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Elliptic linear differential equations such as Poisson (1) and Helmholtz (2) equations describe 

stationary solutions (e.g. for diffusion, heat conductivity, and for distribution of the electrostatic 

potential) 

                         [ ] ( ( ) ( )) ( ),L u div x grad u f x x G= − =  ,                                              (1) 

                                        [ ] ( ( ) ( )) ( ) ( )L u div x grad u x u f x = − + = .                                             (2)   

In many physical and technical cases, the media is not homogeneous and its properties 

(described by coefficients ( )x  and ( )x ) are discontinuous.     
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Fig. 1.  Model: domain G – surface of 

the cylinder, jump-line Г – central 

circle at x = 0,    - piecewise 

continuous coefficient:  −  in the left 

part of the cylinder, +  - in the right. 

Here [ , ]x L L − , [0,2 )y  . 

 

On the edges of the cylinder G the Dirichlet boundary conditions are posed, on the jump-line Г  the 

Kirchhoff conditions are fulfilled: 

 

[ ] 0, (3 ) [ ] 0. (3 )nu a u b=  =                                                                    

Here [  ] is an amplitude of the jump on line Г, n  is the normal derivative on Г. We assume that 

L = , in other cases we should renormalize our domain. 

 

 

 



Grid in our experiments 

The cylinder G is covered by a uniform grid with N knots on the circle and N+1 knots 

on its generatrix. Due to the chosen size the grid’s diameter in coordinates <x, y> is equal 

to 
2

h
N


= . Let us define for every point with the too dimensional index j  of the grid a pair 

of difference operators 
j

A  and 
j

P , which approximate the differential problem (2 - 3) and 

are applied to the functions u and f, respectively, and a pair of stencils for these operators 

(grid points where operators have non-zero coefficients).  

 

 

 

 

 

 

 



Compact approximation for equation Lu=f in a grid point j   

The operators 
j

A  and 
j

P  should be exact on a set of test functions: ( , )k ku f , where k=1,…,K, 

[ ]k kf L u= , L is the differential operator in the left-hand side of Eq. (1). Therefore 

k kj j
k A u P f = . Coefficients of the operators 

j
A  and 

j
P  for any grid index i are found by 

solving a “local SLAE” of order K+1. These coefficients form | |j -th lines of the “global 

SLAE” U F=A P , where U  is a finite-difference solution on the grid, ( )1N N K + . At 

points at the edge of G boundary conditions are approximated. 
j

A  and 
j

P  have non-zero 

coefficients only at K points of their stencils, all the other elements of line | |j  in the global 

SLAE are zeros. As K N , matrixes of the global SLAE are rather sparse. 

  The grid points are divided into four groups due to approximation method 

Type I – points inside G far from Г      Точки внутри области далеко от Г 

Type II – points, which stencils intersect with Г     Точки внутри области рядом с Г 

Type III – points on line Г          Точки на Г 

Type IV – points on the edges of G         Точки на краях цилиндра G - далеко от Г 

 



Points of type I 

 

 

 

Fig. 2. In the left part the scheme’s stencils are presented and a Newton’s diagram in the right part for 

monomials u x y 
 = . 

Let us use monomial x y 
 as test functions. Due to the symmetry of the stencils with respect to 

vertical and horizontal axis, the monomials powers ,   are even. As the grid’s diameters with respect to 

x and y are equal, the equations for test functions x y   and x y   will also be the same. That is why to 

achieve 4-th accuracy order we need to take only the following test functions:   
2 4 2 21, , ,x x x y . 

The coefficients will be as follows: 2 21, 0.2, 0.05, 0.2 , 0.025a b c p h q h= = − = − = = . 

 



Points of type II 

For points near to line Г one should take the same stencils as for point of type I (view Fig.2). 

At the same time one should take in account that the right-hand side f  is not defined on Г, but 

there exist left and right-hand limits: f−  and f+ , respectively. Therefore, when constructing the 

global SLAE, we assume for point to the left from Г the right-hand side is equal to f− , and for 

points to the right from Г the right-hand side is equal to f+



Points of type III 

 

 

 
Fig.3. Stencils and a Newton’s diagram for points of type III. Blue points correspond to pair of  

test functions: one monomial with multiplier sign(x) and one monomial without it. 

We assume that the solution of the differential problem u is a piecewise analytic function, 

which has two different Taylor series on the right and on the left side from line Г:  

( , ) , 0

( , ) , 0

i j
ij

i j
ij

u x y a x y x

u x y b x y x

= 

= 




 



From Kirchhoff conditions (3а,b) we obtain: 0 0j ja b= , 0 0j ja b − += . We chose the following 

test functions:    
2

2 2 3 3 4 4 2 2 2 2 2 41, , , ( ) , , ( ) , , ( ) , , , , ( ) ,
x y x

x sign x x x sign x x x sign x x y x y sign x x y y
 

. 

