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a b s t r a c t

In 1975 the first author proved that every finite tight two-person game form g is Nash-
solvable, that is, for every payoffs u and w of two players the obtained normal form game
(g; u, w) has a Nash equilibrium (NE) in pure strategies. Several proofs of this theorem
were obtained later. Here we strengthen the result and give a new proof, which is shorter
than previous ones. We show that game (g; u, w) has two types of NE, realized by a
lexicographically safe (lexsafe) strategy of one player and some special best response of
the other. The proof is constructive, we obtain a polynomial algorithm computing these
lexsafe NE. This is trivial when game form g is given explicitly. Yet, in applications g is
frequently realized by an oracle O such that size of g is exponential in the size |O| of
O. We assume that game form g = g(O) generated by O is tight and that an arbitrary
±1 game (g; u0, w0) (in which payoffs u0 and w0 are zero-sum and take only values ±1)
can be solved in time polynomial in |O|. These assumptions allow us to compute two
(one for each player) lexsafe NE in time polynomial in |O|. These NE may coincide. We
consider four types of oracles known in the literature and show that all four satisfy the
above assumptions.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Here we outline main results. Precise definitions will be given later.
Consider a finite n-person game in normal form representing it as a pair (g, u), where u is the payoff function of n

players and g is the so-called game form. Respectively, the latter can be viewed as a game without payoffs, which are
not given yet. Such approach is standard and convenient: game form g ‘‘is responsible’’ for structural properties of game
(g, u), which hold for any payoff u. For example, game form g is called Nash-solvable if game (g, u) has a Nash equilibrium
(NE) in pure strategies for every payoff u.

In 1950 Nash proved that every n-person normal form game has a NE in mixed strategies [39,40]. Yet, there are
large families of games solvable in pure strategies, for example, finite n-person positional (graphical) games with perfect
information. Every such game structure Γ uniquely defines a finite n-person game form g(Γ ) that is Nash-solvable. In
Section 8.3 we consider this class of Nash-solvable game forms. Furthermore, we expand the set of outcomes including
not only terminal positions but also other strongly connected components of Γ . Doing so, we also expand substantially
the corresponding family of game forms, which remain Nash-solvable, but only in case of two players, n = 2.
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Yet, perfect information is only sufficient but not necessary for Nash-solvability. A concept of tightness fits much
better. This property is of algebraic nature. It was introduced in [20,21] and in the latter paper it was shown that a
finite two-person game form is Nash-solvable if and only if it is tight. Note that already for n = 3 tightness is neither
necessary nor sufficient for Nash-solvability. These results were obtained in [21,23]; several different proofs were given
later [3,5,11,27,30]. Tightness remains necessary (and, of course, sufficient) for Nash-solvability in the zero-sum case
too. This result was obtained earlier: it follows easily from the so-called Bottleneck Extrema Theorem by Edmonds and
Fulkerson [12]; see also [20].

Here we suggest a new (and much simpler) proof of the general result. We introduce a concept of lexicographically safe
(lexsafe) pure strategy of a player in a given game (g, u). This is a refinement of the standard concept of a safe (maxmin)
strategy that maximizes the worst possible outcome, while the lexsafe strategy realizes the lexicographical maximum of
all possible outcomes. Thus, the lexsafe strategies are most safe, but may be not rational. (For comparison, recall that NE
may be not Pareto optimal.) One can view this as a price of stability.

We prove that a NE appears whenever one player applies a lexsafe strategy, while the opponent chooses some special
best response to it. Yet, if both players choose their lexsafe strategies then the obtained pair may be not a NE.

Thus, there are two types of NE: lexsafe for one or for the other player. These NE may coincide. For example, it happens
in the zero-sum case, or when the considered game has a unique NE.

By definition, lexsafe strategies of a player do not depend on the payoff of the opponent; the player may be just
unaware of it. This is an interesting property important for applications.

In the proof given in [21,23] the lexsafe strategies were implicitly constructed by an iterative algorithm increasing
strategies in a lexicographical order. Here we suggest a simple polynomial algorithm searching for a lexsafe strategy of a
player and for a corresponding NE. Such algorithm is obvious when a game form g is given explicitly. Yet, in applications
g is frequently given by an oracle O, which size may be logarithmic in the size of g . We assume that this oracle solves in
polynomial time any two-person game (g, u0) in which payoff u0 is zero-sum and takes only values ±1; oracle O tells us
who wins and determines a winning strategy. Based on this assumption, we provide an algorithm computing a lexsafe
NE in an arbitrary game (g, u) in time polynomial in the size of O.

In the last section we consider four examples of such oracles from different areas of game theory and show that all
our satisfy the above assumption.

