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1. MCMC, Markov Chains, and related topics

1.1. Adaptive Metropolis-Hastings techniques without analytic expression for pro-
posal density

Contact persons: Sergey Samsonov and Eugene Lagutin,
svsamsonov@hse.ru, lagutin.em@phystech.edu

Suppose that we wish to sample from the distribution π on Rd with density π(x). For
some reasons we prefer to use MCMC approach, that is, we aim at constructing (Xk)

∞
k=0 -

ergodic Markov chain with stationary distribution π . Then we estimate π( f ) by

πn( f ) = n−1
n−1

∑
k=0

f (Xk).

Popular family of the algorithms is the one based on the Langevin dynamics. Consider
the following Itô SDE:

dXt =−∇U(Xt)dt +
√

2dWt , (1)

where U is some smooth function and (Wt)t≥0 is a Wiener process. Under some regularity
condition, the unique invariant distribution of (1) is given by π(x) ∝ e−U(x). Hence it
makes sense to consider first-order discretization of (1) with step size γ . This leads to the
Unadjusted Langevin Algorithm (ULA):

Xk+1 = Xk − γ∇U(Xk)+
√

2γξk+1, i.i.d. ξk ∼ N(0, Id). (2)

One can also consider Metropolis-adjusted Langevin Algorithm (MALA), which takes
ULA iterate as a proposal and then apply Metropolis-Hastings correction. Check https:
//chi-feng.github.io/mcmc-demo for demonstration.

At the same time, in many generative models one does not have the closed form density
expression of the proposal distribution. For example, this is the case of VAE’s where only
the estimate of the density likelihood is available (see e.g. [Burda et al., 2015] and [Thin
et al., 2021]). The project aim is to study both the theoretical and empirical properties of
the Metropolis-Hastings type algorithms with (unbiased) proposal density estimates.

Task:

1. Study the paper [Thin et al., 2021];

2. Implement the algorithm proposed in [Thin et al., 2021] and apply it as a post-
processing technique for fine-tuning VAEs;

3. Implement the algorithm for the setting of GANs treated as energy-based models
[Samsonov et al., 2022].

1.2. Adaptive MCMC with diffusion-based models

Contact persons: Sergey Samsonov and Eugene Lagutin,
svsamsonov@hse.ru, lagutin.em@phystech.edu

https://chi-feng.github.io/mcmc-demo
https://chi-feng.github.io/mcmc-demo


MCMC methods often rely on adaptive tuning of the so called proposal distribution in
order to achieve better performance. In particular, the key problem is to design effective
non-local moves and global proposals, and combine them with the local exploration steps.
One can naturally combine the variational autoencoders and/or normalizing flows as a
proposal generators for MCMC, see e.g. Gabrié et al. [2022], Thin et al. [2021]. It will
be natural to generalize this adaptive approach to the diffusion modeling.

Task:

1. Study the paper [Hunt-Smith et al., 2023];

2. Study the papers on adaptive MCMC, e.g. [Samsonov et al., 2022], [Gabrié et al.,
2022];

3. Combine the diffusion-based proposal with i-SIR type MCMC following [Sam-
sonov et al., 2022]

1.3. Stein Variational Adaptive Importance Sampling

Contact person: Eugene Lagutin, lagutin.em@phystech.edu

Suppose that we wish to sample from the distribution π on Rd with density π(x) ∝ e−U(x).
For some reasons we prefer to use MCMC approach, that is, we aim at constructing
(Xk)

∞
k=0 - ergodic Markov chain with stationary distribution π . Then we estimate π( f ) by

πn( f ) = n−1
n−1

∑
k=0

f (Xk).

An Importance Sampling approach (specifically Self-Normalized Importace Sampling)
aims to estimate πn( f ) by

π̂n( f ) =
n−1

∑
k=0

f (Xk)w̃n,k,

where Xk
i.i.d.∼ q, w(Xk) =

e−U(Xk)

q(Xk)
, w̃n,k =

w(Xk)

∑
n−1
k=0 w(Xk)

. Distribution q with density q(x) is

called proposal distribution.
However finding good proposal distribution especially with large dimension d is a tough
task. In this project the technique for constructing the approximation of the target density
called Stein Variational Gradient Descent is proposed. The core idea of this method is
to iteratively construct a sequence of transformations Tl(x) in a way that the distribution
ql = (Tl ◦Tl−1 · · · ◦T1)♯q0 would be closer than q0 to the target π . More precisely given a
set of particles {X l

k}
n−1
k=0 and density ql(x) at the step l the update step is

X l+1
k = X l

k + εφ(X l
k)

ql+1(X l+1
k ) = ql(X l

k)|det(I+ ε∇φl+1(Xl
k)|k−1,



where φl+1(X l
k) = n−1

n−1
∑

k=0
[−∇Y k

l
U(Y k

l )k(Y
k
l ,X

k
l )+∇Y k

l
k(Y k

l ,X
k
l )] for {Y l

k}
n−1
k=0 being inde-

pendent copy of {X l
k}

n−1
k=0 and k(·, ·) kernel function.

Task:

1. Study the paper [Han and Liu, 2017].

2. Implement the algorithm proposed in [Han and Liu, 2017] and reproduce experi-
ments on Gaussian Mixture Model.

3. Implement and analyze the algorithm for constructing Iterative Sampling Impor-
tance Resampling algorithm with Stein Variational Adaptive proposal.