Here we also use the symmetry of the stencils with respect to horizontal axis. 

The right-hand side on line Г is a two valued function ( f+  and f−), that is why the stencil for 

f  has two coefficients on the jump-line Г & , &t t p p− + − +). Coefficients ,t p− −  refere to the 

left-hand limit ( f−) and ,t p+ +  to the right-hand limit ( f+) . 

After solving the “small SLAE” we obtain the following coefficients for the compact 

approximation: 

1 2 1 2

1 2 2
1, , , , , ,

5 15( ) 15( )
a c b b d d

   

       
+ + − +

+ − + − + − + −

= = − = − = − = =
+ + + +

 

2 2 2 2

1 2 1 2

7 7
, , ,

36( ) 90( ) 60( ) 60( )

h h h h
r r q q t t p p

       
− + − +

+ − + − + − + −

= = − = = − = = = =
+ + + +

. 

 

Here at grid points of type IV – Dirichlet boundary condition 

 



Constructions of the “global SLAE” 

After calculating the coefficients of difference operators at each point the “global” matrices 

A and P are constructed. A is a square matrix, its size is M M  (M – number of grid’s knots). 

Matrix P counts points on Г two times, as ( f ) is a two-valued function, therefore the size of P is 

( )M M N + . 

 To solve the SLAE we invert the matrix A, that is why it is important to provide a good 

conditionality of A. Local operators iA  are exact on the constant test function, therefore 

0ij

j

i a = . If  0iia  , and all other weight are negative, then: 

         | |ij ii

j i

a a


=  .                                                            (4) 

 Then zero lies on the boundary of Gershgorin’s circles, which contain the spectrum of A. At 

boundary points of cylinder G the diagonal of A dominates. Therefore, one can hope that 0 won’t 

be included in A’s spectrum, and the matrix A is invertible. 

 

               

 



Tests, confirming the scheme’s 4-th order. 

The scheme’s order can be evaluated the following way. We consider a smooth function u  

and construct a new function ( , ) ( , ) ( , )u x y g x y u x y= , where g – is a piecewise linear function by x:  

( , ) 1 ( )( | |)g x y a y x x= + + . Function a(y) is defined so that u fulfills the Kirchhoff conditions (3a, 

3b). Therefore ( ) (0, )
2 (0, )

xa y u y
u y

 


− +

+

−
=  . Then we calculate f as [ ]f L u= , so u is the exact solution 

of problem (2-3) with the right hand-side f and suitable non-homogeneous Dirichlet boundary 

conditions. 

 The norm of the error (E) is evaluated as follows: appr C
E u u= − . Here appru  is a 

solution that is calculated by the difference scheme for the same right-hand side f. Below the 

graphs of errors depending on N are presented for three schemes: classic, compact, and compact 

with Richardson extrapolation. Experiments proving the scheme’s accuracy order were made for 

huge coefficient: 10000 = . 

 



 

Fig.4. The schemes’ error 

depending on the number 

N in loglog coordinates. 

The exact solution: 

 

u   – линейная функция; 

 
sin( ), 0

sin( ), 0

x y x
u

x y x





+

−


= 


.  

 

 



 

Fig.5. The same results 

for the exact solution: 

 

 
6 sin( )u x y= . 

 

 



 

Fig.6. The same results 

for the exact solution: 

 

 sin( ) 2u y x= + + . 

 

 

 



 

Fig.7. The same results 

for the exact solution: 

 
 sin( )u x=  

 

 

 

 

 

 



A sample solution of the Dirichlet problem. 

 

 

Fig.8. Isolines of a sample 

solution at 10 = , right-hand 

side cos( )f y=  and boundary 

conditions ( , ) ( , ) 1U L y U L y= −   

This picture was drawn for N = 

100. 

 

 

 

 



Experiments for homogeneous media 

In this case the jump-line is absent and all grid point have either type I or IV. The stencils 

for inner points of G are shown on Fig.2. 

For an exact solution u one can take any function from 
4С . Below the results of numerical 

experiments are presented. 

 

Fig.9. The schemes’ 

error depending on 

N in loglog 

coordinates. The 

exact solution: 

sin( )u x=  

 

 



 

 

Fig.10. The same results 

for the exact solution: 

sin( )u x y= +  

 

 

 

 

 



 

Fig.11. The same results 

for the exact solution: 

6 sin( )u x x=  

 

 

   

 

 



Classic divergent scheme (in comparison with the compact one) 

The idea of this scheme is in difference approximation of the derivatives as follows:   

                                 
1, , 1

1/2, , 1/2( ') , ( ')
ij i j ij i j

x i j y i j

u u u u
u u

h h

− −
− −

− −
  . 

