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Abstract

In 1975 thefirst author proved that every finite tight two-person game form g

is Nash-solvable, that is, for every payoffs u and w of two players the obtained

game(g; u, w), in normal form, has a Nash equilibrium (NE) in pure strategies.

This result was extended in several directions; here we strengthenit further.

We construct two special NE realized by a lexicographically safe (lexsafe)
strategy of one player and a best response of the other. We obtain a polynomial

algorithm computing these lexsafe NE. This is trivial when game form g is

given explicitly. Yet, in applications g is frequently realized by an oracle O

such thatsize of g is exponential in size |O| of O. We assume that game form

g = 9(O) generated by © is tight and that an arbitrary win-lose game (g; u, w)

(in which payoffs u and w are zero-sum and take only values +1) can be

solved, in time polynomial in |O|. These assumptions allow us to construct an
algorithm computing two (one for each player) lexsafe NE in time polynomial

in |O|. We consider four types of oracles knownin theliterature and show
that all foursatisfy the above assumptions.
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1. Basic definitions and preliminary results

1.1. Game forms

In this paper we considerfinite, not necessarily zero-sum, normal form

gamesof two players, Alice and Bob. They havefinite sets of strategies X and

Y, respectively.

A game form is a mapping g : X x Y — O, where O is afinite set of

outcomes.

Several examples are given in Figure 1, where game forms are represented
by tables with rows, columns, and entries labelled by « € X, y € Y, and

o € O, respectively.

 

 
 

              

 

 

 

 
 

                
 

 

 
 

              

Oy O1 03
O71 O1 O71 O1 02 02

02 0. 03 04 03 O 1 0a 022 03 4 03 4[=eSa Loses&8)es 03 0 03

g 92
93

O1 02 O41 02
O71 01 03

03 O4 O4 03 O1 1
O71 O1 O2

O1 O4 O1 9% O71 02
Oa 02 02

03 02 6 02 96
g4

95

O71 1 92
O71 02 O71 91 02

04 05 O02

02 O1 03 94 03
04 03 93

a7 98
99

Fig. 1. Nine game forms. Alice and Bob choose rows and columns,respectively.

Forms gi - ge are tight, forms g7 - gg are not (see section 1.4 for the definition).

Mapping g is assumed to be surjective, but not necessarily injective, that

is, an outcome o € O mayoccupyanarbitrary arrayin the tableof g.

A pairofstrategies (x, y) is called a situation. Sets g(x) = {g(a,y) |y € Y}
and g(y) = {g9(z,y) | « € X} are called the supports of strategies « € X and

y € Y, respectively.

A strategyis called basic if its support is not a proper subset of the support

of any otherstrategy. For example, in gg the first strategies of Alice and Bob

are basic, while the second are not; in the remaining eight game formsall



strategies are basic. Moreover, any two strategies of a player, Alice or Bob,

have distinct supports.

A situation (2, y) is called simpleif g(x)Ng(y) = {g(x, y)}. For example,all
situations of game forms 91, 92, 9s, g9 are simple (such game formsare called

rectangular); in contrast, no situation is simple in g7; in gg all are simple,

except three on the main diagonal; in gy, all are simple, except the central one;

in gg all are simple, except one with the outcome oy.

1.2. Payoffs and games in normal form

Payoffs of Alice and Bob are defined by real valued mappings u: O > R

and w: OR,respectively. We assume that both players are maximizers.

A triplet (g; u, w) defines a finite two-person game in normal form, orjust

a game, for short.

Remark 1. It appears convenient to separate game forms and payoffs studying

the normal form games. This approach makes game forms “responsible for

generic structural properties of games”, whichhold for arbitrary payoffs.

A game(g;u, w) and its payoffs (u,w) are called

e zero-sumif u(o) + w(o) = 0 forall o € O;

e win-lose if, in addition, functions u and w take only two values +1.

Alternatively, a win-lose payoff can be specified by a partition O = O4UOg

of all outcomesinto two subsets: the outcomes preferred by Alice, O4, and by

Bob, Og, respectively, that is,

u(o) = 1, w(0) = —1 for o€ Og, and u(o) = —1,w(o) = for 0 € Op.

Fora win-lose game notation (g;O,4, Og) will be used along with (g; u, w).

1.8. Nash equilibria and Nash-solvability

Given a game(g; wu, w), a situation (2, y) of its game form g: X x Y >A
is called a Nash equilibrium (NE)if

u(g(a,y)) > u(g(2’,y)), Va’ € X, and w(g(2,y)) > w(g(2,y')), Vy! € Y;

in other words, if neither Alice nor Bob can profit replacing her/his strategy

provided the opponent keeps his/her one unchanged.

This concept of solution was introduced in 1950 by John Nash [23, 24].



A game formg is called (i) Nash, (ii) zero-sum, (iti) win-lose solvable if
the corresponding game (g;u,w) has a NE for (7) all, (i) all zero-sum,(#72)
all win-lose payoffs (u, w), respectively.

Implications (i) = (it) = (it) are obvious. Infact, all three properties
are equivalent [11, 13, 15]. For (ii) and(iii) it was shownearlier by Edmonds
and Fulkerson[7]; see also [10]. The list of equivalent properties (2), (#4) ,(##2)
can be extendedas follows.

1.4. Tight game forms

Mappings ¢: X > Y and ~: Y > X are called response strategies of

Bob and Alice, respectively. The motivation for this nameis clear: a player

chooses his/her strategy as a function of a knownstrategy of the opponent.

Standardly, gr(@) and gr(z) denote the graphs of mappings ¢ and wp in X x Y.

Gameformg is called tight if

(j) g(gr()) 1 g(gr(eh)) 4 @ for any mappings ¢ and yp.

It is not difficult to verify that in Figure 1 the first six game forms (g: — ge)

are tight, while the last three (g7 — gg) are not.

In[7, 10, 11, 18, 17] the readercanfind several equivalent properties char-

acterizing tightness. Here we mention some of them.

(jj) For every response strategy ¢ : X — Ythere exists a strategy y © Y

such that g(y) C g(gr(¢)).

(jj) For every responsestrategy ~ : Y + X thereexists a strategy « € X

such that g(a) C g(gr(¢)).