1.4. Extensive study of practical performance of CV VR method

Contact person: Artur Goldman, art-gold1579@yandex.ru

Recently, a big portion of Variance reduction methods has appeared, which are based on
Control Variates. However, throughout different papers, there was barely any accurate
performance study and comparison of methods between each other. In this project it is
suggested to implement various methods, perform hyperparameter search and compare
their performance on different cases (various applications in different dimensions). The
closest paper to the suggested study is [Si et al., 2021].

Experiments should compare:

• Loss function: EV and ESV as in [Belomestny et al., 2020], EV with floating mean
and other regularisations as in [Si et al., 2021, Sun et al., 2023]

• Type of Markov chain: ULA, MALA, NUTS. Dimension of data: the bigger the
better

• Type of CV. For Stein CV: form ∆ϕ + ⟨∇ logπ,∇ϕ⟩ vs div(ϕ)+ ⟨∇ logπ,ϕ⟩. Un-
derlying class: polynomial functions, kernel functions, neural networks [Si et al.,
2021].

Metrics to track: Training time, loss value, variance reduction rate, bias.

Possible datasets to test on:

• Synthetic datasets [Samsonov et al., 2022]

• Standard Bayesian inference examples [Si et al., 2021, Belomestny et al., 2020]

• https://github.com/stan-dev/posteriordb [Wang et al., 2023]

Good start to study code: see implementations of [Samsonov et al., 2022, Sun et al., 2023]

Task:

https://github.com/stan-dev/posteriordb


1. Implement experiments. Ideally develop a useful library with clean code which
could be later used later in research by other groups.

Required skills: MLOps, PyTorch, Parallel programming, Probability theory



2. Reinforcement Learning and Stochastic Approximation

2.1. Reinforcement Learning with Tensor Decomposition

Contact person: Daniil Tiapkin, dtyapkin@hse.ru

The central object of the reinforcement learning is Markov Decision Process (MDP). An
MDP is defined by a tuple (S ,A , p,r,H,s1), where p : S ×A → ∆(S ) is a transition
kernel, r : S ×A → [0,1] is a reward function, H is a finite horizon (for simplicity),
s1 is an initial state. The interaction protocol of the agent with an MDP is following.
Agent starts at state s1. For each h ∈ [H] agent stays at state sh, play action ah, then
the environment gives an agent noisy reward rh = r(sh,ah)+ ξ , where ξ is a zero-mean
noise, and next state sh+1. The goal of the agent is to find a policy π⋆

h : S → ∆(A ) i.e.
the mapping for each state to a distribution over next taken actions, that maximizes the
expect sum of rewards. For a general exposition on theoretical RL we refer to [Agarwal
et al., 2019].

From the theoretical point of view the main problem is that the sample complexity (i.e.
minimal number of samples to achieve ε-optimal policy) must depend on number of states
at least linearly: Ω(H2SA/ε2)1. This bound is unimprovable for general finite MDPs, and
this effect is called curse of dimensionality for RL. The only way to fight it is to impose
additional structural assumptions.

In the case of multi-armed bandits (S = H = 1) the authors of [Zhou et al., 2022, Shi
et al., 2023] suggest the following idea. Let us assume that the action space forms a
product structure A = A1 × . . .Ad . In this case the true reward function r(a) could be
considered as a multi-dimensional tensor R = r(a1, . . . ,ad) that in general have size qd ,
where q = |Ai|. However, we can assume that the tensor R have a small tensor rank in
sense of Tucker decomposition. In the aforementioned papers this allows to reduce the
dependence in a number of actions from initial qd to qd/2rd/2 [Zhou et al., 2022] and
even q2rd−2 [Shi et al., 2023], where for constant q and r it allows to resolve the curse of
dimensionality. There is a several possible directions in this problem.

The goal of this project is to generalize these result to the reinforcement learning problem
by assuming similar structural assumption on the state-space and transition kernel p(s,a).
Alternatively, the student is welcomed to stick on the bandit problem and suggest another
type of tensor decompositions, such as tensor train (TT) decomposition [Oseledets, 2011].

Prerequisites: Probability Theory, Matrix Computations, Lack of Fear of Math.

1. Study the minimal required part of theory of multi-armed bandits [Lattimore and
Szepesvári, 2020] and reinforcement learning [Agarwal et al., 2019];

2. Study papers on low-rank tensor bandits [Zhou et al., 2022, Shi et al., 2023];

3. Implement proposed algorithm and compare them on simple environments;

4 (A). Propose a similar structural assumptions in the RL setting and propose modification
of UCBVI algorithm [Azar et al., 2017];

1In step-homogeneous setting, where p and r is not changed each step.



4 (B). Propose an algorithms for bandits that uses TT-decomposition of reward function,
and obtain improved rates.

5. Implement the algorithm from one of the previous steps on simple environments.

2.2. Two timescale linear stochastic approximation

Contact person: Sergey Samsonov, svsamsonov@hse.ru We consider the applications of
the general LSA results to the problems of reinforcement learning. We use the notations
introduced in ?, which slightly differs from the ones introduced in the previous section.
Namely, we focus on the discounted infinite-horizon setting instead of the episodic one.