Therefore, we get the following approximation of the Laplace operator: 

                         

( ) ( )

( ) ( )

2
( 1), , , ( 1),

,( 1) , , ,( 1)

1 1
( [ ]) , ,

2 2

1 1
, ,

2 2

ij i j i j i j i j

i j i j i j i j

L u h i j u u i j u u

i j u u i j u u

 

 

−
+ −

+ −

    
 + − − − − +     

    

    
+ + − − − −     

    

 

At points of type I and II equation (1) is approximated: [ ]ij ijL u f = .   

At points of type III one can approximate the solution with two quadratic polynomial from 

each side of Г and write the Kirchhoff condition (3), which will give the following relation 

between the polynomials’ coefficients:  

                2 1 1 24 3( ) 4 0i j i j ij i j i ju u u u u     − − − − − + + + + +− + + − + = .                               (5) 

 



Richardson extrapolation 

 Our algorithm that solves the differential problem depends on the grid’s step 
1

~h
N

 , and 

the following asymptotic is fulfilled: 

                                           ( ) ( ) ( ) ( )hu x u x C x h o h = + +                                                          (6) 

Therefore, we obtain for the step 2h: 

                                         2 ( ) ( ) ( )2 ( )hu x u x C x h o h  = + +                                                      (7) 

      We obtain from estimations (6-7):  
2( ) ( )

( )
(1 2 )

h hu x u x
С x

h 

−
=

−
, 2( ) ( ) ( )(2 ) ( )hu x u x C x h o h = − + . 

We compare two solutions 2 ( )hu x  и ( )hu x  only on the coarsest grid with step 2h. 

  The compact scheme’s accuracy order is equal to 4, therefore one should take 4 = . 

 

 

 



Helmholtz equation 

 Compact approximation of Helmholtz Eq. (2) can be reduced to compact approximation of 

the Poisson equation by using the following substitution: ( , )g f x y u= − . We construct the 

global SLAE for u and g: ( )Au Pg A P u Pf Bu Pf=  + =  = , where the matrix B A P= + , 

  - the diagonal matrix with grid values of the coefficient   in Eq. (2). If the function   is 

positive, then the spectrum of the Helmholtz operator will also be positive and matrix B will be 

well conditioned. Otherwise we can’t guarantee good conditionality of matrix B.  

 

Fig.12. The schemes’ error 

depending on N in loglog 

coordinates for Helmholtz equation. 

Here 6 sin( )u x y= . 

The coefficient  

1
( , ) exp

( 2 )
x y

y y




 
= − 

− 
 

is positive.  

 



 

Discontinuous coefficient in Helmholtz equation. 

 

Fig.13. The same 

results for 
             sin( ) 2u y x= + +  

 

and coefficient: 

 

1, 0
( , )

10, 0

x
x y

x



= 


. 

 

 

 



Complex coefficient   in the Helmholtz equation. 

 To provide well conditionality of matrix B  one should take the function   with a positive real 

part. 

 

Fig.14. The same results 

for   sin( ) 2u y x= + +  

 

and coefficient: 

 

exp( ( )) 2i x y = + + . 

 



Multigrid method 

The idea of the multigrid method is that one needs to consistently apply several embedded 

into each other grids with resolutions 
1

0 0 0 0, 2 , 4 ,...., 2kN N N N−
, respectively. This method is 

effective as it allows to attenuate amplitudes of the problem’s eigen functions rather fast for a 

wide diapason of wavenumbers. It happens so because each grid has its own diapason of fast 

attenuating eigen functions and the multigrid technic allows to combine them.   

Transmission from a coarser grid to a finer: bilinear interpolation 

Transmission from a finer grid to a coarser: simple restriction 

We apply the grids in the following order:  

Iterations start on the coarsest grid, which are followed by a series of refinements and 

smoothing relaxation iterations after each refinement. After that we start series of coarsening with 

smoothing iteration after each coarsening. This process is called a V-cycle. In this study we 

assume that the resolution of the coarsest grid 0 16N = . 

Мы экспериментально устанавливаем оптимальное (в смысле числа операций) 

соотношение между числом V-циклов W и шагом самой мелкой сетки finN . 



 

Fig.15. Structure of a V-

cycle. 

 

The efficiency of the multigrid method is described by two parameters: NN (normalized 

norm of the residual) and CC (computational cost – number of arithmetical operations +, -, /, *) 

We provide below the results of experiments: NN and CC depending on the resolution of the 

finest grid.  

 

 

 

 



 

 

Fig.16. Isolines of CC and 

NN for the compact 

scheme depending on the 

number of V-cycles (W) 

and the resolution of the 

finnest grid ( finN ). The 

green line shows the 

optimal realtinon between 

W and finN .  

Here sin( )u x y= +  

 

 

 

 



 

 

Fig.17. Same results for 

the classic scheme.  

 

 

 

    

 

 



 

Fig.18. Optimal curves for 

both schemes for various 

exact solutions: 

 

13)  sin( )u x y= +  

14)  sin( )u x=  

15)  
6 sin( )u x y= . 
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