Weleave to the careful reader to showthat (j) is equivalent to (jj) and to

(jj’) as well.
Properties (jj) and (jj') show that playing a game (g;u,w) with a tight

game form g, the players, Bob and Alice, do not need non-trivial response

strategies but can restrict themselves by the constant ones, that is, by Y and

X, respectively; at least in case of the zero-sum games, u-+ w = 0.

Given a game form g : X x Y > O,introduce on the ground set O two

multi-hypergraphs A = A(g) and B = B(g) whose edges are the supports of

strategies of Alice and Bob, respectively:

A(g) = {g(x) | & € X} and B(g) = {g(y) |y € Y}.
By construction, the edges of A and B pairwise intersect, that is, g(7)N

g(y) #G for alla € X and y EY. Furthermore, g is tight if and only if

(jjj) hypergraphs A(g) and B(g) are dual, that is, satisfy also the following

two properties:



(a) for every O’ C O such that O'/N g(y) # @ forall y € Y there exists an
x € X such that g(x) CO’;

(b) for every O” C O such that O” N g(x) # O for all 2 € X there exists an

y €Y such that g(y) c O”.

A multi-hypergraph H is called Sperner if containment H C H’ holds for

no two distinct edges H, H’ € H. Given anarbitrary multi-hypergraph H,
delete every its edge H’ € H that strictly contains some other edge H € H.

Furthermore, from each family of edges with the same support delete all but

one. This construction results in a unique Sperner hypergraph 1°, whichis

called the Sperner reduction of H. It is easily seen that H, and Hy are dualif

and only if #2 and H9 are dual.
Given a tight game form g: X x Y — O,delete from X and Y all non-

basic strategies. Furthermore, considerin X all strategies with equal supports,

choose one of them and delete all others; do the same for Y. Byconstruction,

the reduced game formg® : X’x Y’ + O hasonly basic strategies; furthermore,
A(g°) = A®(g) and B(g°) = B°(g) ave dual Sperner hypergraphs, which are
(unlike g°) uniquely defined by g .

Thefollowing well-knowntechnical statement plays an importantrole.

Lemma 1. Givena tight game formg, a basic strategy x € X, and an outcome

0 € g(x), there exists a basic strategy y € Y such that g(x) N g(y) = {o}.

Proof. Indeed, otherwise for each y € Y one could choose an outcome o(y) €

g(y) N g(x) distinct from o. Then, by(jj’) there exists an 2’ € X such that
g(a") C g(x) \ {0} C g(x). Hence, strategy x is not basic, a contradiction. O

The following remarks are obvious: in the statement of the lemma, 2 and

y can be swapped; the obtainedsituation(2x, y), with g(a, y) = {o}, is simple.
The lemma shows that, given a tight game form g with multi-hypergraphs

A(g) and B(g), their Sperner reductions A°(g) and B°(g) are dual Sperner
hypergraphs uniquely defined by g; in fact, by the basic strategies and simple

situations of g.

Furthermore, given a game (g;u,w) with a tight game form g, one can

choose an outcome o = o(2,y) € g(x) M g(y) in every not simple situation

(x,y) in such a way that none of themis a NE in the obtained game(9’; u, w).

1.5. Tightness and solvability

It is not difficult to see that property (z7) win-lose solvability implies (iv)
tightness. In [11] (see also [13]) it was shownthat tightness implies (2) Nash-
solvability and, hence, all four properties (i - iv) are equivalent.
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Several different proofs of (iv) = (4) based on alternative ideas appeared
later (2, 3, 6, 17, 19]. Equivalence of(ii), (iii), and (iv) is implicit alreadyin
the Edmonds and Fulkerson paper[7] andexplicit in [10].

In Section 5 of [13], by means of Lemma1, implication (#v) = (i) was
strengthenedas follows:

Proposition 1. Every game (g;u, w) with a tight game form g has a simple

NE (x,y) in basic strategies. Oo

Infact, the proof givenin {11, 13] allows us to strengthentheresults further,

specifying more important properties of the obtained NE considered in the next

two subsections.

1.6. Lexicographically safe strategies of the players

First, let us remark that without loss of generality (wlog) we can assume
that u and w have noties, or in other words, each of them forms a complete

order over O. Clearly, one can get rid of all ties by small perturbations of

values of wu and w. Bydefinition, the set of NE will be either unchanged or

reduced by such perturbations. Since we focus on NE that always exist (for

all payoffs, what is called Nash-solvability) we can assume that both payoffs,

u and w, have no ties and replace them by complete orders over O.

Consider wlog Alice’s payoff u and introduce a lexicographical order ~<

overthe Boolean2° (all subsets of O) based onthe priorityof eliminating bad
outcomes (ones with small values of wu). To compare tio subsets O’,O” C O

considertwo differences O’ \ O” and O” \ O’. Their union A = (O’\ O”)U
(O” \ O') # @ is not empty whenever O’ and O”are distinct. Denote byo* the
(unique) outcome in A minimizing the value of wu.

If o* € O' "\ O” then O' < O"; if o* € O" \ O! then O” = O'.
Bydefinition, in this order, a set is smaller than anyits subset; in partic-

ular, the emptyset is the maximumone.

Given g and u, introduce the lexicographical pre-order over Alice’s strate-

gies « € X as follows: the larger is the support g(x) in order ~, the safer is

x for Alice, while strategies with the same support are equally safe. (Recall

that both players are maximizers.)

AmongAlice’s strategies those that maximize g(x) will be called her lezi-
cographically safe (lexsafe) strategies. It is important to notice that only basic

strategies can be lexsafe. Indeed, by definition, 2 is safer than x’ whenever

g(x) C g(x’). It is even more important that Alice’s lexsafe strategies are
defined by g and u, while Bob’s payoff wis irrelevant.

Similarly, using y, w instead of 2, u, we define the lexsafe strategies of Bob.



Remark 2. The concept of a lersafe strategy is a refinement of the classical
concept of a safe (maxmin) strategy. The latter optimizes only the worst case

scenario outcome, while the former one optimizes the whole set of outcomes

inthe lezicographical order defined above.