We consider a problem of estimating the policy π in a discounted MDP (Markov Decision
Process) given by a tuple (S ,A ,P,r,γ). Here, S and A stand for the respective (finite)
state and action spaces, i.e., |S |<∞, |A |<∞, and γ ∈ (0,1) is a discount factor. P stands
for the transition kernel P(s′|s,a), which determines the probability of moving from state
s to state s′ when action a is performed. The reward function r : S ×A → [0,1] is
assumed to be deterministic. The policy π(·|s) is a distribution over the action space A
corresponding to the agent’s action preferences in state s ∈S . Our goal is to estimate the
agent’s value function, which is defined as

V π(s) = E[∑∞
k=0 γkr(sk,ak)|s0 = s] ,

where ak ∼ π(·|sk), and sk+1 ∼ P(·|sk,ak), for any k ∈ N. We also define the transition
matrix

Pπ(s′|s) = ∑a∈A P(s′|s,a)π(a|s) , (3)

which corresponds to the transition probability from s to s′ under policy π . Since the
dimension of the state space S can be extremely large, we instead consider the linear
approximation of the true value function V π(s), which is defined for s ∈ S , θ ∈ Rd , and
ϕ : S → Rd as

V π
θ (s) = ϕ

⊤(s)θ ,

where the feature dimension d is typically chosen such that d ≪ |S |. In this case Vθ =
(V π

θ
(s))s∈S ∈ R|S | is the approximation vector to the true value function, and can be

written as Vθ = Φθ , where Φ = [ϕ(s1)| . . . |ϕ(s|S |)]
⊤ ∈ R|S |×d is the feature matrix.

We aim to estimate the sample complexity of estimating the optimal approximation to the
value function.

1. Study the recent papers on non-asymptotic analysis of TD learning Patil et al.
[2023], Li et al. [2023];

2. Study the papers on Polyak-Ruppert averaged LSA Durmus et al. [2022] and linear
two-timescale SA Kaledin et al. [2020]

3. Generalize the results of Kaledin et al. [2020] for TDC (offline TD) algorithm with
error expansion technique from Durmus et al. [2022].

Prerequisites: Probability theory, Linear algebra.



3. Audio Processing

3.1. Audio Clustering

Contact person: Alexandra Senderovich, asenderovich@hse.ru

Essentially, the task of clustering objects can be divided into two parts: obtaining good
representations of data and applying some clustering algorithm. For the task of clustering
objects with complex structure, such as images or audio, representations are usually taken
from last layers of some neural network. The simplest choice would be to take a network
pre-trained on the classification task. However, this solution might suffer from domain
shift: we might want to cluster data that significantly differs from the pre-training set.

To avoid this problem, one should use methods for unsupervised learning. Some of these
methods are specifically designed for solving clustering task. For images, the task of
learning representations for clustering has been extensively studied. One of the simplest
ideas (DeepCluster, [Caron et al., 2018]) is to iterate between steps of clustering data and
training a classification model based on the classes obtained on the previous step. While
this approach is interpretable and easy to implement, it does not produce good results
in terms of accuracy. State-of-the-art method for image clustering is SPICE, proposed
in [Niu and Wang, 2021]. It significantly reduced the gap between unsupervised and
supervised classification: the difference between classification accuracy of Cifar-10 with
this approach and the baseline is only 2%.

However, the task of audio clustering remains underexplored. Authors of one of the recent
papers [Ghosh et al., 2021] tried to adapt the DeepCluster approach to the task of audio
clustering. While their work is a good baseline to compare to, it also does not produce
good accuracy. The idea of this project is to try to adapt the SPICE paper to the task of
audio clustering:

1. Study the paper [Niu and Wang, 2021].

2. Identify the changes that have to be introduced in order to apply the same pipeline
to audio (mostly changing augmentations).

3. Implement this algorithm and apply to different audio datasets.

3.2. Knowledge Distillation with applications in audio processing

Contact person: Ilya Levin, ivlevin@hse.ru

Knowledge distillation is a very hot topic in recent time, for example, two year old survey
[Gou et al., 2021] has more than a 1k citations. Knowledge distillation is a method of
NN-based model compression which transfers the perfomance of a bigger model(teacher)
into a smaller one(student). This approach is especially helpful in Automatic Speaker
Recognition(ASR) problem. In signal processing it is important to have small and fast
models in order to inference them on mobile devices. Ensembling method applied to
the teacher network can enhance the quality of the solution [Yang et al., 2023]. Also,



in Neural Language Processing knowledge distillation is also widely used. For example,
there is a work [Chang et al., 2022] where authors propose an ensembling of student
networks. Thus, this approach can be studied within ASR problem. There are several
steps for it:

1. Study recent approaches for knowledge distillation in ASR;

2. Choose and apply the ensembling method for student network;

3. Compare with baselines according to the chosen scores.



4. Enumerating 2-distance sets in R8

Contact person: Fedor Noskov, fnoskov@hse.ru

Say a finite set S ⊂ Rd is 2-distance if there are two positive numbers a,b such that for
any distinct points x,y ∈ S we have ∥x− y∥2 ∈ {a,b}. In [Lisoněk, 1997], Petr Lisonek
proposed an algorithm for enumeration of all 2-distance sets in Rd .

In [Bondarenko, 2013], Andriy Bondarenko constructed a 2-distance set in R64 to dis-
prove Borsuk’s conjecture for 64-dimensional Euclidian space. Thus, we may try to find
a suitable 2-distance set in R8 to check whether Bondarenko’s method works in R8. The
problem is that a naive realization of Lisonek’s algorithm takes too much time for enu-
meration of all 2-distance sets. The goal of this project is to accelerate this algorithm with
modern computing techniques. We expect the following steps of the research:

1. Study paper [Lisoněk, 1997].

2. Implement Lisonek’s algorithm using C++ or other (fast enough) programming lan-
guages. The student can use an implementation in Sage provided us by Danilo
Radchenko [Radchenko, 2021].

