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The similarity between convex functions and submodular discrete functions is
actively studied since 1970s:

• L. Lovász,
Submodular functions and convexity,
in: A. Bachem, M. Grötschel, B. Korte (Eds.),
Math. Programming: The State of the Art,
Bonn 1982, Springer, Berlin (1983) 235–257

• J. Edmonds,
Submodular functions, matroids, and certain
polyhedra, in Combinatorial structures and
their Applications,
Gordon and Breach, New York (1970) 68–87

L. Lovász

J. Edmonds
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• S. Fujishige, Submodular functions
and optimization, Elsevier, 2005

• K. Murota, Discrete Convex Analysis,
Math. Programming, 2003

• E. Boros, K. Elbassioni, V. Gurvich,
and L. Khachiyan, An inequality for
polymatroid functions and its
applications, Discrete Applied Math.,
131 (2) (2003) 255–281

• E. Boros, V. Gurvich, and K. Makino,
Minimal and locally minimal games
and game forms; Discrete Math.
309:13 (2009) 4456–4468

S. Fujishige
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K. Elbassioni

K. Murota
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V. Danilov

G. Koshevoy

• V. I. Danilov, G. A. Koshevoy, and C. Lang,
Gross substitution, discrete convexity, and
submodularity. Discret. Appl. Math. 131:2
(2003) 283–298

• S. Fujishige, G. A. Koshevoy, and Y. Sano,
Matroids on convex geometries (cg-matroids).
Discret. Math. 307:15 (2007) 1936–1950

• G. A. Koshevoy, Discrete convexity and its
applications, Combinatorial Optimization -
Methods and Applications (2011) 135–163

• K. Murota, A survey of fundamental
operations on discrete convex functions of
various kinds, Optim. Methods Softw. 36:2-3
(2021) 472–518

• K. Murota, On basic operations related to
network induction of discrete convex
functions, Optim. Methods Softw. 36:2-3
(2021) 519–559
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In all above works matroids played an important role, along with super- and
submodularity. The present work is another step in this direction. Here we
suggest a simpler approach.

It is well known that each local minimum of a convex function is always its
global minimum.

We study some discrete objects that share this property. We provide several
examples related to graphs and two-person games in normal form.
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Posets

Given a finite partially ordered set (poset) (P,≻) and P,P ′ ∈ P,

P ′ is a successor of P; notation P ≻ P ′;

P ′ is an immediate successor of P if P ≻ P ′ and P ≻ P ′′ ≻ P ′ for no P ′′ ∈ P.

Each poset is defined by its immediate successors: Hasse diagram.

Every successor is realized by a chain of immediate successors.
This chain may be not unique.

Notation P ⪰ P ′ means that either P ≻ P ′ or P = P ′.

Consider an arbitrary subset (family) F ⊆ P.
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Minima and local minima

Recall that F is a (local) minimum of F if and only if F ∈ F but F ′ ̸∈ F
whenever F ′ is an (immediate) successor of F .

Since we have space, let us partition this statement into two:

F is a minimum of F if F ∈ F but F ′ ̸∈ F for any successor F ′ of F .

F is a local minimum of F if F ∈ F but F ′ ̸∈ F for any immediate successor
F ′ of F .

We denote by M = M(F ,P,≻) and by LM = LM(F ,P,≻), respectively,
the set (class) of all minima and all local minima of F in (P,≻).

Obviously, the above definitions imply that M ⊆ LM.
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Hereditary and Convex Discrete Families

A family F ⊆ P is called:

• convex if M(F) = LM(F);

• strongly convex if F is convex and for any F ∈ F and F ′ ∈ M(F)

such that F ≻ F ′ there exists an immediate successor P of F
such that P ∈ F and F ≻ P ⪰ F ′.

• hereditary if P ∈ F whenever P is a successor of some F ∈ F .

• weakly hereditary if P ∈ F whenever F ∈ F , F ′ ∈ M(F), and
F ≻ P ⪰ F ′.
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In accordance with the above definitions, the following implications hold:

hereditary ⇒ weakly hereditary ⇒ strongly convex ⇒ convex,

while all inverse implications fail, as we will show in this paper. Note that the
last two concepts become equivalent if family F has a unique minimum and
the first two are equivalent whenever M(F) ⊇ M(P), or more precisely,
M(F ,P,≻) ⊇ M(P,P,≻).

The last concept could be “slightly" modified as follows:

• A family F is called very weakly hereditary if P ∈ F whenever F ∈ F and
F ≻ P ⪰ F ′ for some F ′ ∈ M(F).