. Basic definitions

.1. Game forms

In this paper we consider finite, not necessarily zero-sum, normal form games of two players, Alice and Bob. They
ave finite sets of strategies X and Y , respectively. A game form is a mapping g : X × Y → Ω , where Ω is a finite set
f outcomes. Several examples are given in Fig. 1, where game forms are represented by tables with rows, columns, and
ntries labeled by x ∈ X , y ∈ Y , and ω ∈ Ω , respectively.
Mapping g is assumed to be surjective, but not necessarily injective, that is, an outcome ω ∈ Ω may occupy an arbitrary

rray in the table of g .
A pair of strategies (x, y) is called a situation (term ‘‘strategy profile’’ is also used in literature). Sets g(x) = {g(x, y) |

∈ Y } and g(y) = {g(x, y) | x ∈ X} are called the supports of strategies x ∈ X and y ∈ Y , respectively.
A strategy is called minimal if its support is not a proper superset of the support of any other strategy. For example,

n g6 the first strategies of Alice and Bob are minimal, while the second are not; in the remaining eight game forms all
trategies are minimal. Moreover, any two strategies of a player have distinct supports, for every game form, except g7.
A situation (x, y) is called simple if g(x) ∩ g(y) = {g(x, y)}. For example, all situations of game forms g1, g2, g8, g9 are

imple (such game forms are called rectangular); in contrast, no situation is simple in g7; in g3 all are simple, except three
n the main diagonal; in g4 all are simple, except the central one; in g6 all are simple, except one with the outcome ω2.

2.2. Payoffs and games in normal form

Payoffs of Alice and Bob are defined by real valued mappings u : Ω → R and w : Ω → R, respectively. We assume
that both players are maximizers. Triplet (g; u, w) defines a finite two-person game in normal form, or just a game, for
short. Game (g; u, w) and payoffs (u, w) are called:

• zero-sum if u + w = 0, that is, u(ω) + w(ω) = 0 for all ω ∈ Ω;
• zero-sum ±1 (or just ±1, for short) if, in addition, functions u and w take only two values 1 and −1.

Alternatively, a ±1 payoff can be given by a partition Ω = ΩA ∪ΩB, where ΩA and ΩB are the outcomes preferred by
Alice and by Bob, respectively:

u(ω) = 1, w(ω) = −1 for ω ∈ ΩA and u(ω) = −1, w(ω) = 1 for ω ∈ ΩB.
For a ±1 game notation (g;ΩA,ΩB) will be used along with (g; u, w).

54



V. Gurvich and M. Naumova Discrete Applied Mathematics 340 (2023) 53–68

t

2

Fig. 1. Nine game forms. Alice and Bob choose rows and columns, respectively. Forms g1 - g6 are tight, forms g7 - g9 are not; see Section 2.4 for
he definition.

.3. Nash equilibria and saddle points

Given a game (g; u, w), a situation (x, y) of its game form g : X × Y → A is called a Nash equilibrium (NE) if

u(g(x, y)) ≥ u(g(x′, y)),∀x′
∈ X, and w(g(x, y)) ≥ w(g(x, y′)),∀y′

∈ Y ;

that is, if neither Alice nor Bob can profit replacing her/his strategy provided the opponent keeps his/her one unchanged,
or in other words, if x is a best response for y and y is a best response for x. Note that a best response may be not unique.

This concept of solution was introduced in 1950 by John Nash [39,40]. In the zero-sum case, a NE is called a saddle
point. The latter concept was known much earlier; the former one is its natural extension to the non-zero-sum case.

Recall that a zero-sum game (g, u, w) has a saddle point if and only if maxmin and minmax are equal:

maxmin = max
x∈X

min
ω∈g(x)

u(ω); minmax = min
y∈Y

max
ω∈g(y)

u(ω); (1)

furthermore, maxmin < minmax if and only if (g; u, w) has no saddle point.

Remark 1. In [39,40] solvability in mixed strategies is studies. In contrast, we restrict the players to their pure strategies.
Such approach is considered, for example, in [1–5,7–9,14,21,23,26,27,30,32,34,36,37,42,44,45,47].

2.4. Solvability of game forms

A game form g is called: (i) Nash-, (ii) zero-sum-, (iii) ±1-solvable if the corresponding game (g; u, w) has a NE for (i)
all, (ii) all zero-sum, (iii) all zero-sum ±1 payoffs, respectively.

Implications (i) ⇒ (ii) ⇒ (iii) are obvious. In fact, all three properties are equivalent [21,23,25]. For (ii) and (iii) it was
shown earlier by Edmonds and Fulkerson [12]; see also [20]. The list of equivalent properties (i), (ii), (iii) was extended
in [21] as follows.

