Two dimensional boundary value problem for the 2-nd order elliptic equation with discontinuous coefficient

V.A. Gordin, D.A. Shadrin

HSE \& Hydrometeorological Center of Russia, Moscow,

vagordin@mail.ru, shadrin.dmitry2010@yandex.ru

Elliptic linear differential equations such as Poisson (1) and Helmgoltz (2) equations describe stationary solutions (e.g. for diffusion, heat conductivity, and for distribution of the electrostatic potential)

$$
\begin{gather*}
-\operatorname{div}(\vartheta(\vec{x}) \operatorname{grad}(u))=f(\vec{x}), \quad \vec{x} \in G, \tag{1}\\
-\operatorname{div}(\vartheta(\vec{x}) \operatorname{grad}(u))+\rho(\vec{x}) u=f(\vec{x}) . \tag{2}
\end{gather*}
$$

In many physical and technical cases the media is not homogeneous and its properties (described by coefficients $\vartheta(\vec{x})$ and $\rho(\vec{x})$) are discontinuous.

On the edges of the cylinder G the Dirichlet boundary conditions are posed, on the jump-line Γ the Kirchhoff conditions are fulfilled:

$$
\begin{equation*}
[u]=0, \tag{3a}
\end{equation*}
$$

$$
\begin{equation*}
\left[\vartheta \partial_{n} u\right]=0 . \tag{3b}
\end{equation*}
$$

Here [] is an amplitude of the jump on line Γ, ∂_{n} is the normal derivative on Γ. We assume that $L=\pi$, in other cases we should renormalize our domain.

Compact approximation:

The cylinder G is covered by a uniform grid with N knots on the circle and $N+1$ knots on its generatrix. Due to the chosen size the grid's diameter in coordinates $\langle x, y\rangle$ is equal to $h=\frac{2 \pi}{N}$. Let us define for every point with the too dimensional index \vec{j} of the grid a pair of difference operators $A_{\dot{j}}$ and $P_{\bar{j}}$, which approximate the differential problem (2-3) and are applied to the functions u and f, respectively, and a pair of stencils for these operators (grid points where operators have non-zero coefficients).

The operators $A_{\vec{j}}$ and $P_{\vec{j}}$ should be exact on a set of test functions: $\left(u_{k}, f_{k}\right)$, where $k=1, \ldots$, $K, f_{k}=L\left[u_{k}\right], L$ is the differential operator in the left-hand side of Eq. (1). Therefore $\forall k A_{\bar{j}} u_{k}=P_{\vec{j}} f_{k}$. Coefficients of the operators $A_{\vec{j}}$ and $P_{\vec{j}}$ for any grid index i are found by solving a "local SLAE" of order $K+1$. These coefficients form $|\vec{j}|$-th lines of the "global SLAE" $\mathbf{A} \vec{U}=\mathbf{P} \vec{F}$, where \vec{U} is a finite-difference solution on the grid, $N \times(N+1) \square K$. At points at the edge of G boundary conditions are approximated. $A_{\vec{j}}$ and $P_{\vec{j}}$ have non-zero coefficients only at K points of their stencils, all the other elements of line $|\vec{j}|$ in the global SLAE are zeros. As $K \square N$, matrixes of the global SLAE are rather sparse.

The points of the grid are divided in four groups due to approximation method
Type I - points inside G far from Γ
Type II - points, which templates intersect with Γ
Type III - points on line Γ
Type IV - points on the edges of G

Points of type I

Fig. 2. In the left part the scheme's stencils are presented and a Newton's diagram in the right part for monomials $x^{\alpha} y^{\beta}$

Let us use monomial $x^{\alpha} y^{\beta}$ as test functions. Due to the symmetry of the stencils with respect to vertical and horizontal axis, the monomials powers α, β are even. As the grid's diameters with respect to x and y are equal, the equations for test functions $x^{\alpha} y^{\beta}$ and $x^{\beta} y^{\alpha}$ will also be the same. That is why to achieve 4 -th accuracy order we need to take only the following test functions: $1, x^{2}, x^{4}, x^{2} y^{2}$.