Then to the above chain of implications we can add the following one:

hereditary ⇒ weakly hereditary ⇒ very weakly hereditary ⇒ convex.

Yet, very weakly hereditary ̸⇒ strongly convex
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We will consider only 3 types of posets: related to

(I) subgraphs (a) induced and (b) on a given vertex set, and

(II) submatrices.

PART I: Graphs and digraphs

Definitions and preliminaries

Given a finite (directed) graph G , we denote by V (G) and E(G) the sets of its
vertices and (directed) edges, respectively. Multiple edges are allowed but loops
are forbidden.

A (directed) graph G is called: null-graph if V (G) = ∅ and edge-free if
E(G) = ∅. The null-graph is unique and edge-free, but not vice versa.

We will consider two partial orders: related to vertices ≻V and to (directed)
edges ≻E . In the first case, G ≻ G ′ if G ′ is an induced subgraph of G , that is,
V (G ′) ⊆ V (G) and E(G ′) consists of all (directed) edges of E(G) whose both
ends are in V (G ′).

In the second case, G ≻ G ′ if G ′ is a subgraph of G defined on the same
vertex-set, that is, V (G ′) = V (G) and E(G ′) ⊆ E(G).
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Given a graph G , which may be directed or not, and a set of its (induced)
subgraphs G1, . . . ,Gn, define a family (F(G),≻E ) (respectively, (F(G),≻V ))
that consists of all subgraphs G ′ of G containing as a (induced) subgraph at
least one of Gi , i = 1, . . . , n.

Lemma
Both families are weakly hereditary. Furthermore, (F(G),≻V ) (respectively,
(F(G),≻E )) is hereditary if and only if n = 1 and G1 is the null-graph
(respectively, the edge-free graph).

Proof

Consider a subgraph G ′ ∈ (F(G),≻V ), (respectively, G ′ ∈ (F(G),≻E )) that contains
(as an induced subgraph) Gi for some i ∈ [n] = {1, . . . , n}. Obviously, the above
property is kept when we delete a vertex from V (G ′) \ V (Gi ) (respectively, an edge
e ∈ E(G ′) \ E(Gi )) if any. Obviously, such a vertex (respectively, an edge) exists
unless G = Gi . Thus, in both cases family F(G) is weakly hereditary. Obviously, it is
hereditary if and only if Gi cannot be reduced.
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Connected graphs

A graph G is called connected if for every two distinct vertices v , v ′ ∈ V (G) it
contains a path connecting v and v ′. In particular, the null-graph and the
one-vertex graphs are connected, since they do not have two distinct vertices.

♢ Order ≻V

In this case F = F(G) is the family of all connected induced subgraphs of a
given graph G . Obviously, it is strongly convex. In other words, every
connected graph G has a vertex v ∈ V = V (G) such that G [V \ {v}] is
connected. Indeed, v can be any leaf of a spanning tree of G .

Recall that G ′ is a spanning tree of G if V (G ′) = V (G), E(G ′) ⊆ E(G), and
G ′ is a tree, that is, connected and has no cycles.
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Furthermore, F(G) is hereditary if and only if G is complete. Otherwise, F(G)

is not even weakly hereditary.

Example
Consider 2-path G = (v1, v2), (v2, v3). It is connected, but by deleting v2 we obtain a not
connected subgraph induced by {v1, v3}. Thus, F(G) is not very weakly, hereditary.

Let us modify our convention and assume that the null-graph is not connected. Then,
G ′ ∈ M(G) = LM(G) if and only if V (G ′) is a single vertex. In this case 2-path
(v1, v2), (v2, v3) is very weakly (but not weakly) hereditary. Indeed, the target vertex may be
v2 but not v1 or v3.

To obtain a not even weakly hereditary family F(G ′′), consider the 3-path
G ′′ = (v1, v2), (v2, v3), (v3, v4). Then, each target vertex can be obtained by a
vertex-eliminating sequence that does not respect connectivity.
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♢ Order ≻E

Given a connected graph G , family F = F(G) consists of all connected
subgraphs G ′ of G with V (G ′) = V (G).

By definition, all spanning trees of G are in F and, obviously, they form class
M = LM. By Lemma, family F is weakly hereditary.

Remark
Let G be a connected graph with weighted edges: w : E(G) → R. It is well known1 that one
can obtain a spanning tree of G of maximal total weight by the greedy algorithm, as follows.
Delete an edge e ∈ E(G) such that (i) e belongs to a cycle of G , or in other words, the
reduced graph is still connected on V (G), and (ii) e has a minimal weight among all edges
satisfying (i). Proceed until such edges exist.