3. Check papers on enumeration of isomorphism classes of graphs with GPU.

4. Try to accelerate Lisonek’s algorithm.

5. Enumerate 2-distance sets in R8 if possible.



5. Optimization and related questions
5.1. Finite-time deviation bounds for variational inequalitites

Contact person: Sergey Samsonov, svsamsonov@hse.ru

Number of recent papers study the finite-time analysis of min-max optimization problems.
Most popular algorithms for such types of problems are Stochastic Extragradient (SEG)
and Stochastic Gradient Descent Ascent (SGDA). People often study the constant-step
size versions of the mentioned algorithms together with the trajectory average. Such type
of techniques is known as Polyak-Ruppert averaging and can be shown to be optimal in
various stochastic problems.

In recent paper [Vlatakis-Gkaragkounis et al., 2023] SEG-type dynamics is studied using
the Markov chains technique. The authors manages to get asymptotic results, such as the
law of large numbers and central limit theorem. At the same time, available techniques
in Markov chains literature allows to obtain the results, which characterize the finite-time
behavior of the algorithm.

1. Study the paper [Vlatakis-Gkaragkounis et al., 2023];

2. Study the paper [Durmus et al., 2023] for the technique required to deal with the
deviation bounds for Markov chains;

3. Generalize the results of [Vlatakis-Gkaragkounis et al., 2023] for the case of finite-
time p-moment error bounds of the last iterated and trajectory avergae, respectively.

Prerequisites: Probability theory, experience with optimization or Markov chains is de-
sirable, but not mandatory.

5.2. Optimal decentralized algorithms on time-varying graphs

Contact person: Darina Dvinskikh, dmdvinskikh@gmail.com

For the current moment of time, there has been a significant increase in interest in decen-
tralized optimization. This is because modern problems that arise, e.g., in machine learn-
ing, are high-dimensional optimization problems requiring processing huge amounts of
data and training high-dimensional parameters. Thus, almost every modern problem can-
not be solved numerically without distributed computing, e.g. training large neural net-
works. Moreover, the motivation for using decentralized optimization can be local data
storage, which makes centralized collection prohibitive due to its privacy or other rea-
sons. Over the past 10 years, great progress has been made in decentralized optimization
over time-static graphs [Gorbunov et al., 2022]. For instance, the need to solve optimiza-
tion problems on time-varying graphs comes from wireless networks, where computing
devices may periodically disconnect from the distributed network because of poor con-
nection or other reasons. However, decentralized optimization on time varying graphs, is
significantly less studied [Rogozin et al., 2022], and a large number of open questions re-
main. Particularly, an optimal algorithm (optimality is in terms of the number of commu-
nications and the number of oracle calls) has not yet been proposed for non-smooth prob-
lems of (strongly) convex decentralized (stochastic) optimization time-varying graphs.



1. Study papers [Kovalev et al., 2021, Rogozin et al., 2022, Gorbunov et al., 2022]

2. Implement main decentralized algorithms

3. Try to accelerate these algorithms based on aforementioned papers and [Allen-Zhu
and Hazan, 2016]



6. Statistics and statistical learning theory topics
6.1. Beyond realizable setting in the empirical risk minimizaton with dependent

data

Contact person: Sergey Samsonov, svsamsonov@hse.ru

It is well-known, that learning from dependent data is more complicated then from i.i.d.
observation. This fact holds true both for optimization and statistical learning problems,
see e.g. Beznosikov et al. [2023]. The same holds true for the concentration bounds for
additive functional, see e.g. Adamczak [2008], Durmus et al. [2023]. At the same time,
there are recent papers, showing that the bounds might be not so pessimistic.

1. Study the paper [Ziemann et al., 2023];

2. Generalize the results for the realizable setting in RL (e.g. TD learning) using the
framework of Durmus et al. [2023];

6.2. Optimal estimation in Mixed-Membership Stochastic Block Model

Contact person: Fedor Noskov, fnoskov@hse.ru

The simplest parametric model in network analysis is the Erdős-Rényi model [Erdos and
Renyi, 1960], which assumes that edges in a network are generated independently with a
fixed probability p, the single parameter of the model. The stochastic block model (SBM;
[Holland et al., 1983]) is a more flexible parametric model that allows for communities
or groups within a network. In this model, the network nodes are partitioned into K
communities, and the probability pi j of an edge between nodes i and j depends on only
what communities these nodes belong to. The mixed-membership stochastic block model
(MMSB; [Airoldi et al., 2009]) is a stochastic block model generalization, allowing nodes
to belong to multiple communities with varying degrees of membership. This model is
characterized by a set of community membership vectors, representing the probability of
a node belonging to each community.

In the MMSB model, for each node i∈ [n], we assume that there exists a vector θθθ i ∈ [0,1]K

drawn from the (K−1)-dimensional simplex that determines the community membership
probabilities for the given node. Then, a symmetric matrix B ∈ [0,1]K×K determines the
relations inside and between communities. According to the model, the probability of
obtaining the edge between nodes i and j is θθθ

⊤
i Bθθθ j. Importantly, in the considered model,

we allow for self-loops.

