КОМПАКТНАЯ РАЗНОСТНАЯ СХЕМА ДЛЯ ЭЛЛИПТИЧЕСКИХ УРАВНЕНИЙ С РАЗРЫВНЫМ КОЭФФИЦИЕНТОМ.

В.А. Гордин, Д.А. Шадрин

НИУ ВШЭ & Гидрометцентр России, Москва,

vagordin@mail.ru, shadrin.dmitry2010@yandex.ru

Эллиптические дифференциальные уравнения Пуассона (1) и Гельмгольца (2) описывают стационарные решения для процессов диффузии, теплопроводности, распределения электростатического потенциала и геофизических процессов:

$$-div(\mathcal{G}(\vec{x})grad(u)) = f(\vec{x}), \quad \vec{x} \in \Omega,$$
(1)

$$-div(\vartheta(\vec{x})grad(u)) + \rho(\vec{x})u = f(\vec{x}).$$
⁽²⁾

Коэффициенты $\mathcal{G}(\vec{x})$ и $\rho(\vec{x})$ имеют скачок на линии Γ , которая имеет изломы. Здесь область Ω - прямоугольник, Γ – граница внутреннего прямоугольника Ω_1 , $\mathcal{G}(\vec{x})$ - постоянен в каждой из подобластей Ω_1, Ω_2 (см. Рис. 1).

На границе Ω - условия Дирихле, на Г – условия стыковки (Кирхгофа):

$$[u] = 0, \qquad (3a) \qquad [\mathscr{D}_n u] = 0, \qquad (3b)$$

[] - амплитуда скачка на Γ , ∂_n - производная по нормали к Γ , Ω - квадрат со стороной $l = 2\pi$.

Компактная аппроксимация

Область Ω покрыта равномерной сеткой с *N*+1 узлом на каждой стороне квадрата, шаг $h = \frac{2\pi}{N}$. Для каждого узла с двумерным индексом \vec{j} подбираем пару разностных операторов $A_{\vec{j}}$ и $P_{\vec{j}}$, аппроксимирующих (1-3) с 4-м порядком: $A_{\vec{j}}\vec{u} = B_{\vec{j}}\vec{f} + o(h^4)$. Здесь \vec{u} и \vec{f} - решение и правая часть на сетке. Коэффициенты $A_{\vec{j}}$ и $B_{\vec{j}}$ ненулевые лишь на небольших множествах точек - шаблонах операторов $A_{\vec{j}}$ и $B_{\vec{j}}$.

Эти коэффициенты определяются из условий точности операторов на парах тестовых функций (u_k, f_k) , $f_k = L[u_k]$, т.е. выполнено $A_{j}u_k = P_j f_k$ при $k \in 1, 2, ..., K, L - дифф$. оператор из (1) или (2). Нужно решить 'локальную' СЛАУ порядка K+1 (K однородных уравнений на тестовые функции + условие нормировки). После вычисления коэффициентов A_{j} и B_{j} , для каждой точки j составляется 'глобальная' СЛАУ на решение u в узлах сетки: $A\vec{u} = B\vec{f}$. Порядок этой СЛАУ $N \times (N+1) \gg K$. Строки матрицы A заполнены коэффициентами оператора A_{j} , строки матрицы B - коэффициентами B_{j} . В узлах $\partial\Omega$ условия Дирихле: $u_{j} = u_{bj}$, где u_b - заданная на сетке функция. Т.к. $K \ll N$, матрицы A, В разреженные.

В точках скачка и особенно в окрестности угла необходимо использовать 9 различных видов шаблонов и наборов тестовых функций. На Рис.2. география применения шаблонов.

Узлы типа 2 (далеко от всех границ)

Рис. 3. Шаблоны для операторов $A_{\vec{j}}$ и $B_{\vec{j}}$ и диаграмма Ньютона для тестовых мономов $x^{\alpha} y^{\beta}$.

В качестве тестовых функций *u* используем мономы $x^{\alpha} y^{\beta}$. Из-за симметричности шаблонов и дифф. оператора относительно вертикальной и горизонтальной оси, степени α, β должны быть четными. Т.к. имеется еще и симметрия шаблонов относительно диагонали, то функции $x^{\alpha} y^{\beta}$ и $x^{\beta} y^{\alpha}$ дадут одинаковые уравнения на коэффициенты, поэтому для 4-го порядка точности можно ограничиться следующим набором тестовых $u: 1, x^2, x^4, x^2 y^2$.