2.5. Replacing payoffs by preferences and eliminating ties

Given a game (g; u, w), we can assume wlog that payoffs u : Ω → R and w : Ω → R have no ties. Indeed, one can
get rid of all ties by arbitrarily small perturbations of values of u and w. In accordance with definition, the set of NE will
be either unchanged or reduced by such perturbations. We focus on Nash-solvability (in pure strategies), that is we study
conditions that guarantee the existence of a NE for arbitrary payoffs u and w. Hence, we can wlog assume that both,
55
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and w, have no ties and replace them by linear orders ≻A and ≻B over the set of outcomes Ω , which are called the
references of Alice and Bob, respectively. Thus, game (g; u, w) can be replaced by (g; ≻A,≻B) and it is enough to study

Nash-solvability of the latter. Although some NE of (g; u, w) may disappear in (g; ≻A,≻B), yet, Nash-solvability holds or
fails for both games simultaneously.

Remark 2. Above arguments would fail in the case of mixed strategies.

2.6. Tight game forms

Mappings φ : X → Y and ψ : Y → X are called response strategies of Bob and Alice, respectively. The motivation for
this name is clear: a player chooses his/her strategy as a function of a known strategy of the opponent. Standardly, gr(φ)
and gr(ψ) denote the graphs of mappings φ and ψ in X × Y .

Game form g : X × Y → Ω is called tight if
(l) g(gr(φ)) ∩ g(gr(ψ)) ̸= ∅ for any mappings φ and ψ .
It is not difficult to verify that in Fig. 1 the first six game forms (g1 − g6) are tight, while the last three (g7 − g9) are

not.
In [12,20,21,23,27] the reader can find several equivalent properties characterizing tightness. Here we recall some of

them.
(ll-A) For every response strategy φ : X → Y there exists a strategy y ∈ Y such that g(y) ⊆ g(gr(φ)).
(ll-B) For every response strategy ψ : Y → X there exists a strategy x ∈ X such that g(x) ⊆ g(gr(φ)).
It is not difficult to see that (l) and (ll-A) are equivalent [20,23]. Then, by transposing g , we conclude that (l) and (ll-B)

are equivalent as well. Hence, all three properties are equivalent. One can verify this for nine examples g1 − g9.
Properties (ll-A) and (ll-B) show that playing a zero-sum game (g; u, w) with a tight game form g Bob and Alice do not

need non-trivial response strategies but can restrict themselves by the standard ones, that is, by Y and X , respectively.
Given a game form g : X × Y → Ω , introduce on the ground set Ω of the outcomes two multi-hypergraphs A = A(g)

and B = B(g) whose edges are the supports of strategies of Alice and Bob, respectively:

A(g) = {g(x) | x ∈ X} and B(g) = {g(y) | y ∈ Y }.

Recall that distinct edges of a multi-hypergraph may contain one another or even coincide. Obviously, the edges of A
and B pairwise intersect, that is, g(x) ∩ g(y) ̸= ∅ for all x ∈ X and y ∈ Y . Furthermore, g is tight if and only if

(lll) hypergraphs A(g) and B(g) are dual, that is, satisfy also the following two (equivalent) properties:

lll-A) for every ΩA ⊆ Ω such that ΩA ∩ g(y) ̸= ∅ for all y ∈ Y there exists an x ∈ X such that g(x) ⊆ ΩA;
lll-B) for every ΩB ⊆ Ω such that ΩB ∩ g(x) ̸= ∅ for all x ∈ X there exists an y ∈ Y such that g(y) ⊆ ΩB.

Remark 3. Verification of tightness of an explicitly given game form is an important open problem. No polynomial
algorithm is known. A quasi-polynomial one was suggested in [13]; see also [29].

3. Tightness and solvability

Let us recall an old theorem.

Theorem 1 ([21,23]). The following properties of a game form are equivalent: (i) Nash-, (ii) zero-sum-, (iii) ±1-solvability, and
(iv) tightness.

Proof. As we already mentioned, implications (i) ⇒ (ii) ⇒ (iii) are obvious.
Also (iii) ⇒ (iv) is easily seen. Indeed, assume for contradiction that a game form g is not tight. Then, there exists a

response strategies φ : X → Y and ψ : Y → X of Bob and Alice such that g(gr(φ))∩ g(gr(ψ)) = ∅. Then, we can partition
Ω into two sets of outcomes ΩA and ΩB (winning for Alice and Bob, respectively) in such a way that g(gr(φ)) ⊆ ΩB and
g(gr(ψ)) ⊆ ΩA. (Note that for tight g this would not be possible.) Then, −1 = maxmin < minmax = 1 in the obtained
±1 game (g;ΩA,ΩB) and, hence, it has no saddle point.