1.7. Lexsafe Nash equilibria in games with tight game forms

Recall the proof of (iv) = (i) from [11, 13]. It is constructive: a NE (2, y)
is obtained such that y is a lexsafe strategy of Bob, while « is a best response

of Alice to this strategy. (Note that some best responses maynotfit, since,

by the definition of an NE, y must also be a best response to x. However, at

least one required response 2exists.) Such NE will be called lersafe for Bob

and theset ofall his lexsafe NE will be denoted by NE-B.

As wealready mentioned, there maybe several lexsafe strategies but they

all are basic and have the same support. Respectively, NE-B may haveseveral

equilibria but theyall have the same outcome, whichwill be called the NE-B

outcome. Indeed,for all Bob’s lexsafe NE (x, y) the support g(y) and the best

Alice’s outcome g(a, y) € g(y) are the same (that is, well defined). Moreover,
they are defined by g and w only, while uis irrelevant.

Note, however, that x, unlike y, may be not basic.

Given a game (g;u,w) with a tight game form g, denote by SNE-B the

subset of all simple situations of NE-B. We will show that this subset is not

empty and characterize it explicitly.

Consider a not simple (z,y) € NE-B. Bydefinition, there exist distinct

0,0’ € g(x) Ng(y). Assume wlog that g(x,y) = o andreplace it by o’. By
assumption, (2, y) is a NE inthe original game (g;u, w). Yet, it is no longer a

NEin the obtained game. Indeed,in the latter each player can change her/his

strategy getting o back, instead of o’, and makeprofit.

Dosofor all not simple situations (7, y) € NE-B. Then, NE-B = SNE-B
in the new game(g’; u, w). Newgame formg’is still tight, since by Lemma1,

A(g) = A(g’) and B(g) = B(g’). Hence, g’ is Nash-solvable, according to
{11, 13]. Thus, SNE-B is not empty.

Let us show that SNE-B form a box X% x Ys in X x Y. Denote by Y%

the set of lexsafe strategies of Bob. Recall that all these strategies have the
same support. Let o* be the (unique) NE-B outcome. Wealready knowthat

there exists a strategy x € X of Alice such that (x,y*) is a simple NE for
some y* € Yg. Then, obviously, the same holds for all y* € Ys, since all

these strategies have the same support. Denote by X% the set ofall Alice’s

strategies x € X having the above property. Clearly, 2’ € X% whenever

g(2') C g(x) for some # € XH. Indeed, g(x) N g(y) = {g(2, y} = o* implies



that 9(2")Ng(y) = {9(2', y} = o*, since thelatter intersection cannot be empty

andis a subset of the formerone.

Thus, we proved that SNE-B = X% x Y3.

Note that, unlike Yj, set Xf may contain non basic strategies but it must

contain some basic strategies, too.

Similarly, we introduce sets NE-A and SNE-A of the lexsafe and simple

lexsafe NE of Alice just by swapping y,w and x,u. We can strengthen the

main result of [13] as follows.

Theorem1. Every game (g;u, w) with a tight game form g has two non-empty

sets of simple lexmin equilibria of Alice and Bob, respectively:

SNE-A = X% x Yi and SNB-B = X% x Yj.
All strategies of Xi, and Y% and somestrategies ofX} and Yx are basic. O

Sets NE-A and NE-B mayintersect and even coincide. For example,if game

(g;u, w) has a unique NE (z,y) then NE-A = NE-B = {(2,y)}. Another such

case is considered in the next subsection.

1.8. Zero-sum payoffs

Consider azero-sum game (g; wu, w) with a game form g: X x Y > O and

payoffs u: O + R and w : O > R suchthat u(o) + w(o) = 0 for all o € O.
Since w = —u,we will restrict ourselves to u only and denote the gameby(4g, u)
rather than (g;u,w). Alice remains maximizer, but Bob becomes minimizer

(of u), since he maximizes w. The results that Alice and Bob can guarantee,
in the worst case scenario, called matzmin and minmaa, are standardly defined

as follows:

max min = max min u(o); minmax = min min u(o). (1)
®€X 0€g(x) yEY o0€g(y)

The strategies « € X and y € Yrealizing maxmin and minmaxin(1) are

called safe. Denote by X’ and Y’the sets of all safe strategies of Alice and

Bob,respectively.

A NEina zero-sum game (g, u) is usually referred to as a saddle point. It

exists if and only ifmaxmin = minmax, which holds whenever gameform g is

tight. The latter result is due to Edmonds and Fulkerson[7]; see also [10].
All situations (x, y) € X’ x Y’ are saddle points. Moreover, payoff function

u(g(x,y)) is a constant on X’ x Y’. This constant is called the value of the
zero-sum game (g, 2).



Wlog we can assume that u have no ties on O. Indeed,if u(o) = u(o’) then
we just merge these two outcomes in O getting O'. This operation preserves

tightness. Applying such merging recursively, we get rid of all ties of u. Then,

function g becomes a constant on X’ x Y’. In other words, there is a unique

saddle point outcome.

Proposition 2. In a zero-sum game(g, u), all situations ofX'xY’are simple.

Proof. Assume for contradiction that (x,y) € X’ x Y’ is not simple, that is,
g(x,y) = 0 and both g(2) and g(y) contains an outcomeo’ distinct from o.
Clearly, o’ is better that o either for Alice or for Bob, since the considered game

is zero-sum. Hence (2, y) is not a saddle point, which is a contradiction. O

Denote by X” and Y”the sets ofall lexsafe strategies of Alice and Bob,

respectively. Obviously, the following containments hold (and maybestrict):

X"CX'CX and Y"CY'CY.

As we already mentioned, lexsafe strategies can be viewed as a refinement of
safe ones: the former optimize the outcome, while the latter optimize lexico-

graphically the whole set of possible outcomes, in the worst case scenario.

As we know,all lexsafe strategies are basic. In contrast, a safe one may

be not basic, however, if 2 € X is safe and g(x’) C g(x) then 2’ is safe too.
Similarly for y.

Since X’ x Y’ are saddle points and X” x Y” C X' x Y’, we conclude that

X" x Y"are saddle points too.
Above observations imply the following characterizationof the set of lexsafe

NE in the zero-sumcase.

Theorem 2. Equalities NE-A = NE-B = X" x Y" hold for every zero-sum

game (g,u). This set is not empty whenever g is tight. oO

1.9. Non-zero-sumpayoffs. An important example

Yet, in general, sets NE-A and NE-B may bedisjoint and a pairof lexsafe

strategies of Alice and Bob maybe not a NE.