Коэффициенты: $a = 1, b = -0.2, c = -0.05, p = 0.2h^2, q = 0.025h^2$

Узлы типа 3 (на скачке далеко от угла)

Правая часть *f* и решение *u* – кусочно-аналитические функции со скачком на *Г* с разложениями Тейлора:

$$u(x, y) = \sum a_{\alpha\beta} x^{\alpha} y^{\beta}, x \le 0, \quad u(x, y) = \sum b_{\alpha\beta} x^{\alpha} y^{\beta}, x \ge 0.$$

Из условий Кирхгофа (3a,b) получаем: $a_{0\beta} = b_{0\beta}$, $\mathcal{P}_{-}a_{1\beta} = \mathcal{P}_{+}b_{1\beta}$, поэтому набор тестовых

функций:
$$1, \frac{x}{9}, x^2, sign(x)x^2, x^3, sign(x)x^3, x^4, sign(x)x^4, y^2, \frac{y^2x}{9}, x^2y^2, sign(x)x^2y^2, y^4$$
.

Степени по у четные из-за симметрии шабонов относительно горизонтальной оси. Правая часть f двузначна на линии Γ , - определены только её левые и правые пределы.

Поэтому на линии Γ шаблон для правой части имеет по два коэффициента: для левого предела f_- и правого f_+ . Коэффициенты t_+ , p_+ относятся к f_+ , а t_- , p_- - к f_- .

Рис.4. Шаблоны и тестовые функции для точек на гладких участках Г (синие точки – добавлены еще мономы, умноженные на sign x)

Из 'локальной' СЛАУ получаем коэффициенты:

$$a = 1, c = -\frac{1}{5}, b_1 = -\frac{2\theta_+}{\theta_+ + \theta_-}, b_2 = -\frac{2\theta_+}{\theta_+ + \theta_-}, d_1 = \frac{\theta_-}{15(\theta_+ + \theta_-)}, d_2 = \frac{\theta_+}{15(\theta_+ + \theta_-)}, d_2 = \frac{\theta_+}{15(\theta_+ + \theta_-)}, d_1 = \frac{\theta_+}{15(\theta_+ + \theta_-)}, d_2 = \frac{\theta_+}{15(\theta_+ + \theta_-)}, d_1 = \frac{\theta_+}{15(\theta_+ + \theta_-)}, d_2 = \frac{\theta_+}{15(\theta_+ + \theta_-)}, d_3 = \frac{\theta_+}{15(\theta_+ + \theta_-)}, d_4 = \frac{\theta_+}{15(\theta_+ + \theta_-)}, d_5 = \frac{\theta_+}{15(\theta_+ + \theta_-)}, d_6 = \frac{\theta_+}{15(\theta_+ + \theta_-)$$

Узлы типа 4 (в угле Г)

Для аппроксимации решения *и* в точках углов необходимо использовать обобщенные собственные функции оператора Лапласа, определяемые соотношением (4).

$$\mu \mathcal{G}(\varphi, r) Y(\varphi, r) = L[Y(\varphi, r)], \qquad (4)$$

где (φ, r) - полярные координаты в угле. Переменные разделим: $Y(\varphi, r) = A(\varphi)B(r)$, где B(r) удовлетворяет уравнению Бесселя (5а), а $A(\varphi)$ - уравнению (5б):

$$\frac{\partial}{\partial \varphi} \left(\vartheta(\varphi) \frac{\partial A}{\partial \varphi} \right) = -\vartheta(\varphi) \lambda A , \qquad (5a) \qquad \frac{1}{r} \frac{\partial}{\partial r} (r \frac{\partial}{\partial r} B) - B \frac{\lambda}{r^2} + \mu B = 0. \qquad (56)$$

Функция $A(\varphi)$ удовлетворяет условиям Кирхгофа 3(а,б) при углах $\varphi = 0$, $\varphi = \frac{\pi}{2}$. Решим задачу Штурма - Лиувилля на $A(\varphi), \lambda$. Тогда $B(r) = b_0 r^s + b_2 r^{s+2} + b_4 r^{s+4} \dots$, $s = \sqrt{\lambda}$, и в качестве тестовых выберем функции вида: $u = A_s(\varphi) r^{s+\alpha}$, где α - четное число. Шаблоны для угла и диаграмма Ньютона для тестовых функций на Рис. 5.

При четных s = 2k имеется не одна, а две функции $A(\varphi)$, удовлетворяющие 3 (a,б) – это $\cos(2k\varphi)$, $\sin(2k\varphi)$, поэтому соответствующие точки на диаграмме – синие.

Рис.5. Шаблоны и тестовые функции для точек в углах Г.

Замечание. Для пределов обобщенных собственных функций (4) выполнено очевидное соотношение $f_+ = \frac{g_-}{g_+} f_-$, где $f = L[Y(r, \varphi)] = \mathcal{G}Y(r, \varphi)$. Таким образом, столбцы 'локальной' СЛАУ,

соответствующие q_{out} и q_{in} , коллинеарны. Чтобы система решалась однозначно, мы добавляем еще одно нормировочное условие $q_{in} = p$, где параметр p подбирается экспериментально.