—————————————

1 See

O. Boru̇vka, O jistém problému minimálńim (About a certain minimal problem), Práce Mor. Př́irodověd. Spol.
V Brně III (in Czech and German) 3 (1926) 37–58

O. Boru̇vka, Př́ispěvek k řešeńi otázky ekonomické stavby elektrovodńich śit́i (Contribution to the solution of a
problem of economical construction of electrical networks), Elektronický Obzor (in Czech) 15 (1926) 153–154

J. B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem, Proceedings of
the American Math. Soc. 7:1 (1956) 48–50
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Disconnected graphs

♢ Order ≻V

In this case F = F(G) is the family of all disconnected induced subgraphs of a
given graph G . By convention, the null-graph and one-vertex graphs are
connected Hence, class M(F) consists of all subgraphs of G induced by pairs
of non-adjacent vertices. In particular, F = ∅ if and only if there is no such
pair, that is, graph G is complete.

Proposition
For every graph G , family F(G) is strongly convex.
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Proof

Consider a not connected induced subgraph G ′ of G and any pair of non-adjacent
vertices v ′, v ′′ ∈ V (G ′). Then, either V (G ′) = {v ′, v ′′}, in which case
G ′ ∈ M(F(G)) is minimal, or we will show that there exists a vertex
v ∈ V (G ′) \ {v ′, v ′′} such that subgraph G ′′ induced by V (G ′) \ {v} is still not
connected. In other words, F(G) is strongly convex. Assume that G ′ is not connected
and choose two vertices w ′ and w ′′ from its distinct connected components. Note
that two pairs {v ′, v ′′} and {w ′,w ′′} may intersect.

Then, delete v ∈ V (G ′) \ {v ′, v ′′,w ′,w ′′}, if any. The obtained induced subgraph still
contains v ′ and v ′′. Furthermore, it is not connected, because it still contains w ′ and
w ′′.

It remains to consider the case when V (G ′) = {v ′, v ′′} ∪ {w ′,w ′′}. Then, it is not
difficult to verify that, after deleting w ′ or w ′′, the obtained induced subgraph is not
connected .
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Proposition
For every graph G , family F(G) is very weakly hereditary.

Proof

Consider a not connected induced subgraph G ′ of G and choose any two vertices
v ′, v ′′ ∈ V (G ′) from distinct connected components of G ′. Then, obviously, every
induced subgraph G ′′ of G containing both v ′ and v ′′ is in F , that is, not connected.
Thus, F(G) is very weakly hereditary.
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However, family F(G) is not weakly hereditary for some G .

Example
Consider graph G that consists of a 2-path (v1, v2), (v2, v3) and an isolated vertex v0. This
graph is disconnected, that is, G ∈ F(G), but, by deleting v0, we obtain a connected graph
G ′ ̸∈ F(G). Yet, v1, v3 ∈ V (G ′) and, hence, graph G ′′ induced by these vertices is in F(G),
moreover, G ′′ ∈ M(F(G)). Thus, F(G) is not weakly hereditary.

Note that strong convexity holds for F(G), because one can delete v2 rather than v0.

♢ Order ≻E

Given a graph G , family F = F(G) consists of all disconnected graphs G ′ such
that V (G ′) = V (G) and E(G ′) ⊆ E(G). Then, obviously, family F(G) has a
unique minimum unless |V (G)| = 1:

M(F) consists of a unique graph, which is the edge-free graph on V (G).
Obviously, deleting edges and keeping the vertex-set respects the
non-connectivity. Thus, family F is hereditary.
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Strongly connected directed graphs

A directed graph (digraph) G is called strongly connected (SC) if for every two
(distinct) vertices of v , v ′ ∈ V (G) there is a directed path in G from v to v ′.

♢ Order ≻V

In this case F = F(G) is the family of all SC induced subgraphs of a given
digraph G . This family is not convex.

Example
Consider a digraph G that consists of two directed cycles of length at least 3 with a unique
common vertex. Clearly, G is a locally minimal SC digraph, G ∈ LM(F(G)).