More precisely, let us observe the adjacency matrix of the undirected unweighted graph
A ∈ {0,1}n×n. Under MMSB model Ai j = Bern(Pi j) for 1 ≤ i ≤ j ≤ n, where Pi j =

θθθ
⊤
i Bθθθ j = ρ θθθ

⊤
i Bθθθ j. Here we denote B = ρB with B ∈ [0,1]K×K being a matrix with

the maximum value equal to 1 and ρ ∈ (0,1] being the sparsity parameter that is crucial
for the properties of this model. Stacking vectors θθθ i into matrix Θ, Θi = θθθ

⊤
i , we get the

following formula for the matrix of edge probabilities P:

P = ΘBΘ
⊤ = ρ ΘBΘ

⊤.



Recently, Noskov and Panov, 2023 constructed the optimal estimator of B under the as-
sumption that for each community k ∈ [K] there exist Ω(n) nodes Sk such that θθθ i = ek, i ∈
Sk. If this assumption does not hold, one can improve the lower bound of estimation of B.

The key steps of the project are as follows:

1. Study the paper by Noskov and Panov, 2023.

2. Construct a large enough family of hypotheses (Θi,Bi) such that no estimator can
distinguish them with high probability.

3. Obtain lower bounds for degree-corrected MMSB model.

6.3. Approximation properties of quantized neural networks

Contact person: Nikita Puchkin, npuchkin@hse.ru

The huge empirical success of neural networks attracted attention of many scientists. In
particular, a lot of papers study approximation power of deep neural networks (see, for
instance, [Yarotsky, 2017, Yarotsky and Zhevnerchuk, 2020, Belomestny et al., 2023]
and references therein). As largest IT-companies try to incorporate neural network based
technologies into mobile devices, the question of memory usage plays a larger role. To
simplify neural network training and save memory, the engineers use neural networks with
quantized weights (that is, weights with values from a fixed discrete set). The goal of this
project is to study some properties of neural networks with weights from {−1,0,1}.

1. Study the papers on approximation properties of neural networks [Yarotsky, 2017,
Yarotsky and Zhevnerchuk, 2020, Belomestny et al., 2023].

2. Consider deep neural networks with sigmoid activations and weights from {−1,0,1}.
Try to approximate univariate linear functions f (x) = ax + b, a,b ∈ R, and the
quadratic function g(x) = x2 with these neural networks.

*3. Using the results obtained on the previous step, derive an upper bound on the com-
plexity of approximation of a smooth multivariate function on [0,1]d with quantized
neural networks.

6.4. Online change point detection

Contact person: Nikita Puchkin, npuchkin@hse.ru

Detecting a structural break in a time series is a long-standing statistical problem. Though
the first works on this topic were published in the middle of the 20th century, this problem
is still of interest of many researchers due to its practical importance, and the number of
papers studying change point detection grows constantly (see, for example, our recent
paper [Puchkin and Shcherbakova, 2023] for a brief exposition). The goal of the present
project is to suggest a new sequential change point detection procedure based on the
approaches from prediction with expert advice.



1. Get familiar with the problem of prediction with expert advice [Cesa-Bianchi and
Lugosi, 2006, Section 2].

2. Study the properties of the exponentially weighted average forecaster [Cesa-Bianchi
and Lugosi, 2006, Sections 2.1, 2.2] and the fixed share algorithm [György et al.,
2005].

3. Consider a parametric change point detection problem as a problem of prediction
with expert advice where an expert indexed by θ ∈ Θ suffers a loss (− log pθ (Xt))
on each round.

4. Assuming the parameter set Θ finite, suggest a change point detection procedure
which uses the difference between the cumulative losses of exponential weighting
and fixed-share algorithm as a test statistic. Note that in the stationary regime the
losses of two forecasters should be close to each other, while in the presence of a
change point the fixed-share algorithm should be significantly better.

5. Perform numerical experiments to illustrate the performance of the procedure.

*6. Extend the algorithm to the case of an infinite set Θ. The paper [Cao et al., 2018],
where the authors consider the change point detection problem through the lens of
online convex optimization, may be useful.

6.5. Covariance estimation via Bures-Wasserstein barycenters

Contact person: Nikita Puchkin, npuchkin@hse.ru

Let X1, . . . ,Xn be i.i.d. random vectors in Rd with zero mean and covariance matrix Σ =
EX1X⊤

1 . The most common estimator for Σ is the sample covariance Σ̂, defined as

Σ̂ =
1
n

n

∑
i=1

XiX⊤
i = argmin

S⪰O

1
n

n

∑
i=1

∥∥∥S−XiX⊤
i

∥∥∥2

F
.

However, the Frobenius norm is not the only way to define a metric on the space of
positive semidefinite matrices. For instance, one may consider the Bures-Wasserstein
distance, given by

d2
BW(Σ1,Σ2) = Tr

(
Σ1 +Σ2 −2

(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2
)
=W 2

2
(
N (0,Σ1),N (0,Σ2)

)
,

where W2
(
N (0,Σ1),N (0,Σ2)

)
is the Kantorovich-Wasserstein optimal transport dis-

tance between two Gaussian measures. If Σ1 and Σ2 commute (i.e. Σ1Σ2 = Σ2Σ1), then
dBW(Σ1,Σ2) = ∥Σ

1/2
1 −Σ

1/2
2 ∥F. The goal of the project is to study theoretical properties

of the estimator

Σ̃ ∈ argmin
S⪰O

1
n

n

∑
i=1

d2
BW(S,XiX⊤

i ),

also referred to as empirical barycenter. In the existing literature, the authors consider
barycenters over sets of Gaussian measures with nondegenerate covariance matrices (in
fact, they often require the covariances to have a bounded condition number). This is not
applicable in our case, because the matrices X1X⊤

1 , . . . ,XnX⊤
n are clearly degenerate.