The inverse implication (iii) ⇐ (iv), (as well as (ii) ⇐ (iv), which looks stronger) are proven similarly; see [12,20].
Assume that a zero-sum game (g; u, w) has no saddle point. Then, (1) fails and maxmin < minmax. Consider arbitrary
best response strategies φ : X → Y and ψ : Y → X of Bob and Alice, respectively. Obviously, g(gr(φ)) ∩ g(gr(ψ)) = ∅

nd, thus, g is not tight.
The last claim means that a tight game form is SP-solvable. Moreover, it has a simple SP situation in minimal

trategies [23].
To finish the proof of the theorem it only remains to show implication (i) ⇐ (iv), that is, tightness implies Nash-

olvability. First, this was done in [21], then, with more details, in [23]. Several different proofs appeared later [3,5,
1,27,30]. In the next section we suggest a new (and shortest) proof based on an important general property of dual

ulti-hypergraphs.
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. Lexicographical theorem for dual multi-hypergraphs

.1. Summary

Let A and B be an arbitrary pair of finite dual multi-hypergraphs on a common ground set Ω . Each of them may have
embedded or equal edges. An edge is called containment minimal (or just minimal, for short) if it is not a strict superset
of another edge. (Note that minimal edges may still be equal.) If A and B are dual then

(j) A ∩ B ̸= ∅ for every pair A ∈ A and B ∈ B;
(jj) if A is minimal then for every ω ∈ A there exists a (minimal) B ∈ B such that A ∩ B = {ω}.

We will extend claim (jj) as follows. A linear order ≻ over Ω uniquely defines a lexicographic order ≻ℓ over the
power set 2Ω .

jjj-A) Let A be a lexicographically maximal (lexmax) edge of A. Then, edge A is minimal in A and for every ω ∈ A there
exists a (minimal) edge B ∈ B such that A ∩ B = {ω} and ω ⪰ ω′ for each ω′

∈ B.

By swapping A,A and B,B, we obtain the dual statement (jjj-B).
These two statements form the lexicographical theorem for dual multi-hypergraphs. To formulate it accurately, we will

need a few definitions.

4.2. Lexicographical orders over the subsets.

A linear order ≻ over a set Ω uniquely determines a lexicographical order ≻ℓ over the power set 2Ω (of all subsets
of Ω) as follows. Roughly speaking, the more small elements are out of a set — the better it is. In particular, Ω ′

≻ℓ Ω
′′

whenever Ω ′
⊂ Ω ′′ and, hence, the empty set ∅ ⊂ Ω is the best in 2Ω .

emark 4. Also {ω′
} ≻ℓ {ω′, ω′′

} for any ω′, ω′′
∈ Ω and order ≻, although set {ω′, ω′′

} gives a chance for a better
utcome ω′′ if ω′

≺ ω′′; see game form g6 in Fig. 1 and Section 6.2 for more details.

More precisely, to compare two arbitrary subsets Ω ′,Ω ′′
⊆ Ω consider their symmetric difference ∆ = (Ω ′

\Ω ′′) ∪

Ω ′′
\Ω ′). Clearly, ∆ ̸= ∅ if and only if sets Ω ′ and Ω ′′ are distinct. Let ω be the minimum with respect to ≻ element in

. If ω ∈ (Ω ′
\Ω ′′) then Ω ′′

≻ℓ Ω
′; if ω ∈ (Ω ′′

\Ω ′) then Ω ′
≻ℓ Ω

′′.
We can reformulate this definition equivalently as follows. Without loss of generality (wlog), set Ω = {ω1, . . . , ωp}

nd assume that ω1 ≺ · · · ≺ ωp; assign the negative weight w(ωi) = −2k−i to every ωi ∈ Ω , and set w(S) =
∑

ω∈S w(ω)
or each subset S ⊆ Ω . Then, Ω ′

≻ℓ Ω
′′ if and only if w(Ω ′) > w(Ω ′′).

Denote by supp(S) the 0,1-vector (s1, . . . , sk), where si = 1 if and only if ωi ∈ S. Then obviously, Ω ′
≻ℓ Ω

′′ if and only
f supp(Ω ′) is less than supp(Ω ′′) in the standard lexicographical order.

.3. Dual multi-hypergraphs

Two finite multi-hypergraphs A and B on the common ground set Ω are called dual if (j) holds: A ∩ B ̸= ∅ for every
air A ∈ A and B ∈ B, and also (jv-A) for each BT

⊆ Ω such that BT
∩ B ̸= ∅ for every B ∈ B there exists an A ∈ A such

hat A ⊆ BT .
If (j) and (jv-A) both hold we say that A is dual to B and use notation A = Bd. Swapping A,A and B,B in (jv-A) we

btain (jv-B) and an equivalent definition of duality, that is, (j) and (jv-A) hold if and only (j) and (jv-B) hold. In other
ords, A = Bd if and only if B = Ad. So we just say that multi-hypergraphs A and B are dual.

emark 5. Dual multi-hypergraphs have numerous applications and appear in different areas under different names,
uch as ‘‘clutters’’ and ‘‘blockers’’ [12] or DNFs and CNFs of monotone Boolean functions [10].

.4. Lexicographical theorem

Claims (j) and (jj) are well-known [10]. Actually, (j) is required by the definition of duality and (jj) is obvious. Indeed,
f (jj) fails then edge A cannot be minimal, since its proper subset A \ {ω} would still intersect all B ∈ B.