Indeed, G is SC but we destroy this property by deleting any vertex of G . Furthermore,
G ̸∈ M, since each of two cycles of G is in M. Thus, G ∈ LM \ M.
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♢ Order ≻E

In this case F = F(G) is the family of all SC subgraphs G ′ of a given digraph
G such that V (G ′) = V (G) and E(G ′) ⊆ E(G). Note that F(G) = ∅ if and
only if G is not SC. Obviously, strong connectivity is monotone non-decreasing
on 2E . In other words, for any two subgraphs G ′ and G ′′ of G such that
V (G ′) = V (G ′′) = V (G) and E(G ′) ⊆ E(G ′′) ⊆ E(G), we have: G ′′ is SC on
V (G) whenever G ′ is. By Lemma, family F(G) is weakly hereditary but not
hereditary.
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Not strongly connected directed graphs

♢ Order ≻V

In this case F = F(G) is the family of all not SC induced subgraphs of a given
digraph G . It is easily seen that M(F) consists of all pairs of vertices
v , v ′ ∈ V (G) such that at least one of two arcs (v , v ′) or (v ′, v) is missing in
G . There are no such pair in G if and only if F(G) = ∅.

An induced subgraph G ′ of G is not SC, that is, G ′ ∈ F , if and only if there
exist two (distinct) vertices v , v ′ ∈ V (G ′) such that in G ′ there is no directed
path from v to v ′. Furthermore, G ′′ ∈ M(F) if and only if G ′′ = G [v , v ′] is
induced by distinct two v , v ′ ∈ V (G) such that either (v , v ′) ̸∈ E(G), or
(v ′, v) ̸∈ E(G), or both.

Hence, we can reduce G ′ to G [v , v ′] deleting its vertices, except v and v ′, in
any order.

Thus, considered family F is very weakly hereditary and, hence, convex.
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Yet, obviously, it is not hereditary, since an induced subgraph of a not SC
digraph can be SC. The simplest examples are two isolated vertices or one arc.

Moreover, F is not even weakly hereditary. Consider, for example, a directed
3-cycle and one isolated (or pending) vertex v . This digraph is not SC, but
after deleting v , we obtain a SC digraph. Meanwhile any 2 vertices of the
3-cycle induce a not SC digraph.
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Proposition
Family F is strongly convex.

Proof

Consider a not SC digraph G ′ and any its induced subgraph G ′′ ∈ M(F).

As we know, G ′′ = G [{v , v ′}] for some v , v ′ ∈ V (G ′) such that either (v , v ′), or
(v ′, v), or both are not in E(G ′). Furthermore, there are w ,w ′ ∈ V (G ′) such that G ′

contains no directed path from w to w ′. Note that v and v ′ as well as w and w ′ are
distinct, while sets {v , v ′} and {w ,w ′} may intersect. Let us delete vertices of G ′,
except v , v ′,w ,w ′, one by one in any order getting G ′′′ = G [{v , v ′,w ,w ′}] at the
end. All obtained digraphs remain not CS, since they contain w and w ′.

Finally, let us delete w and w ′ in any order getting G ′′ = G [{v , v ′}] ∈ M(F). It is
easily seen that the previous digraph, G [{v , v ′,w}] or G [{v , v ′,w ′}], if any, is nor SC
either.

♢ Order ≻E

In this case F = F(G) is the family of all not SC subgraphs G ′ of a given
digraph G such that V (G ′) = V (G) and E(G ′) ⊆ E(G). Obviously, all these
subgraphs are not SC whenever G is not SC. Thus, family F is hereditary.
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Ternary graphs

A graph is called ternary if it contains no induced cycle of length multiple of 3.

Main conjecture: chromatic number of a ternary graph equals 3.

By definition, family T of ternary graphs is hereditary in order ≻V . In contrast,
in order ≻E this family is not even convex, as the following example shows.

It’s a shame since Daniel Král derived the main conjecture assuming this.
Thus, the main conjecture remains open.
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Although it was proven2 that χ is bounded by a constant.

Yet, this constant is much larger than 3.
2M.Chudnovsky, A. Scott, P. Seymour, and S. Spirkl, Proof of the Kalai-Meshulam conjecture, Israel Journal of
Math. 238 (2020) 639–661.

M. Chudnovsky A. Scott P. Seymour S. Spirkl

Kalai-Meshulam conjecture: |s| ≤ 1 for a ternary graph, where s =
∑

(−1)|S|

over all stable sets S of a graph.

G. Kalai R. Meshulam
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Example
We know2 that “D. Král asked
(unpublished): Is it true that in every
ternary graph (with an edge) there is
an edge e such that the graph
obtained by deleting e is also ternary?
This would have implied that all
ternary graphs are 3-colourable, but
has very recently been disproved; a
counterexample was found by M.
Wrochna.

———–
2M. Chudnovsky, A. Scott, P. Seymour, and
S. Spirkl, Proof of the Kalai-Meshulam
conjecture, Israel Journal of Math. 238
(2020) 639–661.