Узлы, соседствующие с углом. Типы 5, 6, 7, 8, 9

В данных точках используются смешанные наборы тестовых функций: мономы и обобщенные собственные функции по углу. Далее следуют рисунки с шаблонами и двумя диаграммами Ньютона для тестовых функций (мономы и обобщенные собственные) для каждого типа точек.

Узлы типа 5

Рис.6. Шаблоны и тестовые функции (мономы $x^{\alpha} y^{\beta} c$ sign и без) для узлов около углов Γ

Здесь так же, как и для узлов типа 3 симметрия относительно горизонтальной оси.

Узлы типа 6 (недалеко от угла)

Рис.7. Шаблоны и тестовые функции (обобщенные собственные) для точек около углов Г

Численные эксперименты показали, что использование в такой точке только обобщенных собственных функций дает наименьшую погрешность в угле.

Узлы типа 7 (около угла)

Рис.8. Шаблоны и тестовые функции для узлов около угла Г

Для данного типа шаблонов взяты преимущественно мономы, - обобщенных функций взяты только две, иначе линейная зависимость уравнений на функции с условием нормировки a = 1, и 'локальная' СЛАУ будет неразрешимой.

Здесь веса r1, r2 - относятся к левому пределу f_- . Функции x^2y^2 , yx^3 - линейно зависимы с остальными тестовыми.

Узлы типа 8 (на биссектрисе около угла; внутри)

Рис.9. Шаблоны и тестовые функции для узлов около угла Г

Шаблон симметричен относительно биссектрисы угла, поэтому берем только мономы $x^{\alpha} y^{\beta}$ с $\beta \ge \alpha$

Узлы типа 9 (на биссектрисе около угла; снаружи)

Рис.10. Шаблоны и тестовые функции для узлов около угла Г

Тестовые функции по углу обеспечивают 1, 2 порядки. Мономы второго порядка линейно зависимы с тестовыми функциями по углу (конкретно с $r^2, r^2 \cos(2\varphi), r^2 \sin(2\varphi)$). Мономы только 4 порядка: x^4, y^4 , остальные линейно зависимы с имеющимися тестовыми функциями (поэтому не взяли). Функция с координатами (2.5, 2.5) на диаграмме Ньютона отвечает симметричному многочлену $x^3y + xy^3$ (многочлен взят симметричным, чтобы коэффициенты шаблона были симметричны относительно биссектрисы). Здесь не делалось предположение о симметричности коэффициентов шаблонов относительно диагонали, но если таковые наложить и ограничится тестовыми функциями симметричными относительно биссектрисы, то коэффициенты получаются такими же.

Составление матриц "глобальной" СЛАУ

После определения коэффициентов разностных операторов для каждой точки составляются глобальные матрицы A и B. Матрица A – квадратная, её размеры $M \times M$ $(M - число узлов сетки, <math>M = (N+1)^2$). Матрица B учитывает точки на Г дважды, так как правая часть (f) двузначна, поэтому её размеры $M \times (M + N)$.

Для решения «глобальной СЛАУ» необходимо обеспечить хорошую обусловленность матрицы А. Локальные операторы A_i точны на константе, поэтому $\forall i \sum_{j} a_{ij} = 0$. Если

 $a_{ii} > 0$, а остальные элементы отрицательны, то:

$$\sum_{j \neq i} |a_{ij}| = a_{ii} . \tag{6}$$

Нуль лежит на краю кругов Гершгорина, содержащих спектр матрицы A. В уравнениях СЛАУ, отвечающих граничным точкам Ω, диагональ доминирует. Поэтому есть основания полагать, что нуль не войдет в спектр A, и ее можно будет обратить. Эксперименты показали, что нарушение условий (6) в небольшом числе узлов около угла практически не влияют на спектр A.

Тесты, подтверждающие порядок точности схемы

Для оценки порядка разностной схемы выбиралась правая часть f, для которой вычислялось решение U_f на самой мелкой сетке с разрешением N_f , в дальнейших экспериментах предполагается $N_f = 1024$. Далее вычисляются решения схемы U_{N_i} для каждого разрешения N_i . Затем вычислялась погрешность как $err_i = \|\tilde{U}_{N_i} - \tilde{U}_f\|$, здесь \tilde{U}_{N_i} и \tilde{U}_f - ограничения решений на сетку с разрешением 16, в качестве нормы берется L_2 или C норма. Далее строится график err_i от N_i в билогарифмической шкале, график близок к линейной функции, тангенс её угла наклона равен порядку схемы.