Our main result is statement (jjj-A). Fix an arbitrary order ≻ over Ω and find a lexmax edge AL
∈ A, that is, one

maximal with respect to the lexicographical order ≻ℓ over 2Ω . Note that such AL may be not unique but all lexmax edges
are equal. The lexicographic theorem is formulated as follows:

Theorem 2. A lexmax edge AL is minimal in A. Furthermore, for every ω∗
∈ AL there exists a (minimal) edge BM

∈ B such
that AL

∩ BM
= {ω∗

} and ω∗
≻ ω for each ω ∈ BM

\ {ω∗
}.

Proof. A lexmax edge must be minimal, since a set is strictly less than any its proper subset in order ≻ℓ.
Assume for contradiction that there exists an ω∗

∈ AL such that for every (minimal) B ∈ B satisfying (jj), B∩AL
= {ω∗

},
there exists an ω ∈ B such that ω ≻ ω∗. Clearly, this assumption holds for every B0

∈ B if it holds for each minimal
B0

∈ B. Let us show that it contradicts the lexmaximality of AL. To do so partition all edges B ∈ B into two types:
57
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(a) there is an ω ∈ B ∩ AL distinct from ω∗;
(b) B ∩ AL

= {ω∗
}.

In case (b), by our assumption, there is an ω ∈ B such that ω ≻ ω∗.
In both cases, (a) and (b), choose the specified ω from B, thus, getting a transversal BT . By (jv-A), there exists an A ∈ A

uch that A ⊆ BT and, hence, A ⪰ℓ BT . Furthermore, by construction, BT
≻ℓ AL. Indeed, ω∗

̸∈ BT and it is replaced in BT by
ome larger elements, ω ≻ ω∗, in case (b), while all other elements of BT , if any, belong to AL

\ {ω∗
}, according to case (a).

Thus, by transitivity, A ≻ℓ AL. Yet, by assumption of the theorem, AL is a lexmax edge of A, which is a contradiction. □

.5. Sperner hypergraphs

A multi-hypergraph is called Sperner if no two of its distinct edges contain one another; in particular, they cannot be
qual. In this case, we have a hypergraph rather than multi-hypergraph. For a multi-hypergraph there exists a unique
ual Sperner hypergraph. If A and B are dual and Sperner then Add

= A and Bdd
= B; furthermore ∪A∈AA = ∪B∈BB = Ω .

n general, for multi-hypergraphs, ∪A∈AA and ∪B∈BB may be different subsets of Ω .

emark 6. Here we assume that the reader is familiar with basic notions related to monotone Boolean functions, in
articular, with DNFs and duality. An introduction can be found in [10, Sections 1, 3 and 4].
It is well known [10] that (dual) multi-hypergraphs are in one-to-one correspondence with (dual) monotone DNFs:

prime) implicants of the latter correspond to (minimal) edges of the former. Furthermore, Sperner hypergraphs corre-
pond to irredundant DNFs. However, we do not restrict ourselves to this case. Although the lexicographical theorem
ould not lose much but its applications to Nash-solvability would.

. Determining edges AL and BM of Theorem 2 in polynomial time.

.1. Preliminaries

Edges A and B mentioned in (jjj-A) can be found in polynomial time. The problem is trivial when multi-hypergraphs
and B are given explicitly. We will solve it when only A is given, and not explicitly, but by a polynomial containment

racle. For an arbitrary subset ΩA ⊆ Ω this oracle answers in polynomial time the question Q (A,ΩA): whether ΩA
ontains an edge A ∈ A.
By duality of A and B, we have A ̸⊆ ΩA for all A ∈ A if and only if B ⊆ ΩB = Ω \ΩA for some B ∈ B. In other words,

question Q (A,ΩA) is answered in the negative if and only if Q (B,ΩB) is answered in the positive. Thus, we do not need
two separate oracles for A and B; it is sufficient to have one, say, for A.

5.2. Determining a lexmax edge AL in polynomial time.

Recall that multi-hypergraph A may contain several lexmax edges AL, but they are all equal. Fix an arbitrary linear
order ≻ over Ω . Wlog we can assume that Ω = {ω1, . . . , ωp} and ω1 ≺ · · · ≺ ωp.

Step 1: Consider Ω1
t = {ωt , . . . , ωp} and, by asking question Q (A,Ω1

t ) for t = 1, . . . , p, find the maximum t1 for which
the answer is still positive. Then, ωt1 belongs to AL, while ω1, . . . , ωt1−1 do not.

Step 2: Consider Ω2
t = {ωt1 , ωt1+t , . . . , ωp} and, by asking question Q (A,Ω2

t ) for t = 1, . . . , p− t1, find the maximum
t2 for which the answer is still positive. Then, ωt1 , ωt1+t2 ∈ AL, while ωt ̸∈ AL for any other t < t1 + t2.