1. Get familiar with the papers on Bures-Wasserstein barycenters, e.g., [Chewi et al.,
2020, Kroshnin et al., 2021, Maunu et al., 2023].

2. Study the properties of empirical risk minimizers [Boucheron et al., 2005].

3. Derive an upper bound on Ed2
BW(Σ̃,Σ) with explicit dependence on the sample size

n.

*4. Derive a dimension-free high-probability upper bound on d2
BW(Σ̃,Σ) with explicit

dependence on the sample size n.



7. Probability and related topics
7.1. Rosenthal-type inequalities for random matrices with Markovian dependence

Contact person: Sergey Samsonov, svsamsonov@hse.ru

1. Study the paper Durmus et al. [2023] with Rosenthal inequalities for Markov chains
in scalar case;

2. Study the paper Neeman et al. [2023] for the Bernstein-type bounds in Markovian
setting;

3. Generalize the techniques from Durmus et al. [2023] to deal with the matrix-valued
setting and get the precise variance term under the assumptions imposed in Neeman
et al. [2023];

7.2. Poincaré and log-Sobolev inequalities from the Gardner-Zvavitch theorem

Contact person: Nikita Puchkin, npuchkin@hse.ru

Poincaré and log-Sobolev inequalities are important tools in statistical inference, con-
centration of measure, and sampling. The starting point in their proof is the Brunn-
Minkowski inequality (see, for instance, [Bobkov and Ledoux, 2000]). Recently, Cordero-
Erausquin and Rotem [2022] proved a counterpart of the Brunn-Minkowski inequality for
rotation-invariant log-concave measures. In particular, this includes the standard Gaus-
sian measure in Rn and resolves the Gardner-Zvavitch conjecture [Gardner and Zvavitch,
2010] positively. The goal of this project is to derive analogs of Poincaré and log-Sobolev
inequalities based on the Brunn-Minkowski inequality for the Gaussian measure.

1. Study the paper [Bobkov and Ledoux, 2000].

2. Suggest and prove counterparts of Poincaré and log-Sobolev inequalities, starting
from the Brunn-Minkowski inequality for the Gaussian measure.

7.3. Projection property

Contact person: Egor Kosov, ked 2006@mail.ru

Let f be a functional on the (sub)set of all d-dimensional probability distributions. With
some abuse of notation, for a d-dimensional random vector X , let f (X) be the same as
the value of the functional f on the distribution of the vector X . As an example, we
can consider the functional fmax(X) = sup

x∈Rd
ρX(x) where ρX is the density of X . This

functional is defined on the subset of all absolutely continuous distributions. We say that
a functional f satisfies the projection property if there is a numerical constant C > 0 such
that, for every n ∈N, for every collection of i.i.d random vectors X1, . . . ,Xn, satisfying the
assumption max

1≤ j≤n
f (X j) ≤ 1, one has f (a1X1 + . . .+ anXn) ≤ C for every a1, . . . ,an ∈ R,

a2
1 + . . .+ a2

n = 1. It is known, that functional fmax satisfies the projection property for



all d ∈N (see Bobkov and Chistyakov [2012], Rudelson and Vershynin [2015], Madiman
et al. [2017]). For the derivative functional

f1(X) :=
∫
Rd

|∇ρX(x)|dx = E|pX(X)|, pX(x) :=
∇ρX(x)
ρX(x)

= ∇ logρX(x),

the projection property was established in Kosov [2022a] only for the case d = 1. For
the Fisher information functional f2(X) :=E|pX(X)|2 and functionals f2k :=E|pX(X)|2k,
k ∈ N, the projection property was established in Bobkov [2019] (for d = 1).

There are two main questions:

1. Are there any other functionals that satisfy the projection property? For example, one
may try to answer this question for the functionals

fLp(X) :=
(∫

Rd
|ρX(x)|p dx

)1/p
.

2. What is going with the already mentioned functionals in the case d > 1?

We also mention that one can study the projection property not only for one dimensional
projections a = (a1, . . . ,an), but for k-dimensional ones. In that case in place of a vector
a there will be a matrix with k-dimensional image.

One can start with the following plan:

1. Study the papers Bobkov [2019], Madiman et al. [2017], Kosov [2022a].

2. Try to answer the question 2 above for f2k and f1.

7.4. Distances between norms of Gaussian vectors

Contact person: Egor Kosov, ked 2006@mail.ru

Let X and Y be two Gaussian random vectors with zero mean and covariance matrices ΣX
and ΣY respectively. Let λ jX be the eigenvalues of the matrix ΣX counting multiplicities,

and ordered in descending order. Let Λ2
kX :=

∞

∑
j=k

λ 2
jX . Let λ jY and ΛkY be defined similarly

for the vector Y . In Götze et al. [2019] the following bound was established

dKol(|X |, |Y −a|)≤C
( 1√

Λ1X Λ2X
+

1√
Λ1Y Λ2Y

)(
∥ΣX −ΣY∥(1)+ |a|2

)
, (4)

where ∥ · ∥(1) is the nuclear norm of a matrix and where dKol is the Kolmogorov distance:

dKol(ξ ,η) := sup
t∈R

∣∣P(ξ ≤ t)−P(η ≤ t)
∣∣.