D. Král M. Wrochna

(Take the disjoint union of a 5-cycle and a
10-cycle, and join each vertex of the 5-cycle to
two opposite vertices of the 10-cycle, in
order.)"

In other words, consider the standard model of
the Petersen graph, with two 5-cycles. Then,
subdivide every edge of the “outer" cycle by a
vertex and connect it with the “opposite"
vertex of the “inner" 5-cycle.
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Remark

Consider the skeleton graph of the
cube. Obviously, an induced 6-cycle
appears whenever we delete an edge.
However, this graph itself contains
two induced 6-cycles.
Also, an induced 6-cycle appears
whenever we delete an edge of
icosidodecahedron - a polyhedron
with twenty triangular faces and
twelve pentagonal faces, which has 30
identical vertices, with two triangles
and two pentagons meeting at each,
and 60 identical edges, each
separating a triangle from a pentagon
(see Fig.) Yet, this graph itself
contains triangles and induced
9-cycles.

Leonardo da Vinci, 1452 – 1519

Icosidodecahedron. Illustration for
Luca Pacioli’s "Divina proportione"

by Leonardo da Vinci
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Non-ternary graphs

By definition, non-ternary graph contains an induced cycle of length multiple to
3 (a ternary cycle, for short). Given a graph G , denote by C3(G) (respectively,
by IC3(G)) the set of its (induced) ternary cycles and by F(G) the family of its
non-ternary subgraphs. From Lemma we will derive that, with respect to (wrt)
both orders ≻V and ≻E , family F(G) is weakly hereditary but not hereditary.

♢ Order ≻V

In this case, M(F(G)) = IC3(G). Given an induced subgraph G ′ of G that
contains a ternary cycle C ∈ IC3(G), one can delete a vertex
v ∈ V (G ′) \ V (C) such that the reduced graph G ′′ still contains C as an
induced subgraph unless G ′ = C .

This exactly means that family F(G) is weakly hereditary.

Obviously, it is not hereditary, since deleting a vertex might destroy all ternary
cycles of G ′.
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♢ Order ≻E

In this case, M(F(G)) is in a one-to-one correspondence with C3(G). Recall
that V (G ′) = V (G) for each subgraph G ′ ∈ F(G). Hence, G ′ consists of a
cycle C ∈ C3(G) and several isolated vertices from V (G) \ V (C).

Given a non-ternary subgraph G ′′ of G such that V (G ′′) = V (G) and G ′′

contains a (not necessarily induced) ternary cycle C ∈ C3(G), one can delete an
edge e ∈ V (G ′′) \ V (C) such that the reduced graph still contains C unless
G ′′ = C . By the main lemma, we have

Family F(G) is weakly hereditary.

Obviously, it is not hereditary, since deleting an edge might destroy all cycles in
G ′′ of length multiple of 3.

V. Gurvich More on discrete convexity 30



Perfect and imperfect graphs

Definitions and preliminaries

Given a graph G , as usual, χ = χ(G) and ω = ω(G) denote its chromatic and
clique numbers, respectively. Recall that χ is the minimum number of colors in
a proper vertex-coloring of G and ω is the number of vertices in a maximum
clique of G . Obviously, χ(G) ≥ ω(G) for every graph G .

Graph G is called perfect if χ(G ′) = ω(G ′) for every induced subgraph G ′ of
G , including G itself.

If we require χ(G) = ω(G) only for G then it would be perfect whenever this
number is large enough, which is not interesting. Thus, it was wise to require
this equality not only for G but for all its induced subgraphs as well.
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Thus, by definition, in order ≻V the family of perfect graphs is hereditary.

This concept was introduced in 1961 by
Claude Berge3 who made the following
two conjectures:

—————
3 C. Berge, Sur une conjecture relative au problème des
codes optimaux, Comm. 13-ème Assemblée Générale de
l’URSI, Tokyo, 1961.

For more details see also:

C. Berge, Perfect graphs, in: D. Fulkerson (Ed.), Studies
in Graph Theory, Part I, in: M.A.A. Studies in Math.,
vol. 11, Math. Assoc. Amer., Washington (1975) 1–22.

C. Berge
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Which graphs are minimal imperfect?

Odd holes = odd chordless cycles G = C2k+1, with k > 1.

If k = 1 then G is a triangle and ω(G) = χ(G) = 3.

If k > 1 then G is an odd hole and 2 = ω(G) < χ(G) = 3.

Also their complements = odd anti-holes G = C 2k+1, with k ≥ 1.

If k = 1 then G is a null-graph and ωG = χG = 1.

If k > 1 then G is an odd antihole and k = ω(G) < χ(G) = k + 1.