Consider gameform g; in Figure1. It is tight. Define payoffs u and w such

that u(o2) > u(o1) > u(o3) and w(02) > w(o3) > w(o01). It is easy to verify that
x, and y; are lexsafe strategies of Alice and Bob, respectively. Yet, situation

(@,41) is not an NE. Alice can improve herresult gi(21, yi) = 01 switching
to a and getting g(x2, y1) = 02, which is better for her. Thus, two lexsafe

strategies, of Alice and Bob, do not form an NE. However, sets NE-A and NE-
B are not empty, in accordance with Theorem 1: NE-A = {(v2,41)} and NE-B
= {(21, ye)}. The corresponding NE outcomesare 0; and 02, respectively.
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Note that o2 is the best outcome for both players. Thus, NE-A is not

Pareto-optimal.

Remark 3. One could conjecture that each player prefers letsafe NE of the

opponent to his/her own. Such a result would be similar to the analogous one

from the matching theory; see, for evample, [20]. There are two types of stable

matchings given by the Gale-Shapley algorithm [9], depending on men propose

to women orvice versa. Yet, this conjecture is disproved by the above example.

1.10. Game forms and game correspondences

A game correspondence is defined as an arbitrary mapping G: X x Y >

2° \ {G}, that is, G assigns a non-emptysubset of outcomes to eachsituation.

Given G, define a game form g € G, choosing an arbitrary outcome

g(x,y) € G(a,y) for each situation (2,y). Conversely, given a game form

g:XxY — O, define a game correspondence G setting G(x, y) = g(x) Ng(y).
Then, obviously, g € G.

By Lemma1, if at least one g* € G is tight then every g € G is tight. In

this case G is called tight too. Furthermore,all g € G have the same Sperner
reduced dual hypergraphs A°(g) and B°(g), same simple situations, and for
any given payoffs u and w, the same sets of simple situations in NE-A and

NE-B.

2. Computing lexsafe NE in polynomial time

If game form g : X x Y — O is given explicitly then tofind all its NE is
simple: one canjust considerall situations (2, y) € X x Y one byone verifying

Nash’s definition for each of them. Yet, in applications g is frequently given by

an oracle O such thatsize of g is exponential in size |O| of this oracle. Then,

the straightforward search for NE suggested above becomesnotefficient. Four

such oracles will be considered in section 4.

Yet, certain properties required from oracle O allow us to construct an

algorithm computing two lexsafe NE (from NE-A and NE-B, respectively) for

every game (g;u,w) with tight game form g = g(O)realized by O, in time
polynomialin |O].

2.1. Requirements to oracles

(I) Oracle O contains explicitly all outcomes O of g. (Yet, strategies « €
X and y € Yare implicit in O; moreover, |X| and/or |Y| may be
exponential in its size |O|.)

(II) Game form g = g(O) generated by is tight.
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(II) Every win-lose game (g(Q);O.4,Op) can be solved in time polynomial
in |O].

Requirement (III) needs a discussion. Bytightness of g, exactly one of the

following two options holds:

(a) there exists « € X with g(x) C Ox (Alice wins);

(b) there exists y € Y with g(y) C Og (Bob wins).

To solve a win-lose game means to determine which option, (a) or (b),
holds and to output a winning strategy, 2 or y, respectively.

Notice that it is possible to output basic winning strategies whenever(III)

holds. Indeed, suppose Alice wins and we output her winning strategy x, with

g(x) C Oy. Reduce O, by one output o moving it to Og, solve the obtained

win-lose game, and repeat the procedure for all o € O,. If Bob winsinall

obtained games thenz is already a basic winning strategy of Alice. Otherwise

we can move an outcome o from O, to Og andAlicestill wins. Repeating,

we obtain a basic winning strategy of Alice (in the original game) in at most
|O.4| iterations. The same works for Bob.

3. Computing two lexsafe NE, from NE-A and NE-B,respectively

Let us computea lexsafe strategy of Bob. Recall that it depends only onhis

payoff w, while uis irrelevant. Wlog we may assume that w(01) <... < w(0p).
(Recall that we canrestrict ourselves bystrict inequalities; see the beginning

of Section 1.6.)
Let us verify whether Bob canexcludehis worst k outcomes Oy = {01,.-., on}.

To do so, set O4 = Ox, Op = O\O;, and consider the obtained win-lose game

(g;Oa,Op). Using the oracle, verify if Bob wins. By construction, he does

if and only if he can exclude his worst k outcomes O; in the original game

(g;u, w). Applying the dichotomy among k € {1,...,p} obtain the maximalko

such that Bob can exclude O;,. (In particular, kg = 0 mayhold.) This implies

that Bob’s lexsafe strategy excludesall outcomes from O;,, but cannot exclude

Oko+1 in addition. Hence, we canset for good Ox, C Oa, while 04,41 € Op, and

repeat the same procedure with the remaining outcomes O \ Oxo41. In at most

p = |O| iterations, we obtain the unique “lexsafe” subset O* C O that Bob
is able to exclude. And he must, in order to play “lexsafely”. Furthermore,

oracle O will provide, in time polynomial in |O], the corresponding strategy

y* € Y with g(y*) = O \ O*. This is Bob’s lexsafe strategy. It may be not
unique, in contrast to his lexsafe subset O* C O.
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*Obviously, y* is a basic strategy. Indeed, any strategy y** such that

g(y**) © g(y*) would be “lexsafer” than y*.

Note that the above algorithm computesa lexsafe strategy of Bob, given his

payoff w and anarbitrary game formg, not necessarily tight. Yet, computing

an NE we must use tightness of g, since it is equivalent to Nash-solvability of

g.

It was proven in [11] that for any Bob’s lexsafe strategy y*, Alice has a

strategy «* € X such that the situation (2*,y*) is an NE in game (g;u, w)

wheneverg is tight. Then, in Section 5 of [13], this result was strengthened

as follows: a basic such a2* and a simple lexsafe NE (2*,y*) exist (that is,

92") g(y*) = {o(2*, ¥*)}).
Bythe definition of an NE, Alice’s 2* must be her best response to Bob’s

y", yet, it may be not unique. (Ofcourse, y* is a best response to x* as well.)