In Kosov [2022b] the following bound was proved:

dTV
(
|X |, |Y −a|

)
≤ 160√

λ1X ·λ2X

(
∥ΣX −ΣY∥HS + |trΣX − trΣY |+ |a|2 + |Σ1/2

Y a|
)
, (5)



where ∥ · ∥HS is the Hilbert–Shmidt (Frobenius) norm of a matrix and where

dTV
(
ξ ,η

)
:= sup

{
E
[
ϕ(ξ )−ϕ(η)

]
, ϕ ∈C∞

0 (R), ∥ϕ∥∞ ≤ 1
}
.

In the right hand side of (5) the factor 1√
λ1X ·λ2X

is bigger than 1√
Λ1X Λ2X

from (4). Moreover,

the expression |Σ1/2
Y a| depends only linearly on |a|→ 0. On the other hand, the expression

∥ΣX −ΣY∥HS + |trΣX − trΣY |

is sharper than the nuclear norm ∥ΣX −ΣY∥(1) (e.g. in the case trΣX = trΣY ).

Taking into account these two inequalities, one may ask the following three questions:

The total variation distance is stronger than the Kolmogorov distance and thus, here ap-
pears the following question.

1. Is it true that

dKol(|X |, |Y −a|)≤C
( 1√

Λ1X Λ2X
+

1√
Λ1Y Λ2Y

)(
∥ΣX −ΣY∥HS + |trΣX − trΣY |+ |a|2

)
?

2. Is it true that

dTV
(
|X |, |Y −a|

)
≤ C√

Λ1X ·Λ2X

(
∥ΣX −ΣY∥HS + |trΣX − trΣY |+ |a|2 + |Σ1/2

Y a|
)
?

3. Is it true that

dTV
(
|X |, |Y −a|

)
≤ C√

Λ1X ·Λ2X

(
∥ΣX −ΣY∥HS + |trΣX − trΣY |+ |a|2

)
?



8. Recommender systems projects
Contact person: Evgeny Frolov, evgeny.frolov@skoltech.ru

8.1. Alternative negative sampling schemes for training RL models in RecSys

This is a subproject from a larger ongioing project at HSE led by Sergey Samsonov.

The current baseline in the project is an ensemble of 50+ models trained using bagging
technique. This renders such model inefficient in dynamic recsys environments. The task
is to take a single baseline RL model and improve its learning capabilities by properly
tweaking the way data is exposed to the model during the training.

8.2. Improved learning for neural collaborative filtering

The main goal of the project is to derive intuition about the training behavior of typical
architectures used in recommender systems and try to improve learning capabilities of
those architectures based on thatknowledge.

This is a project in collaboration with Dmitry Vetrov. It is based on the toolset developed
by D. Vetrov’s team for analyzing global properties of surrogate loss functions but in
application to specific scenarios in recommender systems and specific architectures based
on Autoencoders.

Tasks:

• Study the techniques proposed by D. Vetrov, a good start is to watch Vetrov [2023].

• Adapt the techniques for the recommender systems domain.

• Analyze the possibility to improve learning behavior of recsys architectures.

8.3. Towards better understanding of latent factor models utility in top-n recom-
mendation tasks

The main goal of the project is to establish the connection of the quality of matrix factorization-
based models in top-n recommendation task to the spectral properties of their factor ma-
trices. For example, link the properties of random matrices spectrum to the task of ”flat-
tening” of real collaborative filtering matrices spectrum.

This is an exploratory research with high degree of uncertainty. Possible collaboration
with Alexey Naumov and Maxim Rakhuba.

8.4. Hankelized tensor factorization for session-based recommenders

The goal is to adapt the existing approach of hankelized representations for sequential
learning with tensor factorization to a particular case of the session-based recommenda-
tions. The project is based on the prior work Frolov and Oseledets [2023].

8.5. Positional Tensor Factorization with padding-induced sparse-dense fiber struc-
ture

The project is also based on the prior work Frolov and Oseledets [2023] and is devoted to
sequential learning using tensor factorization models. The main idea is to pad sequences
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that are shorter than the predefined dimensionality of sequential coordinate of the tensor.
This will form dense fibers in otherwise extremely sparse data. The main goal is to utilize
this special sparse-dense structure to derive efficient training algorithm and also to analyze
how the padding affects the quality of recommendations.

8.6. Unlimited history positional Tensor factorization

This is another project on sequential learning based on the prior work Frolov and Os-
eledets [2023]. In this representation we will introduce one additional slice along the
positional coordinate of the tensor that will encode all previous user interactions beyond
the predefined sequence length. The main goal is to adapt existing algorithms to this
format and analyze whether it allows to improve the quality of recommendations.

8.7. Hankelized tensor factorization in planetary-scale soil moisture analysis

The main goal of the project is to adapt the machinery of Hankelized representations in
tensor factorization to the task of real-time analysis of climate data at a planetary scale.
You will work with high-dimensional timeseries data coming from field sensors. The
project is based on the prior work Frolov and Oseledets [2023]. It will be held in collab-
oration with the Center of Agricultural Technologies at Skoltech.

