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Introduction
TBCs problem

Transparent Boundary Conditions (TBCs) on the boundary
#—x ∈ 𝜕V ⊂ Rn for the equation

𝜕tu = Au + f

provide the same solution of the mixed problem as the solution of
Cauchy problem with prolonged initial functions and forcing f to all
space #—x ∈ Rn by zero.
For 1D differential wave equation 𝜕2

t u = c2𝜕2
xu the TBCs are local:

𝜕tu = ±c𝜕xu on the border [−L/2, L/2] ⊂ R.
However, usually such TBCs are non-local and contain convolutions
with respect to time t and all variables that are tangential to 𝜕V .
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Introduction
Rod equation

The equation of transverse vibrations of a rod (beam) with a circular
cross section

𝜌
𝜕2u

𝜕t2
− 𝜕

𝜕x

[︂
R2𝜌

𝜕3u

𝜕x 𝜕t2

]︂
+

𝜕2

𝜕x2

[︂
ER2𝜕

2u

𝜕x2

]︂
= f (1)

has many applications. Here
∙ 𝜌 is the density of the rod,
∙ R is the radius of the cross section of the rod,
∙ E is the Young’s modulus of the rod,
∙ u ≡ u(t, x) is the transverse displacement of the rod,
∙ x ∈ [−L/2, L/2] ⊂ R, L is the length of the rod,
∙ f describes external force (forcing).

Eq. (1) is not resolved with respect to the solution’s higher (second)
derivative with respect to time, and is supplemented by two initial
conditions:

u(0, x) = U0(x), 𝜕tu(0, x) = U1(x),
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Introduction
Crank – Nicolson Approximation

Consider Eq. (1) with constant coefficients and no forcing f :

𝜌
𝜕2u

𝜕t2
− R2𝜌

𝜕4u

𝜕2t 𝜕2x
+ ER2𝜕

4u

𝜕4x
= 0, (2)

Approximate it by the implicit finite-difference scheme of the Crank
– Nicolson type (uniform grid with steps 𝜏 with respect to time t,
and h with respect to spatial variable x):

𝜎
(︀
un+1
2h + un+1

−2h + un−1
2h + un−1

−2h

)︀
+ 𝛽

(︀
un+1
h + un+1

−h + un−1
h + un−1

−h

)︀
+

+𝛼
(︀
un+1
0 + un−1

0
)︀
+ 𝛾

(︀
un−h + unh

)︀
+ 𝛿un0 = 0,

u(0, xi ) = u0(xi ), u(𝜏, xi ) = u𝜏 (xi ), i = 0, . . . ,N.
(3)

Here 𝜈 = ER2𝜌−1 · 𝜏2h−4, 𝜇 = R2 · h−2 and 𝛼 = 1 + 3𝜈 + 2𝜇,
𝛽 = −2𝜈 − 𝜇, 𝛾 = 2𝜇, 𝛿 = −2 − 4𝜇, 𝜎 = 𝜈/2.
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Construction of DTBCs
Algorithm

1. Let us apply the 𝒵-transform (discrete analogue of the Laplace
transform) with respect to time to Eq. (3) and obtain a linear
ordinary finite-difference equation with respect to the spatial
variable m; the ordinary equation depending on the parameter
z ∈ C (dual to discrete time n).

2. We construct for the homogeneous finite-difference 4-th order
equation the fundamental set of solutions {Yj(m)}4

j=1, such
that solutions Y1, Y2 decrease as m → +∞, and solutions
Y3, Y4 decrease as m → −∞.

3. We construct the finite-difference boundary operators for the
right end x = L/2 such that the conditions are fulfilled on the
functions Y1, Y2 and for the left end x = −L/2 — on the
functions Y3, Y4.
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Construction of DTBCs
Algorithm

4. For the right segment’s end decompose the obtained
decreasing (as m → +∞) solutions into a Laurent series in a
neighbourhood of z = ∞. For the left end — as m → −∞.

5. Apply the inverse 𝒵-transform z ↦→ n to obtain the coefficients
of the DTBCs.

6. Construct vectorial rational functions. The corresponding
polynomials are symbols of the Approximate DTBCs
(ADTBCs).
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Construction of DTBCs
Series expansion

After 𝒵-transform of Eq. (3), we get characteristic homogeneous
equation

𝜎
(︀
z2 + 1

)︀ [︀
𝜆+ 𝜆−1]︀2 + (︀𝛽 (︀z2 + 1

)︀
+ 𝛾z

)︀ [︀
𝜆+ 𝜆−1]︀+

+𝛿z + (𝛼− 2𝜎)
(︀
z2 + 1

)︀
= 0.