Westill need to construct 2* in time polynomial in |O|. Game form g is

tight by assumption(II). By Theorem 1, NE-B contains a simple NE (2*, y*)

in basic strategies. Strategy y* and its support g(y*) are already known.

Although2*is not, but we knowthat 2* is a best response to y* and, hence, can

compute the corresponding outcome o* = g(2*,y*) € g(y*). Since NE (2*, y*)

is simple, we have g(2*)Mg(y*) = 0*. Let O% = {0 € O | w(o) < w(o*)} bethe
set of outcomes that are worse that o* for Bob. Set O4 = (O} \ g(y*)) U {o*},
Og = O\ Oa,andconsider the win-lose game (g;O,4,Og). Alice wins, since

by Theorem 1, NE-B is not empty and, moreover, it contains a simple NE.

The oracle outputs (in time polynomial in |O|) a simple winning strategy 2*

of Alice. Bydefinition of O,, all outcomes of g(x*) are not better than o*
for Bob. Hence, y* is a best response to 2*. Recall that, vice versa, 2* was

defined as a best response to y*. Thus, (2*,y*) is a NE and, byconstruction,

(2*, y*) € NE-B.
The obtained algorithmcalls the oracle at most O(plogp) times, where

p = |O|, and the oracle answers (solves a suggested win-lose game) in time

polynomial in |O|, by assumption(III).

Similarly, a lexsafe strategy from NE-A is computed. Thus, the following
statement is proven.

Theorem 3. Given anoracle O satisfying requirements (1,11, III), lexsafe NE

of Alice and of Bob exist and can be computed in time polynomial in |O|. O

4. Examplesof oracles

Here we consider four types of oracles and verify that all four satisfy re-

quirements (I, II, HI).

12



4.1. Deterministic graphical multi-stage game structures

Let T = (V, £) be a directed graph (digraph) whose vertices and arcs are

interpreted as positions and moves, respectively. Furthermore, denote by Vp

the set of terminal positions, of out-degree zero, and by V4, Vg the positions

of positive out-degree, controlled by Alice and Bob,respectively. We assume

that V = V4 UVz UV;is a partition. A strategy 2 € X of Alice (resp., y € Y

of Bob) is a mapping that assigns to each position v € V4 (resp., v € Vp)

an arbitrary move from this position. An initial position v9 € V4 U Vp is

fixed. Eachsituation (2, y) defines a unique a walk that begins and vp and

thenfollows the decisions made by x and y. This walk P(z,y) is called a play.

Eachplay either terminates in Vp oris infinite. In the latter case, it forms a

“lasso”: first, an initial path, which may be empty, and thena directed cycle

(dicycle) repeated infinitely (This holds, because we restrict players by their

stationarystrategies, that is, a move may depend only onthe current position

but not on previous positions and/or moves).

The positional structure defined above can also be represented in normal

form. We introduce a game form g : X x Y — O, where, as before, O denotes

a set of outcomes. Yet, there are several ways to define this set. One is to

“merge” all infinite plays (lassos) and consider them as a single outcomec,

thus, setting O = VpU {c}. This model was introduced by Washburn [28] and
called deterministic graphical game structure (DGGS).

The following generalization was suggested in [17]. Digraph I is called

strongly connected if for any v,v' € V there is a directed path from v to v’

(and, hence, from v’ to v, as well). By this definition, the union of two strongly

connected digraphs is strongly connected whenever they have a commonver-

tex. A vertex-inclusion-maximal strongly connected induced subgraph of T

is called its strongly connected component (SCC). In particular, each terminal

position v € Vp is an SCC.It is both obvious and well-knownthat any digraph

I = (V, £)admits a unique decomposition into SCCs: T° = P[V?] = (V?, E°)
for o € O, where O is a set of indices. Furthermore, partition V = UseqV?

can be constructed in timelinearinthe size of I, that is, in ([V|+|Z]). It has
numerous applications; see [26, 27] for more details. One more was suggested

in [17]. For each o € O, contract the SCC T° into a single vertex v°. Then,
all edges of EH(including loops) disappear and we obtain an acyclic digraph

I* = (O, E*). The set O can betreated as the set of outcomes. Eachsitua-

tion (x,y) uniquely defines a play P = P(z,y). This play either comes to a

terminal v € Vp or forms a lasso. The cycle of this lasso is contained in an

SCC o of T. Each terminal is an SCC as well. In both cases an SCC 0 € O is

assigned to the play P(«,y). Thus, we obtain a game form g : X x Y > O,
which is the normal form of the multi-stage DGGS (MSDGGS)defined byI.
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An SCCis called transientif it is not a terminal and contains no dicycles.
No play can result in such SCC; or in other words it does not generate an
outcome. For example, O = Vrin an acyclic digraph, while all remaining

SCC are transient.
We will demonstrate that both oracles, DGGS and MSDGGS,satisfy the

requirements(I, II, III). Indeed,(I) holds since the terminals, as well as SCCs,

of a given digraph [ can be generatedin timelinear in the size of I’.

Both requirements, (II) and(II), for both oracles, DGGS and MSDGGS,
can beverified simultaneously. Consider the corresponding gameforms g’ and

g and note that g’ is obtained from g by merging some outcomes. Namely,

all outcomes corresponding to the non-terminal SCCs are replaced by asin-

gle outcome c. Obviouslly, merging outcomes respects tightness. Thus, it is

enough to verify (II) and (III) for MSDGGSs, By theorem, 1, it is sufficient to

prove the win-lose solvability to verify (II). For DGGSit was done in [28]; see

also [3, Section 3], [1], [5, Section 12]. The result was extended to MSDGGS
in [17]. All proofs were constructive, the corresponding win-lose games were

solvedin time polynomialin the size of P, which implies also (IID).