8.8. FPMC model with shared-factors Tensor Factorization

This project is aimed at testing the method of shared-factors tensor factorization, recently
proposed by Maxim Rakhuba, to the existing tensor models in the recommender systems
that conform the idea of having the same objects encoded in several modes of the same
tensor. On of such model is a well-known Factorized Personalized Markov Chain model
(FPMC) Rendle et al. [2010].



8.9. Knowledge Graph Link Prediction with Tensor Factorization

This project is devoted to an attempt to derive an alternative training scheme for a tensor
with shared factors based on the combination of the ideas from RESCAL model Nickel
and Tresp [2013] and low-rank representation. A useful related reading on knowledge
graphs and the task of learning accurate representation of multirelational data: Chekalina
et al. [2022].

8.10. Asymmetric tensor factorization for recommendations

Given a 3D tensor of user-item-context interactions data (e.g., user-item-position Frolov
and Oseledets [2023] or user-item-rating Frolov and Oseledets [2016]), we typically learn
a 3-factor model U,V,W that embeds objects along each mode of the tensor into a lower-
dimensional space. On the other hand, for the task of item recommendations, the factor
matrix of user embeddings U is not required, i.e. in the prediction matrix R for some user
one has:

R =VV⊤PWW⊤,

where P is a “one-hot” matrix representing a user preferences (a slice of the tensor along
the user mode), and matrices V,W encode item and “context” embeddings. Considering
the fact that there can be millions or even billions of users, having to train the model that
explicitly builds matrix U can be a challenging and cost-ineffective task.

The main goal of the project is to derive an efficient tensor factorization algorithm that
will avoid materializing matrix U .

8.11. Scalable Softmax for extreme classification task in recommender systems

Recommender systems often have to deal with millions of hundreds of millions of items.
One of the ubiquitously used objective function in training modern neural networks is a
cross-entropy loss that captures distributions over entire item catalog. Considering the
scale of rela-world recommender systems, the task becomes challenging for any reason-
able batch sizes and the intermediate results may not fit into GPU memory during com-
putations. The main goal of the project is to find good-enough heuristics on reducing the
memory load during softmax computations. This project will be held in collaboration
with he COmputational Intelligence Lab at Skoltech.

8.12. Convolutional Attention for Sequential Learning

This project is an attempt to take the advantages of the hankelized tensor factorization
format Frolov and Oseledets [2023] and construct an alternative sequential attention ar-
chitecture that will be more efficient then conventional one used in transformer networks
without compromising its quality. The project will require reading and understanding re-
cent techniques on CNN- and MLP-mixer-based techniques used in sequential learning
tasks (particularly, recys and NLP).

8.13. Autoencoders with structured layers

This is an attempt to learn Autoencoder models with specially structured layer coming
from a tensor format as in Marin et al. [2022]. The main promise of this approach is
that it will help to learn additional hidden correlations in contextual data in recommender



systems. For example, it may help learning individual ratings scales of users in a more
efficient way than standard context-aware methods.

8.14. Negative Sampling vs Hyperbolic Geometry

There is a strong connection of general data properties in recommender systems and hy-
perbolic geometry Mirvakhabova et al. [2020]. However, to take full advantage of the
geometric approach, the corresponding neural network architecture of a recommender
model must obey certain rules and restrictions. Otherwise, the learning ability of such
networks falls short and they may even underperform the Eucliden counterparts. One of
the components that seem to ruin the learning capabilities of the hyperbolic models is
negative sampling.

The aim of the project is to verify this connection, demonstrate that depending on the neg-
ative sampling scheme the resulting hyperbolic model may or may not exhibit additional
performance improvements in quality. Ideally, we want to derive a common set of recipes
for constructing high-quality hyperbolic models.

8.15. Hyperbolic geometry vs popularity bias

This project is also related to the usage of hyperbolic geometry in recommender systems
Mirvakhabova et al. [2020]. One of the key features of hyperbolic geometry is that it
allows capturing hierarchical relations in data. In the recommender systems case, one of
the major sources of hierarchy is the popularity of items. It is then natural to assume that
there must exist a connection between the geometrical properties (e.g., space curvature)
and the statistical or topological properties in the data. The project is aimed at establishing
the connection between these two realms, which will help to build accurate hyperbolic
models more effectively.

8.16. Feature selection by Mitigating Anchoring effects in RecSys

One of the major unsolved problem in recommender systems is a feature selection task.
Hybrid recommender systems that utilize both behavioral information (i.e., what user
purchase or rate) and side features (i.e., item description, user demographics) suffer from
the “grabage in, garbage out” effect. The task of filtering out the “garbage” features
is non-trivial (see e.g. Nikitin et al. [2022]) and remains largely underexplored in the
literature. This project aims to utilize the recently proposed paradigm of feature anchoring
for the selection task. Conceptually, the idea is to capture a noize coming from feature
data in a special variational component of an architecture during the training and exclude
this component during the recommendations phase.

8.17. Dynamic feature weighting in hybrid models

This project is devoted to the hybrid recommender systems as well, i.e. the aim is to
effectively utilize both behavioral information (i.e., what user purchase or rate) and side
features (i.e., item description, user demographics). It is a common paradigm to treat
features as static, e.g. not evolving and being fully descriptive of the entity they belong
to at any moment of time. On the other hand, features may depend on general trends and
evolvig user interest so that the contribution of features into the prediction may change



over time. The main goal of the project is to build such an architecture that will capture
feature dynamics in evolving user interests. This is an exploratory research project.
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