(4)

Substitute auxiliary variable 𝜂 = 𝜆+ 𝜆−1 in Eq. (4) and get

𝜎
(︀
z2 + 1

)︀
𝜂2 +

(︀
𝛽
(︀
z2 + 1

)︀
+ 𝛾z

)︀
𝜂 + 𝛿z + (𝛼− 2𝜎)

(︀
z2 + 1

)︀
= 0.
(5)

Roots of Eq. (5) are

𝜂1,2(z) =
−𝛽
(︀
z2 + 1

)︀
− 𝛾z

2𝜎 (1 + z)
∓

∓
+

√︁
(𝛽 (z2 + 1) + 𝛾z)2 − 4𝜎 (z2 + 1) [𝛿z + (𝛼− 2𝜎) (z2 + 1)]

2𝜎 (1 + z)
,
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Construction of DTBCs
Series expansion

We develop functions (6) into the Laurent series at z = ∞:

𝜂1,2(z) =
1
𝜈

∞∑︁
k=0

(−1)kz−2k

[︃
(𝜇+ 2𝜈)

(︀
1 + z−2)︀− 2

𝜇

z
∓

∓
√︀

𝜇2 − 2𝜈
(︂

1 − 1
z

)︂(︂
1
z2 − 2

𝜇2

𝜇2 − 2𝜈
1
z
+ 1
)︂ ∞∑︁

n=0

Pn

(︂
𝜇2

𝜇2 − 2𝜈

)︂
z−n

]︃
,

(7)
where Pn is a Legendre polynomial of degree n. Note that as
z → ∞

𝜂j(z) = 𝜗j + rj(z), (8)

where rj(z) → 0 at j = 1, 2, and

𝜗j =
1
2𝜎

[︂
𝛽 ∓

√︁
𝛽2 − 4𝜎(𝛼− 2𝜎)

]︂
= 2 +

𝜇

𝜈
∓ 1

𝜈

√︀
𝜇2 − 2𝜈. (9)
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Construction of DTBCs
Series expansion

Let us resolve the relation 𝜂 = 𝜆+ 𝜆−1 as a quadratic Eq.

𝜆2 − 𝜂𝜆+ 1 = 0. (10)

For both auxiliary functions 𝜂1, 𝜂2 we obtain the following roots of
characteristic Eq. (4):

𝜆1 =
𝜂1(z)

2
−
√︂

𝜂2
1(z)

4
− 1, 𝜆2 =

𝜂2(z)

2
−
√︂

𝜂2
2(z)

4
− 1,

𝜆3 =
𝜂1(z)

2
+

√︂
𝜂2
1(z)

4
− 1, 𝜆4 =

𝜂2(z)

2
+

√︂
𝜂2
2(z)

4
− 1.
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Construction of DTBCs
Series expansion

We obtain the Laurent series for the characteristic roots in a
vicinity of the point z = ∞:

𝜆1,3(z) =
𝜂1(z)

2
∓
√︂

𝜗2
1
4

− 1 ·

·
∞∑︁
n=0

(−1)n (2n)! rn1 (z)
(1 − 2n) n! 4n (𝜃1 + 2)n

·
∞∑︁
n=0

(−1)n (2n)! rn1 (z)
(1 − 2n) n! 4n (𝜃1 − 2)n

,

(11)

𝜆2,4(z) =
𝜂2(z)

2
∓
√︂

𝜗2
2
4

− 1 ·

·
∞∑︁
n=0

(−1)n (2n)! rn2 (z)
(1 − 2n) n! 4n (𝜃2 + 2)n

·
∞∑︁
n=0

(−1)n (2n)! rn2 (z)
(1 − 2n) n! 4n (𝜃2 − 2)n

,

(12)

where 𝜂1,2 are taken from (7), 𝜗j — from (9), rj(z) = 𝜂j(z)− 𝜗j ,
j = 1, 2.
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Construction of DTBCs
Non-characteristic boundary

The following inequalities are fulfilled as z → ∞:

|𝜆1|, |𝜆2| < 1 < |𝜆3|, |𝜆4|.

Therefore, as m → +∞ it is possible to derive decreasing 𝜆m
1 , 𝜆m

2 ,
and increasing 𝜆m

3 , 𝜆m
4 solutions of equation’s (3) 𝒵-transform.