Perfect Graph Theorem:

G is perfect if (and only if) the complementary graph G is perfect.

It was proven in 1972 by Laslo Lovász4 and since then is called the Perfect
Graph Theorem (PGT).
4 L. Lovász, Normal hypergraphs and the perfect graph conjecture, Discrete Math. 2 (1972) 253–267.

L. Lovász, A characterization of perfect graphs, J. Combinatorial Theory B13 (1972) 95–98.
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Strong Perfect Graph Theorem:

Graph G is perfect if and only if it contains no induced odd holes and
anti-holes, In other words, odd holes and odd anti-holes are minimal imperfect
graphs in order ≻V . This conjecture was proven by M. Chudnovsky, N.
Robertson, P. Seymour, and R. Thomas in 2002 and published in 20065.

Since then this statement is called the Strong Perfect Graph Theorem (SPGT).

A polynomial recognition algorithm for perfect graphs was obtained by M.
Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour, and K. Vušković in 2002 and
published in 20056.
5 M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The strong perfect graph theorem,
Ann. Math. 164 (2006) 51–229.

6 M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour, and K. Vušković, Recognizing Berge graphs, Combin.
archive 25:2 (2005).
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Perfect graphs

♢ Order ≻V

This family F is hereditary and M(F) contains only the null-graph.

♢ Order ≻E

An edge of a perfect graph G is called critical if deletion of it results in an
imperfect graph. For example, six edges
(v1, v2), (v2, v3), (v3, v4), (v4, v5), (v5, v1), and (v1, v3) form a perfect graph in
which (v1, v3) is a unique critical edge. This concept was introduced by
Annegret Wagler7.

With Stefan Hougary, she proved that a perfect graph has no critical edges if
and only if it is Meyniel, that is, every odd cycle of length 5 or more (if any)
has at least two chords (see Theorem 3.17).
7 A. Wagler, Critical and anticritical edges in Perfect Graphs, 27th International Workshop on Graph-Theoretic
Concepts in Computer Science, LNCS 2204 (2001) 317–327.
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There are perfect graphs in which all edges are critical. Some examples were
given by the author et al. in 20098 and called Rotterdam graphs.

Clearly, these graphs are in LM(F) \M(F) and, hence, the considered family,
of perfect graphs in order ≻E , is not convex.

Furthermore, E. Boros et V. Gurvich9 claim that every edge of the complement
of a Rotterdam graph is critical too. In other words, a Rotterdam graph
becomes imperfect whenever we delete an edge from it or add an edge to it.

Let us note finally that no efficient characterization of the non-critical-edge-free
perfect graphs is known, in contrast to the critical-edge-free ones, which are
Meyniel. The main result of M. Chudnovsky et al.10 provides a polynomial
recognition algorithm for the former family.
8 E. Boros and V. Gurvich, Vertex- and edge-minimal and locally minimal graphs, Discrete Math. 309:12 (2009)
3853–3865. (see Figures 2 and 3)

9 See Theorem 4 in above.

10 M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour, and K. Vušković, Recognizing Berge graphs, Combin.
archive 25:2 (2005).
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Imperfect graphs

♢ Order ≻V

In this case, by the SPGT, M(F) = LM(F) and this set contains only odd
holes and odd anti-holes. Again, by Lemma, F is weakly hereditary but not
hereditary.

♢ Order ≻E

In 1972 Elefterie Olaru characterized minimal graphs of this family. He proved
that it is convex and G ∈ M = LM if and only if G is an odd hole plus k

isolated vertices for some k ≥ 0.11 Thus, by Lemma, family F is weakly
hereditary but not hereditary.

Note that the odd anti-holes, except C5, are not in LM, since each one has an
edge whose elimination would result in a graph with an induced odd hole.
11 See

E. Olaru, Beitrage zur Theorie der perfekten Graphen, Elektronische Informationsverarbeitung und Kybernetik
(EIK) 8 (1972) 147–172.

E. Olaru and H. Sachs, Contributions to a characterization of the structure of perfect graphs, in: C. Berge, V.
Chvátal (Eds.), Topics on Perfect Graphs, Ann. Discrete Math. 21 (1984) 121–144.

E. Boros and V. Gurvich, Vertex- and edge-minimal and locally minimal graphs, Discrete Math. 309:12 (2009)
3853–3865.
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Graphs with χ = ω

It is easily seen that M = LM for both orders ≻V and ≻E ; in other words,
both families are convex.

Indeed, for ≻V (respectively, for ≻E ) sets M and LM are equal and contain
only the null-graph (respectively, the edge-free graphs) see Propositions 2 and
3 in [BG09].