For reader’s convenience, we briefly sketch here the proof of (ILIII) from

[17]. Considera win-lose game (g;O4, Og) with game form g = g(O) generated

by a MSDGGSoracle O. We wouldlike to apply the Backward Induction,
yet, digraph [ may have dicycles. So we modify Backward Induction to make

it work in presence of dicycles. Recall that O is the set of SCCs of I and

I* = (0, E*) is acyclic. Consider an SCC 0 = IY = (V’,E’) in that is
not terminal, but each move (v’,v) from a position v! € V’ either ends in a

terminal v € Vp, or stays in I’, that is, v’ € V’. Wlog assumethat o € Og,

that is, Alice winsif the play cycles in I’. Then Bob wins in aposition v’ € V’

if and only if he can force the play to come to a terminal v € Ox andAlice

wins inall otherpositions of V’. Note that for Alice it is not necessary to force

the play to come to Oy, it is enoughif it cycles in I’. Thus, every position

of I” can be addedeither to O4 or to Og. Then weeliminate all edges E’ of

I” and repeat until the initial position vp of T is evaluated. This procedure

proves solvability of game form g(O) andsolves a win-lose game (g; Oa, Op)
in time linear in the size of O=T.

Acyclic deterministic graphical game structures

A gameformis called rectangularifall its situations are simple. It is shown

in [12] that a game form g is generated by a DGGS whose graphis a tree if

and onlyif g is tight and rectangular. Two examples, I’, and TP, are given
in Figure 2. They generate game forms g; and go; see also Figure 1. More
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Fig. 2. Acyclic deterministic graphical game structures and corresponding game forms

examples can be found in Section3 of [15], where the above characterization

is extended to the n-personcase.

Acyclic DGGS T, in Figure 2 generates game form gj; see also Figure 1.

Recall game (gi; u, w) from Section 1.9, with

u(o2) > u(o,) > u(o3) and w(o2) > w(o3) > w(o1).

Notice that the Backward Induction NE (see [8, 21] and also [16]) is NE-A
and is not Pareto-optimal. In general, this NE maydiffer from both, NE-A

and NE-B.

Acyclic DGGS [3 in Figure 2 generates game form gg; see also Figure 1.

Clearly, in absence of dicycles in I, the concepts of DGGS and MSDGGS
coincide. It is also clear that an acyclic DGGSis a special case of MSDGGS.

Thus, properties (I, II, III) required from anoracle hold for both.

Cyclic deterministic graphical game structures

The outcomes of MSDGGSareits SCCs. In particular, each terminal posi-

tion is an outcome. Let us now assumethat every simple dicycle is a separate

outcome(and each terminal remains an outcomeas well). Such DGGSs, called

cyclic, were studied in [5]; see also several earlier papers cited there. Cyclic

DGGScanalso serve as oracles generating game forms; see examples in Fig-

ures 1 and 2 of [5]; compare examples 3 and 4 in Figure 2 there with game

forms g4 and gs in Figure 1.

Game forms generated by the cyclic DGGS maybe not tight; see Figure

1 in [5]. In other words, property(II) fails for the corresponding oracles, in

general. Yet, it holds in some important special cases.
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A digraph G = (V, £) is called symmetric if (v,v’) € E whenever (v',v) €
E. Cyclic DGGS on symmetric digraphs are called symmetric. Symmetric

Cyclic DGGSssatisfying (II) (and called solvable) are explicitly characterized
in [5]; see sections 1-3 and Theorems 1-3.

It follows from the the results of [5] that (III) also holds for solvable cyclic
symmetric DGGS. Hence, Theorem 8 is applicable.

4.2. Jordan oracle; choosing Battlefields in Wonderland

Wonderland is a subset of the plane homeomorphic to the closed disc.

Wlog, we can consider a square Q with the sides N, £,.S,W, as in Figures

3 and 4. Let us partition @ into areas O = {o0;,...,0,} each of which is
homeomorphic to the closed disc, too. Every two distinct areas 0;,0; € O

are either disjoint or intersect in a set homeomorphic to a closed interval that

contains more than one point. Equivalently, we can require that the borders

of the areas in O forma regular graph of degree 3. (Note that four vertices of

the square are not vertices of this graph.) Two examples are given in Figures

3 and 4.

Remark 4. Consider game formgs in Figure 1 and merge outcomes 05 and 06

init getting gi. (This operation respects tightness). Note that g € G, where G

is the game correspondence given in Figure 3. See also Figure 4 of [5], where

gs also appears as the normal form of a cyclic game form.

The following interpretation was suggested in [19]. Two players, Alice

Tweedledee and Bob Tweedledum, agreed to have a battle. The next thing to

do is to agree on a battlefield, which should be an area o € O. Thestrategies

x € X of Alice (resp., y € Y of Bob) are all inclusion-minimal subsets 2 C O

(resp., y C O) connecting Wand E (resp., N and S). Anytwo such subsets

x andy intersect, by the Jordan curve theorem. The intersection maycontain

several areas of O. Hence, a game correspondence G': X x Y — 2° \ {0} is

defined. It is easy to showthat G is tight. To do so, choose an arbitrary g € G

andconsider a win-lose game given by a partition O = O4,U Og. Again, by

the Jordan curve theorem, from the following two options exactly one holds:

(a) areas from O, connect Wand E;

(b) areas from Op connect N and S.

The above observations imply that Jordan oracle O satisfies requirements

(1) and(II). It remains to verify (III), that is, we have to decide, in time
polynomial in p = |O|, whether(a) or (b) holds and find some corresponding
x or y, respectively. To do so, considerall areas from Og boarding N, then
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Fig. 3. The Jordan game correspondence of the map of Wonderland.

addall areas from Og boarding these areas, etc. Such iterations will stop in

time linearin p either reaching S (then, obviously, (b) holds) or not (then, (a)
holds by the Jordan curve theorem). Moreover, in the first case we obtain a

set of areas y’ from Og connecting N and§;in the second case - a set of areas

v' from O, connecting W and E. The formerstrategy y’ is obtained explicitly;

the latter one, x’, is also easy to construct. To do so, denote by Of the set

of areas obtained in the course of iterations. It does not reach S. Hence, the

areas from O, that border Of, connect W andE,by the Jordan curve theorem.

This case is realized in Figure 4; Alice wins.

Then,in linear time we canreducey’ (or resp. 2’) to an inclusion-minimal

set y (resp., 2) connecting N and S (resp. W andE), thus, getting the basic

strategies of Bob (resp., Alice). To do so, we eliminate areas from y’ (resp.,

z') one by one until (b) (resp., (a)) still holds.

Remark 5. We required inclusion-minimality for the subsets 1«,y € O just
to reduce the number of strategies (which may still remain exponential in p).