Step 3: Consider Ω3
t = {ωt1 , ωt1+t2 , ωt1+t2+t , . . . , ωp} and, by asking question Q (A,Ω3

t ) for t = 1, . . . , p − (t1 + t2),
find the maximum t3 for which the answer is still positive. Then, ωt1 , ωt1+t2 , ωt1+t2+t3 ∈ AL, while ωt ̸∈ AL for any other
< t1 + t2 + t3; etc.
This procedure will produce a lexmax edge AL in at most p polynomial iterations. Note that on each step i we can

peed up the search of ti by applying dichotomy.

.3. Determining an edge BM from Theorem 2 .

First, find a lexmax edge AL
∈ A and choose an arbitrary ω∗

∈ AL. We look for an edge BM
∈ B such that AL

∩BM
= {ω∗

}

nd ω∗
≻ ω for every ω ∈ BM

\ {ω∗
}. In other ‘‘words’’,

BM
⊆ ΩB = Ω \ [(AL

\ {ω∗
}) ∪ {ω | ω ≻ ω∗

}].

By Theorem 2, such BM exists and, hence, the oracle answers Q (B,ΩB) in the positive, or equivalently, Q (A,Ω \ΩB)
in the negative. We could take any BM

∈ B such that BM
⊆ ΩB. Yet, multi-hypergraph B is not given explicitly. To get BM

we need ‘‘to minimize’’ ΩB. To do so, let us delete its elements one by one in some order until we obtain a minimum set
Ω∗

B for which the answer to Q (A,Ω \Ω∗

B ) is still negative, that is, answers to Q (A,Ω \ (Ω∗

B \ {ω})) become positive for
every ω ∈ Ω∗

B . Then, we set BM
= Ω∗

B . Again we can speed up the procedure by applying dichotomy.
Note that the above reduction procedure may be not unique, since we can eliminate elements of Ω \ΩB in an arbitrary

order. Thus, in contrast to AL, there may be several not equal edges BM satisfying all conditions of Theorem 2.
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. Lexicographically safe NE in games with tight game forms

.1. Summary

First, we apply Theorem 2 to finish the proof of Theorem 1. It remains to show that (i) ⇐ (iv), that is, tightness implies
ash-solvability. In other words, a game (g; u, w) has a NE for any payoffs u and w whenever game form g is tight. The
roof is constructive: we will obtain two special types of NE.
Given g and u, choose a lexmax strategy x ∈ X of Alice. By Theorem 2, there is a strategy y ∈ Y of Bob such that

x, y) is a NE. By definition, y must be a best response to x such that x is also a best response to y. By Theorem 2, the
btain situation (x, y) is simple and both strategies, x and y are minimal. More precisely, x must be minimal, while y can
e chosen minimal. These NE will be called lexsafe NE of Alice and the set of these NE will denoted by NE-A. Similarly, we
efine a set NE-B of Bob’s lexsafe NE.

emark 7. We assume that both players are maximizers and adjective ‘‘lexsafe’’ can be replaced by ‘‘lexmax’’. If both
layers are minimizers then it can be replaced by ‘‘lexmin’’. In the zero-sum case Alice is the maximizer, while Bob is the
inimizer. Flexible term lexsafe may replace both, lexmax or lexmin.

Results of Section 5 provide a polynomial algorithm determining at least one NE from NE-A and at least one from NE-B
which may coincide) in a given game (g; u, w) with a tight game form g . This is trivial when g is given explicitly. Yet,
he algorithm works when one of two multi-hypergraphs A(g) or B(g) is given by a polynomial containment oracle.

.2. Lexicographically safe strategies of players

Given g and preference ≻A of Alice, let us introduce the lexicographical pre-order over Alice’s strategies x ∈ X as
ollows. Consider lexicographical order ≻

ℓ
A over 2Ω defined by the linear order ≻A over Ω . The larger is the support

(x) ⊆ Ω in order ≻
ℓ
A, the safer is strategy x for Alice, while strategies with the same support are equally safe. Alice’s

trategies that maximize support g(x) in order ≻
ℓ
A will be called her lexmax (or lexsafe) strategies.

In particular, all lexmax strategies have the same support.
Furthermore, a lexsafe strategy is minimal. Indeed, x is safer than x′ whenever g(x) ⊂ g(x′) and containment is strict.
Note also that Alice’s lexsafe strategies are defined by g and ≻A, while Bob’s preference ≻B is irrelevant. Alice may be

ven unaware of it, which is important for applications.
Similarly, using y ∈ Y and ≻B instead of x and ≻A, we define Bob’s lexsafe strategies. Respectively, they depend only

on g and ≻B, while ≻A is irrelevant.
The concept of a lexsafe strategy can be viewed as a refinement of the classical concept of a safe (maxmin) strategy.

he latter optimizes the worst case scenario outcome, while lexsafe strategies optimize the whole set of outcomes in the
exicographical order defined above.