The coefficients will be as follows: $a=1, b=-0.2, c=-0.05, p=0.2 h^{2}, q=0.025 h^{2}$.

Points of type II

For points near to line Γ one should take the same stencils as for point of type I (view Fig.2). At the same time one should take in account that the right-hand side f is not defined on Γ, but there exist left and right-hand limits: f_{-}and f_{+}, respectively. Therefore when constructing the global SLAE, we assume for point to the left from Γ the right-hand side is equal to f_{-}, and for points to the right from Γ the right-hand side is equal to f_{+}

Points of type III

Fig.3. Stencils and a Newton's diagram for points of type III. Blue points mark two test function: one with $\operatorname{sign}(x)$ and one without

We assume that the solution of the differential problem u is a piecewise analytic function, which has two different Teylor series on the right and on the left side from line Γ :

$$
\begin{aligned}
& u(x, y)=\sum a_{i j} x^{i} y^{j}, x \leq 0 \\
& u(x, y)=\sum b_{i j} x^{i} y^{j}, x \geq 0
\end{aligned}
$$

From the Kirchhoff conditions (3a,b) we get: $a_{0 j}=b_{0 j}, \vartheta_{-} a_{0 j}=\vartheta_{+} b_{0 j}$. We take the following test functions: $\quad 1, \frac{x}{\vartheta}, x^{2}, \operatorname{sign}(x) x^{2}, x^{3}, \operatorname{sign}(x) x^{3}, x^{4}, \operatorname{sign}(x) x^{4}, y^{2}, \frac{y^{2} x}{\vartheta}, x^{2} y^{2}, \operatorname{sign}(x) x^{2} y^{2}, y^{4}$. Here we also use the symmetry of the stencils with respect to horizontal axis.

The right-hand side on line Γ is a two valued function $\left(f_{+}\right.$и $\left.f_{-}\right)$, that is why the stencil for f has two coefficients on the jump-line $\Gamma t_{-} \& t_{+}, p_{-} \& p_{+}$). Coefficints t_{-}, p_{-}refere to the lefthand limit $\left(f_{-}\right)$and t_{+}, p_{+}to the right-hand limit $\left(f_{+}\right)$.

After solving the "small SLAE" we obtain the following coefficients for the compact approximation:

$$
\begin{aligned}
& a=1, c=-\frac{1}{5}, b_{1}=-\frac{2 \vartheta_{+}}{\vartheta_{+}+\vartheta_{-}}, b_{2}=-\frac{2 \vartheta_{+}}{\vartheta_{+}+\vartheta_{-}}, d_{1}=\frac{\vartheta_{-}}{15\left(\vartheta_{+}+\vartheta_{-}\right)}, d_{2}=\frac{\vartheta_{+}}{15\left(\vartheta_{+}+\vartheta_{-}\right)}, \\
& r_{1}=r_{2}=-\frac{h^{2}}{36\left(\vartheta_{+}+\vartheta_{-}\right)}, q_{1}=q_{2}=-\frac{7 h^{2}}{90\left(\vartheta_{+}+\vartheta_{-}\right)}, t_{-}=t_{+}=\frac{h^{2}}{60\left(\vartheta_{+}+\vartheta_{-}\right)}, p_{-}=p_{+}=\frac{7 h^{2}}{60\left(\vartheta_{+}+\vartheta_{-}\right)} .
\end{aligned}
$$

At points of type IV - Dirichlet boundary condition

Constructions of the "global SLAE"

After calculating the coefficients of difference operators at each point the "global" matrices \boldsymbol{A} and \boldsymbol{P} are constructed. \boldsymbol{A} is a square matrix, it's size is $M \times M$ (M - number of grid's knots). Matrix \boldsymbol{P} counts points on Γ two times, as (f) is a two-valued function, therefore the size of \boldsymbol{P} is $M \times(M+N)$.