This requirement can be waved.
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4.8. Monotone bargaining schemes

The following oracle was introducedin [19]. Two players, Alice and Bob,

possess items A = {a1,...,@m} and B = {by,...,,}, respectively. Bothsets
are ordered: a) ~...~< ad, and bj <... < b,. Both players know bothorders.

The direct product O = A x B = {(a,b) | a € A,b € B}is the set of
outcomes.

Alice’s strategies are monotone non-decreasing mappings 2: A > B (that

is, x(a) > a(a’) whenever a > a’) showing that she is ready to exchange afor
x(a) for any a € A. Similarly, Bob’s strategies are monotone non-decreasing

mappings y: B > A (that is, x(a) > x(a’) whenever a > a’) showing that he
is ready to exchange b for y(b) for any b € B.

It is not difficult to compute the cardinalities of the sets of strategies and
outcomes:

n-1 n-1ix|= (an hs lv|= ("te ); \O|=|Ax Bl =mn. (2)

m n

Given asituation (a,y), an outcome (a,b) € O is called a deal (in this
situation) if a(a) = b and y(b) = a. Denote by G(2, y) C O theset ofall deals
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in situation (x,y). We will show that G(a,y) # @. Yet, it may contain several

deals.

This construction is called a monotone bargaining (MB) scheme. It can be

viewed as an oracle © generating game correspondence G : X x Y > 2°\ {O}.

By(2), requirement(I) holds for O.
Note that G = Gy, is uniquely defined by m and n. Any g € is called

a MB game form.
For example, if m = = 3 then |X| = |Y| = 3 andwe obtain game form

ga in Figure 1; game correspondence G(z, y) is given in Figure 1a of [19].

The following interpretation was suggested in [19]. Alice and Bob are

dealers possessing the sets of objects A and B, respectively, and a deal (a, b) €

Ax B meansthat they exchange a and b. They maybeart-dealers, car dealers;
or one of them may be just a buyer with a discrete budget. For example,

A= {ay,...,@m} and B = {by,...,b,} maybe paintings or sculptures ordered

in accordance with their age (not price or value).

To any pair of mappings x : A > B and y: B > A (not necessarily

monotone non-decreasing) let us assign a bipartite digraph T = I'(2,y) on

the vertex-set AU B as follows: [a, b) (respectively, [b, a)) is an arc of I'(a, y)
whenever 2(a) = 6 (respectively, y(b) = a).

Some visualization helps. Embed I(2,y) into a plane; putting ordered
A and B in twoparallel columns. Two arcs corresponding to « may have a

commonhead,but not tail. Furthermore, they cannot cross whenever mapping

2 is monotone non-decreasing. Similarly for y.

By construction, digraph I is bipartite, with parts A and B. Hence, every

dicycle in T is even. There is an obvious one-to-one correspondence between

the dicycles of length 2 (or 2-dicycles, for short) in P'(2,y) and the deals of

G(z,y).
Proposition 3. For eachsituation (x,y) its digraph (x,y) contains at least

one dicycle of length 2 (a deal) and cannot contain longer dicycles.

Proof. For any initial vertex v € AU B,strategies x and y uniquelydefine an

infinite walk from v, whichis called a play. Since sets A and B are finite and

there are no terminals, this play is a lasso: it consists of an initial directed

path, which maybe empty, anda dicycle C' repeatedinfinitely. Furthermore, C

must be a 2-dicycle whenever mappings x and y are monotone non-decreasing.

Indeed, if C' is longer than 2 then either 2, or y, or both are not monotone,

since crossing arcs appear. oO

Considera win-lose MB game (g;O,4, Op), where g = g(©) is an MB game

form generated by an MB scheme O. As we already mentioned, requirement
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(I) holds for O. The following statement shows that (II) and(ITI) hold as well.

Proposition 4..Game form g = g(O) is tight and each win-lose MB game
(g; Oa, Op) canbe solved in time polynomial in |O| = mn.

The first part was already proven in [19]. Yet, here we provide a much

shorter proof.

Proof. For the sake of simplicity, we will slightly abuse notation writing that

both directed edges [a,b) and [b,a) are in O, or in Og wheneverthe corre-
sponding deal(a,b) is in O, or in Og, respectively.

Consider complete bipartite symmetric digraph [ on m+nvertices A =

{a1,..-,;@m}, B = {bi,...,d,}, and with 2mndirected edges {[a;, b;), [b;, a:) |
i=1,...,m;j =1,...,n}. The following two statements are obvious.

(a) Alice wins if she has a monotone non-decreasing strategy 2* : A B
such that [a,2*(a)) € Og for alla € A.

(b) Bob wins if he has a monotone non-decreasing strategy y* : B— A

such that (b, y*(b)) € Op for all b € B.
Indeed,it is easily seen that 2* and y* are the winning strategies of Alice

and Bob,respectively. It is enough to showthat g(2*,y) € O.4 for any y EY.

Recall the proof of Proposition 3: Fix 2*, choose an arbitrary y € Y, and

consider the play P = P(2*,y) beginning from an arbitraryinitial position

v € AUB. ByProposition 3, P is a lasso resulting in a 2-cycle (a,b). The
corresponding deal (a,b) € Oa, in case (a), by the choice of 2*, and Alice wins.

Similarly, g(x, y*) € Og incase (b) for any 2 € X, bythe choice of y*, and
Bob wins.

Obviously, (a) and (b) cannot hold simultaneously, since otherwise (a,b) €
Qa UQz, whichis a contradiction, since O = Q, U Qz is apartition.

Let us showthat either (a) or (b) holds, that is, g is tight, which implies
(II). The proof will be constructive: we obtaineither 2* satisfying (a) or y*

satisfying (b) in time polynomial in mn, whichin its turn implies (III). We will

construct a play P by the following greedy iterative algorithm. Let a! = a,

be aninitial position of P. (We use superscripts to numberiterations.) If

[a’, b) € Op for all b € B then Bob wins. (His winning strategy y* is defined

by: y*(b) = a! forall b € B. Then[y*(b),b) € Og for all b € B and (b) holds)
Otherwise, denote by b' the (unique) minimal b € B such that [a',b) € Oa.
Then, by definition, [b',a!) € O, too. Furthermore, by this choice of b!, we
have: [b,a') € Og forall b < b, while [b', a) € Og.