Yet, obviously, deleting a vertex or an edge may fail the equality χ = ω. Thus,
both considered families are not hereditary.
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Graphs with χ > ω

♢ Order ≻V

By SPGT, every graph with χ > ω contains an odd hole or odd anti-hole as an
induced subgraph; in other words, class M contains only the odd holes and odd
anti-holes.

Class LM is wider; it consists of all so-called partitionable graphs defined as
follows: Graph G is partitionable if χ(G) > ω(G) but χ(G ′) = ω(G ′) for each
induced subgraph G ′ of G such that V (G ′) = V (G) \ {v} for a vertex
v ∈ V (G). Such definition is one of many equivalent characterizations of
partitionable graphs; this follows easily from the pioneering results of [BHT79,
Pad74] and it is explicit in [BGH02].

Thus, the considered family is not convex.
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Remark
The above characterization of M is based on SPGT, which is very difficult,
while the case of LM is simple. In contrast, partitionable graphs are much
more sophisticated than the odd holes and anti-holes. Although very many
equivalent characterizations of partitionable graphs are known (see, for
example, [BHT79, BBGMP98, CGPW84, GT94, Pad74] ) yet, their
structure is complicated and not well understood. For example, the fact that
each partitionable graph contains an induced odd hole or anti-hole is
equivalent with the SPGT.

The following two questions about partitionable graphs are still open. In
addition to the odd holes and odd anti-holes, there is one more partitionable
graph G17 that has 17 vertices and has no: (i) small transversals and (ii)
uncertain edges. It is open whether (i) or (ii) may hold for other partitionable
graphs. The conjecture that (i) cannot, if true, would significantly strengthen
SPGT; see [BBGMP98, BGH02, CGPW84, GT94] for the definitions and
more details.
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♢ Order ≻E

By Lemma, the corresponding family F is weakly hereditary: class M = LM
consists of odd holes with k isolated vertices, for some k ≥ 0. This follows
from Olaru’s Theorem [Ola72]; see also [OS84] and [BG09]. Family F is not
hereditary, since obviously, inequality χ > ω may turn into equality after
deleting an edge.
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Kernels in digraphs

Definitions and preliminaries

Given a finite digraph G , a vertex-set K = K(G) ⊆ V (G) is called a kernel of
G if it is (i) independent and (ii) dominating, that is,

(i) v , v ′ ∈ K(G) for no directed edge (v , v ′) ∈ E(G) and

(ii) for every v ∈ V (G) \ K(G) there is a directed edge (v , v ′) from v to some
v ′ ∈ K(G).

This definition was introduced in 1901 by Charles Bouton [Bou1901] for a
special digraph (of the popular game of NIM) and then in 1944 it was extended
by John Von Neumann and Oskar Morgenstern for arbitrary digraphs in
[NM44].

J. von Neumann O. Morgenstern
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It is not difficult to verify that an even directed cycle has two kernels, while an
odd one has none. This obvious observation was generalized in 1953 by
Richardson [Ric53] as follows: A digraph has a kernel whenever all its directed
cycles are even. The original proof was simplified in [Isb57, HNC65, NL71,
GSNL84, BD90, DW12].
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Remark
It is not difficult to verify that a digraph has at most one kernel whenever all
its directed cycles are odd [BG06]. This claim combined with the Richardson
Theorem imply that an acyclic digraph has a unique kernel. The latter
statement is important for game theory, allowing to solve finite acyclic
graphical zero-sum two-person games. Of course, it has a much simpler direct
proof [NM44].

Already in 1973 Vásek Chvátal proved
that it is NP-complete to recognize
whether a digraph has a kernel12.

—————
12 V. Chvátal, On the computational complexity of
finding a kernel, Report No. CRM-300, Centre de
Recherches Mathématiques, Université de Montréal,
1973.

V. Chvátal

V. Gurvich More on discrete convexity 44



Kernell-less digraphs

♢ Order ≻E

In this case, given a digraph G , family F(G) contains only the digraphs G ′

such that V (G ′) = V (G),E(G ′) ⊆ E(G), and G ′ has no kernel. By
Richardson’s Theorem, G ′ ∈ M(F(G)) if and only if G ′ is a directed odd cycle
in G (plus the set of isolated vertices v ∈ V (G) \ V (G ′)).