To solve the SLAE one needs to invert matrix \boldsymbol{A}, that is why it is important to provide good conditionality of \boldsymbol{A}. Local operators A_{i} are exact on the constant test function, therefore $\forall i \sum_{j} a_{i j}=0$. If $a_{i i}>0$, and all other weight are negative, then:

$$
\begin{equation*}
\sum_{j \neq i}\left|a_{i j}\right|=a_{i i} . \tag{4}
\end{equation*}
$$

Zero lies on the edge of Gershgorin's circles, which contain the spectrum of \boldsymbol{A}. At boundary points of cylinder G the diagonal of \boldsymbol{A} dominates. Therefore, one can hope that 0 won't be included in \boldsymbol{A} 's spectrum, so the matrix \boldsymbol{A} is invertible.

Tests, proving the scheme's order.

The scheme's order can be evaluated the following way. We consider a smooth function \tilde{u} and construct a new function $u(x, y)=g(x, y) \tilde{u}(x, y)$, where g - is a piecewise linear function by x : $g(x, y)=1+a(y)(x+|x|)$. Function $\mathrm{a}(\mathrm{y})$ is defined so that u fulfills the Kirchhoff conditions (3 a, b). Therefore $a(y)=\partial_{x} \tilde{u}(0, y) \frac{\vartheta_{-}-\vartheta_{+}}{2 \vartheta_{+} \tilde{u}(0, y)}$. Then we calculate f as $f=L[u]$, so u is the exact solution of problem (2-3) with the right hand-side f and suitable non=homogeneous Dirichlet boundary conditions.

The norm of the error (E) is evaluated as follows: $E=\left\|u_{\text {appr }}-u\right\|_{C}$. Here $u_{\text {appr }}$ is a solution that is calculated by the difference scheme. Below the graphs of errors depending on N are presented for three schemes: classic, compact, and compact with Richardson extrapolation. Experiments proving the scheme's accuracy order were made for huge $\kappa=10000$.

A sample solution of the Dirichlet problem.

Experiments for homogeneous media

In this case the jump-line does not exists and all grid point have either type I or IV. The stencils for inner points of G are shown on Fig.2.

For an exact solution u one can take any function from C^{4}. Below the results of numerical experiments are presented.

		Fig.11. Same results for the exact solution: $\tilde{u}=x^{6} \sin (x)$

Classic divergent scheme (in comparison with the compact one)

The idea of this scheme is in difference approximation of the derivatives as follows:

$$
\left(u_{x}^{\prime}\right)_{i-1 / 2, j} \approx \frac{u_{i j}-u_{i-1, j}}{h}, \quad\left(u_{y}^{\prime}\right)_{i, j-1 / 2} \approx \frac{u_{i j}-u_{i, j-1}}{h} .
$$

Therefore, we get the following approximation of the Laplace operator:

$$
\begin{aligned}
& \left(\overline { L } [u] _ { i j } \approx h ^ { - 2 } \left\{\left[\vartheta\left(i+\frac{1}{2}, j\right)\left(u_{(i+1), j}-u_{i, j}\right)-\vartheta\left(i-\frac{1}{2}, j\right)\left(u_{i, j}-u_{(i-1), j}\right)\right]+\right.\right. \\
& \left.+\left[\vartheta\left(i, j+\frac{1}{2}\right)\left(u_{i,(j+1)}-u_{i, j}\right)-\vartheta\left(i, j-\frac{1}{2}\right)\left(u_{i, j}-u_{i,(j-1)}\right)\right]\right\}
\end{aligned}
$$

At points of type I and II equation (1) is approximated: $\vartheta L[u]_{i j}=f_{i j}$.
At points of type III one can approximate the solution with two quadratic polynomial from each side of Γ and write the Kirchhoff condition (3), which will give the following relation between the polynomials' coefficients:

$$
\begin{equation*}
\vartheta_{-} u_{i-2 j}-4 \vartheta_{-} u_{i-1 j}+3\left(\vartheta_{-}+\vartheta_{+}\right) u_{i j}-4 \vartheta_{+} u_{i+1 j}+\vartheta_{+} u_{i+2 j}=0 . \tag{5}
\end{equation*}
$$

