

h hu x u xС x
hν ν

−
=

−

 


, 2( ) ( ) ( )(2 ) ( )hu x u x C x h o hν ν= − +
  . 

We compare two solutions 2 ( )hu x  и ( )hu x  only on the coarsest grid with step 2h. 

  The compact scheme’s accuracy order is equal to 4, therefore one should take 4ν = . 

 

 

 



Helmgoltz equation 

 Compact approximation of Helmgoltz Eq. (2) can be reduced to compact approximation of 
the Poisson equation by using the following substitution: ( , )g f x y uρ= − . We construct the 
global SLAE for u and g: ( )Au Pg A P u Pf Bu Pfρ= ⇔ + = ⇔ = , where the matrix B A Pρ= + , 
ρ  - the diagonal matrix with grid values of the coefficient ρ  in Eq. (2. If ρ  is positive, the 
spectrum of the Helmgoltz operator will also be positive and matrix B will be well conditioned. 
Otherwise we can’t guarantee good conditionality of matrix B.  

 

Fig.12. Schemes’ error depending 
on N in loglog coordinates for 
Helmgoltz equation. 
Here 6 sin( )u x y= . 
The coefficient  

1( , ) exp
( 2 )

x y
y y

ρ
π

 
= − − 

 

is positive.  
 



 

Case of discontinuous coefficientρ in Helmgoltz equation. 

 

Fig.13. Same results for 
 
  sin( ) 2u y x= + +  
 
and coefficient: 
 

1, 0
( , )

10, 0
x

x y
x

ρ
≤

=  ≥
. 

 

 

 



The Multigrid method 

The idea of the multigrid method is that one needs to consistently apply several embedded 
into each other grids with resolutions 1

0 0 0 0, 2 , 4 ,...., 2kN N N N− , respectively. This method is 
effective as it allows to attenuate amplitudes of the problem’s eigen functions rather fast for a 
wide diapason of wavenumbers. It happens so because each grid has its own diapason of fast 
attenuating eigen functions and the multigrid technic allows to combine them.   

Transmission from a coarser grid to a finer: bilinear interpolation 

Transmission from a finer grid to a coarser: simple restriction 

We apply the grids in the following order:  

Iterations start on the coarsest grid, which are followed by a series of refinements and 
smoothing relaxation iterations after each refinement. After that we start series of coarsening with 
smoothing iteration after each coarsening. This process is called a V-cycle. In this study we 
assume that the resolution of the coarsest grid 0 16N = . 



 

Fig.14. Structure of a V-
cycle. 

 

The efficiency of the multigrid method is described by two parameters: NN (normalized 
norm of the residual) and CC (computational cost – number of arithmetical operations +, -, /, *) 

We provide below the results of experiments: NN and CC depending on the resolution of the 
finest grid.  

 

 

 

 



 

 

Fig.15. Isolines of CC and 
NN for the compact 
scheme depending on the 
number of V-cycles (W) 
and the resolution of the 
finnest grid ( finN ). The 
green line shows the 
optimal realtinon between 
W and finN .  
Here sin( )u x y= +  

 

 

 

 



 

 

Fig.16. Same results for 
the classic scheme.  
 

 

 

    

 

 



 

Fig.17. Optimal curves for 
both schemes for various 
exact solutions: 
 
13)  sin( )u x y= +  
14)  sin( )u x=  
15)  6 sin( )u x y= . 
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