They form the fundamental set of solutions.
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Construction of DTBCs
Form of the boundary conditions

As for differential Eq. (2), for correctness of mixed initial-boundary
value problem for finite-difference Eq. (3) two boundary conditions
at each edge of the rod are required. We start by construction of
𝒵-image of the boundary conditions for the left edge in the form

P1(z
−1) v(0) + Q1(z

−1) v(h) + R1(z
−1) v(2h) + S1(z

−1) v(3h) = 0,

P2(z
−1) v(0) + Q2(z

−1) v(h) + R2(z
−1) v(2h) + S2(z

−1) v(3h) = 0,

where v is 𝒵-image of u. The equations correspond to
∞∑︁
j=0

pkj u
n−j
0 +

∞∑︁
j=0

qkj u
n−j
1 +

∞∑︁
j=0

rkj u
n−j
2 +

∞∑︁
j=0

skj u
n−j
3 = 0, k = 1, 2,

(13)
where values pkj , qkj , qkj and rkj are the Laurent series coefficients
before the term 1/z j of the functions Pk(z

−1), Qk(z
−1), Rk(z

−1),
Sk(z

−1) correspondingly in a vicinity of the point z = ∞ ∈ C.
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Construction of DTBCs
Hermite – Padé approximation

Two linearly independent boundary conditions will provide
transparency property, iff for the increasing Cauchy problem
solutions 𝜈(m) = 𝜆m

3 and 𝜈(m) = 𝜆m
4 the symbols of the boundary

conditions ⟨Pk , Qk , Rk , Sk⟩, (k = 1, 2) fulfil the following
equations:

Pk + Qk 𝜆3+Rk 𝜆
2
3 + Sk 𝜆

3
3 = 0,

Pk + Qk 𝜆4+Rk 𝜆
2
4 + Sk 𝜆

3
4 = 0.

(14)

We relax the requirements to symbols of the operators of ICP
boundary conditions, and exchange analytic functions in Syst. (14)
by polynomials and exact equalities by asymptotic (as z → ∞)
equalities:{︃
Pk(z

−1) + Qk(z
−1)𝜆3 + Rk(z

−1)𝜆2
3 + Sk(z

−1)𝜆3
3 = O

(︀
z−Kk

)︀
,

Pk(z
−1) + Qk(z

−1)𝜆4 + Rk(z
−1)𝜆2

4 + Sk(z
−1)𝜆3

4 = O
(︀
z−Kk

)︀
.

(15)
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Construction of DTBCs
Hermite – Padé approximation

If we choose normalisation condition at k = 1:

P1(0) = p1,0 = 1, Q1(0) = q1,0 = 0,

we obtain the first boundary condition in the form:

un0+

degP1∑︁
j=1

p1j u
n−j
0 +

degQ1∑︁
j=1

q1j u
n−j
1 +

degR1∑︁
j=0

r1j u
n−j
2 +

deg S1∑︁
j=0

s1j u
n−j
3 = 0.

(16)
Similarly, we choose normalisation condition at k = 2:

P2(0) = p2,0 = 0, Q2(0) = q2,0 = 1,

to obtain the preboundary value:

un1+

degP2∑︁
j=1

p2j u
n−j
0 +

degQ2∑︁
j=1

q2j u
n−j
1 +

degR2∑︁
j=0

r2j u
n−j
2 +

deg S2∑︁
j=0

s2j u
n−j
3 = 0.

(17)
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Stability regions
Energy of the rod

The Hamiltonian (energy) of the rod is a sum of its kinetic K and
potential P energies ℋ[u] = K[u] + P[u]:

K[u] =
1
2

L/2∫︁
−L/2

𝜌

[︃(︂
𝜕u

𝜕t

)︂2

+ R2
(︂

𝜕2u

𝜕t 𝜕x

)︂2
]︃

dx , P[u] =
1
2

L/2∫︁
−L/2

ER2
(︂
𝜕2u

𝜕x2

)︂2

dx .

Energy approximation:

ℋ̂
[︁
un+1/2

]︁
= h

⎡⎣1
2

(︁
𝜗
n+1/2
0 + 𝜗

n+1/2
N

)︁
+

N−1∑︁
j=1

𝜗
n+1/2
j

⎤⎦ , (18)

where for j = 1, . . . ,N − 1 we have

𝜗
n+1/2
j = 𝜌

(︃
un+1
j − unj

𝜏

)︃2

+ 𝜌R2

(︃
un+1
j+1 − unj+1 − un+1

j−1 + unj−1

2h𝜏

)︃2

+

+ ER2

(︃
un+1
j+1 − 2un+1

j + un+1
j−1 + unj+1 − 2unj + unj−1

2h2

)︃2

.
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Stability regions
Stability criteria

To determine the stability regions on (h, 𝜏) plane we introduce
three stability criteria:

1. Energy criterion:

‖un+1/2‖ℋ ≡
√︁

ℋ̂
[︀
un+1/2

]︀
≤ ‖u1/2‖ℋ,

2. C-norm criterion:

‖un‖C ≡ max
0≤j≤N

|unj | ≤ ‖u0‖C,

3. L2 criterion:

‖un‖L2 ≡

⎯⎸⎸⎸⎷h

⎡⎣1
2
(︀(︀
un0)

2 + (unN)
2
)︀)︀

+
N−1∑︁
j=1

(unj )
2

⎤⎦ ≤ ‖u0‖L2 .
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Stability regions
Stability regions
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(b) C
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6
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-4

(c) L2

Figure 1: The domain of stability on the (h, 𝜏) plane for two ADTBCs.
Set of polynomial degrees: ⟨4, 4, 8, 8⟩. Physical parameters of the rod 𝜌,
E , R and L are the same as in Table 1.