Thus, lexsafe strategies are safest, but sometimes may be not rational. For example, let g(x) = {ω}, g(x′) = {ω,ω′
}

and ω ≺A ω
′. Then x ≻A x′, although strategy x′ is better for Alice than x. Indeed, x′ gives her a chance to obtain the better

outcome ω′, while x excludes ω′ and ensures ω; see Remark 5.
Consider a preference over Ω such that outcomes ω,ω′

∈ Ω are, respectively, the worst and the best outcomes for
oth Alice and Bob simultaneously. Consider a game form g : X × Y → Ω having two strategies x∗

∈ X and y∗
∈ Y such

hat g(x, y) = ω if and only if x = x∗ or y = y∗ and g(x, y) = ω′ otherwise. Then, x∗ and y∗ are the only lexsafe strategies
f Alice and Bob; furthermore, situation (x∗, y∗) is a unique lexsafe NE, but outcome g(x∗, y∗) = ω is worse than ω′ for
oth players. One can view this as a price of stability. For comparison, recall that NE may be not Pareto optimal.

.3. Lexsafe Nash equilibria in games with tight game forms

Recall that game form g : X × Y → Ω is tight if and only if its hypergraphs A = A(g) = {g(x) | x ∈ X} and
= B(g) = {g(y) | y ∈ Y } are dual.
Given a game (g; ≻A,≻B) with a tight game form g , choose any lexsafe strategy xL of Alice. By Theorem 2 it is minimal.

et us show that there exists a strategy yM of Bob such that (xL, yM ) is a NE. By definition, yM is a best response to xL, that
s, g(xL, yM ) ⪰B g(xL, y) for any y ∈ Y . (Note, however, that the preference is not strict, because for some y two outcomes
ay coincide: g(xL, yM ) = g(xL, y).) Let us apply Theorem 2 setting

g(xL) = AL, g(yM ) = BM , g(xL, yM ) = ω∗,

and conclude that there exists a (minimal) strategy yM such that xL, in its turn, is a best response to yM . Thus, (xL, yM ) is
a NE. Theorem 1 is proven.

Moreover, we can strengthen it summarizing remarkable properties of the obtained NE. Recall that in Theorem 2 both
edges AL and BM are minimal and AL

∩ BM
= {ω∗

}. Hence, for the obtained NE (xL, yM ) both strategies xL and yM are
inimal and situation (xL, yM ) is simple, that is, g(xL)∩g(yM ) = {ω∗

}; see [23]. More precisely, X L must be minimal, while
Y L can be chosen minimal.
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Denote by X L the set of all lexmax strategies of Alice. By definition, they all have the same support. Let us fix xL ∈ X L

and denote by YM (xL) the set of all Bob’s best responses to xL. In fact, YM (xL) does not depend on xL provided xL ∈ X L.
Indeed, set g(xL) is unique, that is, the same for all xL ∈ XL and g(xL)∩ g(yM ) = ω∗ for all yM ∈ YM (x′L) and for all x′L

∈ X L.
Hence, yM (xL) is a best response of Bob to each Alice’s lexmax strategy. Denote by yM the set of all such best responses.

Thus, we obtain X L
⊆ X and YM

⊆ Y such that for any pair xL ∈ X L and yM ∈ YM situation (xL, yM ) is simple,
(xL, yM ) = {ω∗

}, and (xL, yM ) is a NE, because X L is a best response to YM and vice versa.
In other words, the direct product NE-A = (xL×yM ) ⊆ X×Y consists of simple NE situations corresponding to the same

outcome ω∗
∈ Ω . Furthermore, all strategy of X L are lexsafe and, hence, minimal, while YM contains minimal strategies.

We will call NE-A the box of Alice’s lexsafe equilibria.
By construction, X L depends only on Alice’s preference ≻A, while Bob’s preference ≻B is irrelevant and Alice may be

just unaware of it, which is important for applications. In contrast, YM is a set of some (special) Bob’s best responses to
X L, which are the same for all xL ∈ X L.

Swapping the players, we obtain the box of Bob’s lexsafe equilibria NE-B = (xM × yL) ⊆ X × Y with similar properties.
Thus, we can strengthen Theorem 1 as follows:

Theorem 3. Every game (g; ≻A,≻B) with a tight game form g has two non-empty boxes of lexmax equilibria NE-A = X L
×YM

and NE-B = XM
× Y L of Alice and Bob satisfying the above properties. □

Boxes NE-A and NE-B may intersect or even coincide. For example, this always happens in the zero-sum case. In this
case X L and XM are maxmin strategies of Alice, while YM and Y L are minmax strategies of Bob. More details can be found
in the first arXiv version of this paper [31]. NE-A and NE-B may be equal in the non-zero-sum case too. For example a
game may have a unique NE.