If [b!,a) € Og forall a > a then Alice wins. (Her winning strategy a
is defined by: 2*(a) = b! for all a € A. Then[a,2*(a)) € Oy forall a € A.)
Otherwise, denote by a? the (unique) minimal a € A suchthat [b!,a) € Op.

*
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Then, bydefinition, [a?,b!) € Og too. Furthermore, by the choice of a?, we

have: [a,b') € Oy forall a < a”, while [a?,b') € Og.

The general k-th step of this greedy recursionis as follows.

If [a*,b) € Op forall b > b*-! then Bob wins. (His winning strategy y*
is defined by: y*(b) = a! for each b such that b' > b > bY, fori =1,...,k,
assuming conventionally that b > b° holds forall b € B).

Otherwise, denote by b* the (unique) minimal 6 € B such that b > b*?
and[a*,b) € O4. Then [b*,a*) € Ox too.

Furthermore, by the choice of b*, we have: [b,a*) € Og forall b such that
bE > b> DE, while [b*, a*) € Ox.

If [b*, a) € Oxfor all a > a* then Alice wins. (Her winningstrategy 2* is
defined by: x*(a) = b) for each a such that at! > a > a, for j = 1,...,k,
assuming conventionally that a*+4 > a holds forall a € A.)

Otherwise, denote by a**! the (unique) minimal a € A suchthat [b*,a) €
Og. Then[a**4, b*) € Op, too.

Furthermore, by the choice of a*+!, we have: [a,b") € O,4 forall a such

that a! > a> a’, while [a*t!, b*) € Og.

Thus, after each iteration a* (resp., b*) both Alice and Bob have winning

moves in all positions a = a* and b X bE! (resp., a = a* and b < b*).
Since sets A and B arefinite, the procedure will stop on someiteration either
a™ % am or D* % dy, indicating that Bob or, respectively, Alice wins.

Furthermore, we obtain his or her winning strategyin time linear in mn.

Thefollowing slightly different procedure canbe applied too. First, we start

looking for a winning strategy 2* for Alice. Consider successively a1, d2,...

and construct (again recursively and greedily) her monotone non-decreasing

strategy 2* as follows: x*(a;) = b' such that [a;,b‘) € Oy, b' & be1, and U
is the minimal element of B satisfying these two properties. If this will work

for all i = 1,...,m then Alice wins and we obtain her winning strategy «*

satisfying (a). Otherwise, if the procedure stops on some i < m (no required

b' exists for a;) then Bob wins. His winning strategy y* satisfying (b) is defined
as follows: y*(b) = a’ forall b such that b'“! < b < b', wherea;is the smallest a
such that 2*(a) = b', for j = 1,2,.... By convention, b° <b for allbe B. O

Thus, requirements (I,I,III) hold for the MB schemesand, hence, Theorem

3 is applicable.

4.4. Veto voting schemes

Two voters (players), Alice and Bob choose among candidates (options,

outcomes) O = {01,...,0p)}. They are assigned some positive integer veto
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powers and given j14 and jug veto cards, respectively. Each candidate o € O

is assigned an integer positive veto resistance \,. We assumethat

Ha + Pp +1= Xo +... + Ao, (3)

A strategy of a voter is an arbitrary distribution of her/his veto cards

among the candidates. Given a pair of strategies x and y, a candidate o € O

whogot at least \, veto cards (from Alice and Bobtogether) is vetoed. From
the set G(x,y) of all not vetoed candidates one g(z,y) € G(2,y) is elected.
By (3), G(#,y) # 0. Thus, we obtain a veto voting (VV) scheme O, VV
game form g = g(O), and VV gamecorrespondence G = G(O); see Chapter

6 of [22],[25],[14] for more details. By construction, VV schemes are oracles
satisfying (I).

For example, game form g3 in Figure 1 corresponds to the VVS defined by

BA = pop = Xo = Avg = Acg = 1.

Let us show that requirements (II) and (II) also hold for VV schemes.

Proposition 5. Hach game form g defined by a VV scheme satisfying (3) is
tight. Every win-lose game (g;O4,Op) can be solved in time polynomial in

|O| = log(#a/48 Toco o)-

Proof. To see this, consider a win-lose game (g;O,4,Og). By (3), from two

options, (a) Alice can veto Og and (b) Bob can veto O4, exactly one holds.
Alice and Bobwinincase of (a) and (b), respectively. Given numbers 14, /tp,
and X,, 0 € O, one can decide whether (a) or (b) holds. In each case the
winning strategy of Alice or Bob is straightforward: just veto all opponent’s
candidates, Og or O.4, respectively. Oo

Thus, the VV oracles satisfy (I,II,H1) and Theorem3 is applicable.

4.5. Tight game correspondences and forms of arbitrary monotone properties

The most general setting is defined as follows. Given a finite groundset

O, consider a family of its subsets P C 2°. Standardly, we call P a property

and say that a subset O’ C O satisfies P or not whenever O’ € P or O' ¢
P, respectively. Property P is called inclusion monotone non-decreasing, or

simply monotone, for short, if O” € P implies O' € P whenever O” C O' C O.

Werestrict ourselves to monotone properties.

Define the sets of strategies X of Alice and Y of Bobas follows: 2 € X

(resp., y € Y) is any[inclusion minimal] subset O’ C O such that O' € P
(resp., O\ O' ¢ P).
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The restriction in brackets does not matter, it can be waved or kept. In

the latter case, sets Y and Y maybesignificantly reduced.
Define a game correspondence G = G(P) bysetting G(x, y) = «Ny for

any x € X and y € Y.It is both obvious and well-knownthat G(z,y) 4 0
and, moreover, G' is tight. Hence, any game form g € is tight too.

Thus, requirements (I) and (II) hold automatically whenever a monotone
property P is given by an oracle O(P). Yet, (III) must be requiredin addition.

In other words, O(P) must be a polynomial membership oracle, that is, for

a given subset O’ C O,it must decide if O € P in time polynomialin |O| +

|O(P)I.
It is easily seen that this general setting includes in particularall four

examples of oracles given in this section before. Many other examples can be

foundin [4, 18}.
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