Richardson extrapolation

Our algorithm that solves the differential problem depends on the grid's step $h \sim \frac{1}{N}$, and the following asymptotic is fulfilled:

$$
\begin{equation*}
u_{h}(\vec{x})=u(\vec{x})+C(\vec{x}) h^{v}+o\left(h^{v}\right) \tag{6}
\end{equation*}
$$

Therefore, we obtain for the step $2 h$:

$$
\begin{equation*}
u_{2 h}(\vec{x})=u(\vec{x})+C(\vec{x}) 2^{v} h^{v}+o\left(h^{v}\right) \tag{7}
\end{equation*}
$$

We obtain from estimations (6-7): $C(\vec{x})=\frac{u_{h}(\vec{x})-u_{2 h}(\vec{x})}{\left(1-2^{v}\right) h^{v}}, u(\vec{x})=u_{2 h}(\vec{x})-C(x)(2 h)^{v}+o\left(h^{v}\right)$.
We compare two solutions $u_{2 h}(\vec{x})$ и $u_{h}(\vec{x})$ only on the coarsest grid with step $2 h$.
The compact scheme's accuracy order is equal to 4 , therefore one should take $v=4$.

Helmgoltz equation

Compact approximation of Helmgoltz Eq. (2) can be reduced to compact approximation of the Poisson equation by using the following substitution: $g=f-\rho(x, y) u$. We construct the global SLAE for u and $g: A u=P g \Leftrightarrow(A+\bar{\rho} P) u=P f \Leftrightarrow B u=P f$, where the matrix $B=A+P \bar{\rho}$, $\bar{\rho}$ - the diagonal matrix with grid values of the coefficient ρ in Eq. (2. If ρ is positive, the spectrum of the Helmgoltz operator will also be positive and matrix B will be well conditioned. Otherwise we can't guarantee good conditionality of matrix B.

Case of discontinuous coefficient ρ in Helmgoltz equation.

	Fig.13. Same results for $\tilde{u}=\sin (y+x)+2$ and coefficient: $\rho(x, y)=\left\{\begin{array}{l} 1, x \leq 0 \\ 10, x \geq 0 \end{array}\right.$

The Multigrid method

The idea of the multigrid method is that one needs to consistently apply several embedded into each other grids with resolutions $N_{0}, 2 N_{0}, 4 N_{0}, \ldots, 2^{k-1} N_{0}$, respectively. This method is effective as it allows to attenuate amplitudes of the problem's eigen functions rather fast for a wide diapason of wavenumbers. It happens so because each grid has its own diapason of fast attenuating eigen functions and the multigrid technic allows to combine them.

Transmission from a coarser grid to a finer: bilinear interpolation
Transmission from a finer grid to a coarser: simple restriction
We apply the grids in the following order:
Iterations start on the coarsest grid, which are followed by a series of refinements and smoothing relaxation iterations after each refinement. After that we start series of coarsening with smoothing iteration after each coarsening. This process is called a V-cycle. In this study we assume that the resolution of the coarsest grid $N_{0}=16$.

N	
$2^{k-1} N_{0}$	
$2^{k-2} N_{0}$	
$2^{k-3} N_{0}$	
$2 N_{0}$	
N_{0}	Iteration number

Fig.14. Structure of $a V_{-}$ cycle.

The efficiency of the multigrid method is described by two parameters: NN (normalized norm of the residual) and CC (computational cost - number of arithmetical operations,,$+- /, *$) We provide below the results of experiments: NN and CC depending on the resolution of the finest grid.

Acknowledgements

The study was prepared within the framework of the Academic Fund Program at the National Research University Higher School of Economics (HSE) in 2020 - 2021 (grant № 20-04-021) and by the Russian Academic Excellence Project 5-100.