Here and further we denote the symbol of ADTBCs obtained with
polynomial degrees degPk = d1,k , degQk = d2,k , degRk = d3,k and
degSk = d4,k with k = 1, 2 as

⟨Pk ,Qk ,Rk , Sk⟩ ≡ ⟨d1,k , d2,k , d3,k , d4,k⟩.
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Stability regions
Stability regions
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Figure 2: The domain of stability on the (h, 𝜏) plane for two ADTBCs.
Set of polynomial degrees: ⟨5, 3, 9, 7⟩. Physical parameters of the rod 𝜌,
E , R and L are the same as in Table 1.
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Numerical Experiments
Parameters and Initial Conditions

For our experiments we choose rod’s parameters (that are similar to
steel) and steps:

𝜌 = 7860 kg m−3 L = 1 m
E = 210 · 109 Pa T = 0.3 s
R = 10−3 m 𝜈 ≈ 4.2748
h = 0.02 m 𝜇 = 0.0025
𝜏 = 1.6 · 10−4 s

Table 1: Parameters of numerical experiments

We set initial conditions for Eq. (2) as u(0, x) = x exp
(︁
− x2

0.02

)︁
and

𝜕u
𝜕t (0, x) = 0 for x ∈ [−L/2, L/2].
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Numerical Experiments
Reference solution

-40 -30 -20 -10 0 10 20 30 40

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Figure 3: The reference solution u* on the very extended segment
[−40L, 40L] at the final time moment T = 0.3. Two vertical dash lines
indicate the borders of the considered segment x ∈ [−L/2, L/2].
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Numerical Experiments
Comparison with the reference solution

To evaluate the dynamics of error of Eq. (3) solution u under
ADTBCs, we use

a) log10

√︁
ℋ̂[u(t, x)− u*(t, x)],

b) log10 [maxx |u(t, x)− u*(t, x)|],
c) log10 ‖u(t, x)− u*(t, x)‖2.

The latter is approximated using trapezoidal method.
Results of numeric experiment with different ADTBCs sets are
presented in Fig. 4.
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Numerical Experiments
Comparison with the reference solution
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Figure 4: Common logarithm of (a) ℋ̂, (b) C-norm, (c) L2-norm of the
difference between the reference solution u* and solutions with ADTBCs.
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Numerical Experiments
Comparison with the “usual” boundary conditions

In practice simple homogeneous boundary conditions (i.e., Dirichlet,
Neumann) lead to partial or complete reflection of outgoing waves
back into calculation area (sometimes with increased amplitude).
Consider some “usual” homogeneous boundary conditions:

i) u|Γ = 0, 𝜕u
𝜕x

⃒⃒
Γ
= 0 =⇒ un0 = un1 = 0,

ii) u|Γ = 0, 𝜕2u
𝜕x2

⃒⃒⃒
Γ
= 0 =⇒ un0 = 0, un1 = un2/2,

iii) 𝜕2u
𝜕x2

⃒⃒⃒
Γ
= 0, 𝜕3u

𝜕x3

⃒⃒⃒
Γ
= 0 =⇒ un0 = 3un2 − 2un3 , u

n
1 = 2un2 − un3 ,

iv) ADTBCs with polynomials degrees
⟨Pk ,Qk ,Rk , Sk⟩ = ⟨4, 4, 8, 8⟩, k = 1, 2.

Fig. 5 shows the dynamics of solutions errors that are calculated
using various boundary conditions:
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Numerical Experiments
Comparison with the “usual” boundary conditions
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Figure 5: Common logarithm of (a) ℋ̂, (b) C-norm, (c) L2-norm of the
difference between the reference solution u* and solutions with “usual”
boundary conditions.
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Conclusions

1. The ADTBCs were constructed for the finite-difference Crank
– Nicolson implicit approximation of the equation of rod
transverse vibrations with a circular cross section.

2. Special vectorial version of the rational Hermite – Padé
approximation provides economical and precise realisations of
the ADTBCs.

3. Stability regions depend on the symbol of ADTBCs.
4. “Usual” homogeneous boundary conditions do not have

transparency property.
5. The proposed algorithm could be used for different

approximations of various evolutionary linear equations.

6. ADTBCs for a compact approximation are being studied.
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Thank you for your attention!
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