In 1980 Pierre Duchet [Duc80] conjectured that every kernel-less digraph G ′

has an edge e ∈ E(G ′) such that the reduced digraph G ′′ = G ′ − e (that is,
E(G ′′) = E(G ′) \ {e}) is still kernel-less unless G ′′ is an odd cycle plus k

isolated vertices for some k ≥ 0; in other words, family F of kernel-less
digraphs is convex, M(F) = LM(F). This statement, if true, would
significantly strengthen Richardson’s theorem. Yet, it was shown in [AFG98]
that a circulant with 43 vertices is a counter-example, a locally minimal but not
minimal kernel-free digraph.
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Let us recall that a circulant G = Gn(ℓ1, . . . , ℓq) is defined as a digraph with n

vertices, V (G) = [n] = {1, . . . , n} and nq arcs,
E(G) = {(i , i + j) | i ∈ [n], j ∈ [q] = {1, . . . , q}}, where standardly all sums are
taken mod n.

Example
([AFG98])

It was shown that a circulant Gn(1, 7, 8) has a kernel if and only if n ≡ 0 mod 3 or n ≡ 0
mod 29. Hence, G43(1, 7, 8) is kernel-less. Yet, a kernel appears whenever an arc of this
circulant is deleted. Due to circular symmetry, it is sufficient to consider only three cases and
delete one of the arcs (43, 1), (43, 7), or (43, 8). It is not difficult to verify that,
respectively, the following three subsets become kernels:

K1 = {1, 5, 10, 14, 16, 19, 25, 28, 30, 34, 39, 43},

K7 = {7, 9, 11, 13, 22, 24, 26, 28, 37, 39, 41, 43},

K8 = {3, 5, 8, 14, 17, 19, 23, 28, 32, 34, 37, 43} ⊆ {1, . . . , 43} = V .
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Thus, the set of edge-minimal kernel-free digraphs is a proper subset of the
locally edge-minimal ones. Although, only one digraph from the difference is
known, it seems that the latter class, unlike the former one, is difficult to
characterize. For example, it is not known whether a circulant Gn(ℓ1, ℓ2) can be
a locally edge-minimal kernel-less digraph, but it is known that it cannot if
n ≤ 1, 000, 000 [AFG98].
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♢ Order ≻V

In this case also family F of the kernel-less digraphs is not convex. Although it
seems difficult to characterize (or recognize in polynomial time) both classes
M(F) and LM(F) of the (locally) vertex-minimal kernel-less digraphs, yet,
some digraphs from LM \M can be easily constructed; see for example,
[DW12, GS82, GSNL84, GSG07]. For completeness we provide one more
example.

Example
Circulant G = G16(1, 7, 8) is kernel-less, since 16 is not a multiple of 3 or 29. Yet, a kernel
appears whenever we delete a vertex from G . Due to circular symmetry, without loss of
generality (wlog) we can delete “the last” vertex, 16, and verify that vertex-set {1, 3, 5, 7}
becomes a kernel. Hence, G ∈ LM, but G ̸∈ M, since G contains a directed triangle,
1 + 7 + 8 = 16, which is kernel-less.
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Digraphs with kernels

We will show that in each order ≻V or ≻E the corresponding family F is
strongly convex but not weakly hereditary.

Given an arbitrary digraph G , obviously, class M(F) contains a unique digraph
in both cases: the null-graph for ≻V and the edge-free graph with vertex-set
V (G) for ≻E . Thus, by Lemma ??, both families are not weakly hereditary.

Proposition
Both families (F ,≻V ) and (F ,≻E ) are strongly convex.

Proof

Fix a digraph G ith a kernel K ⊆ V (G).

In order ≻V delete all vertices of V (G) \ K , if any, one by one. By definition, K
remains a kernel in every reduced digraph. This reduction results in an independent
set, which is a kernel itself. Now we can delete all vertices one by one getting the
null-graph at the end.

In order ≻V , first, we delete all arcs within V (G) \ K , then all arcs from V (G) \ K to
K (if any, one by one, in both cases). By definition, K remains a kernel in every
reduced digraph. This reduction results in the edge-free digraph on the initial
vertex-set V (G).
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On kernel-solvable graphs

A graph is called kernel-solvable if every its clique-acyclic orientation has a
kernel; see [BG96, BG98, BG06] for the precise definitions and more details. In
1983 Claude Berge and Pierre Duchet conjectured that a graph is
kernel-solvable if and only if it is perfect. The “only if part" follows easily from
the SPGT (which remained a conjecture till 2002). The "if part" was proven in
[BG96]; see also [BG98, BG06]. This proof is independent of SPGT. The
family of perfect graphs is hereditary, by definition.

As we know, the family of kernel-less digraphs is not convex wrt order ≻E , in
contrast with the family of not kernel-solvable graphs, which is convex [BG98].
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