6.4. A pair of lexsafe strategies of Alice and Bob may be not a NE

For example, consider tight game form g1 in Fig. 1. Define preferences ≻A and ≻B such that ω2 ≻A ω1 ≻A ω3 and
ω2 ≻B ω3. It is easy to verify that x1 and y1 are lexsafe strategies of Alice and Bob, respectively. Yet, situation (x1, y1)
is not an NE. Alice can improve her result g1(x1, y1) = ω1 by switching to x2 and getting g(x2, y1) = ω2. Thus, two
lexsafe strategies, of Alice and Bob, do not form an NE. However, sets NE-A and NE-B are not empty, in accordance with
Theorem 3: NE-A = {(x2, y1)} and NE-B = {(x1, y2)}. The corresponding NE outcomes are ω1 and ω2, respectively.

Note that ω2 is the best outcome for both players if ω2 ≻B ω1. In this case NE-B is not Pareto-optimal.

Remark 8. One could conjecture that each player prefers lexsafe NE of the opponent to his/her own. Such result would
be similar to the analogous one from the matching theory; see, for example, [33]. There are two types of stable matchings
given by the Gale–Shapley algorithm [16], depending on men propose to women or vice versa. Yet, this conjecture is
disproved by the above example.

7. Computing lexsafe NE in polynomial time

If game form g : X × Y → Ω is given explicitly then to find all its NE is simple: one can just consider all situations
(x, y) ∈ X × Y one by one verifying Nash’s definition for each of them. Yet, in applications g is frequently given by an
oracle O such that size of g is exponential in size |O| of this oracle. Then, the straightforward search for NE suggested
above becomes not efficient. Four such oracles will be considered in the next section. The following three properties of
oracle O will allow us to construct an algorithm computing two lexsafe NE (from NE-A and NE-B, respectively) for a given
game (g; ≻A,≻B) with tight game form g = g(O) realized by O, in time polynomial in |O|.

(I) Oracle O contains explicitly all outcomes Ω of g .
(Yet, strategies x ∈ X and y ∈ Y are implicit in O; moreover, |X | and |Y | may be exponential in |O|.)

(II) The game form g = g(O) defined by O is tight.
(III) Every ±1 game (g(O);ΩA,ΩB) can be solved in time polynomial in |O|.

Requirement (III) needs a discussion. By tightness of g , exactly one of the following two options holds:

(a) there exists x ∈ X with g(x) ⊆ ΩA (Alice wins);
(b) there exists y ∈ Y with g(y) ⊆ ΩB (Bob wins).

Note that (a) (respectively, (b)) holds if and only if the monotone Boolean function corresponding to multi-hypergraph
A(g) (respectively, B(g) takes value 1; see Remark 6.

To solve a ±1 game we determine which option, (a) or (b), holds and output a winning strategy, x or y, respectively.
Note that it is possible to output a minimal winning strategy whenever (III) holds. Indeed, suppose Alice wins and we

output her winning strategy x, with g(x) ⊆ ΩA. Reduce ΩA by one outcome ω by moving it to ΩB, solve the obtained ±1
game, and repeat the procedure for all ω ∈ Ω . If Bob wins in all obtained games then x is already minimal. Otherwise
A
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e can move an outcome ω from ΩA to ΩB and Alice still wins. Repeating, we obtain a minimal winning strategy of Alice
(in the original game) in at most |ΩA| steps. We can speed up the above procedure using dichotomy. The same works for
Bob.

Theorems 1–3 immediately imply the following statement.

Theorem 4. Given an oracle O satisfying requirements (I,II,III), a lexsafe NE of Alice (of Bob) exists and can be computed in
time polynomial in |O|. □

8. Examples of oracles

8.1. Summary

Here we consider four types of oracles known in the literature and verify that all four satisfy requirements (I, II, III).
In Section 8.3 we consider game forms corresponding to positional (graphical) game structures with perfect informa-

tion, due to which Nash-solvability holds even in the n-person case. Yet, we substantially extend this class of game forms
by modifying the set of outcomes. The standard approach assumes that the set of outcomes Ω is formed by the terminal
vertices of the input directed graph Γ . Yet, Nash-solvability still holds if we extend Ω by redefining it as the set of all
trongly connected components of Γ . Yet, in this case Nash-solvability holds only if we restrict ourselves to 2-person
ames.
In Section 8.4 we introduce so-called Jordan game forms in which Alice and Bob connect two pairs of opposite sides

f the square. In Section 8.5 we consider monotone bargaining and in Section 8.6 veto voting schemes. In these three
xamples perfect information is not assumed, nevertheless requirements (I,II,III), tightness among them, hold.
Sections 8.3–8.6 can be read in an arbitrary order.

.2. Game forms and game correspondences

A game correspondence is defined as an arbitrary mapping G : X × Y → 2Ω \ {∅}, that is, G assigns a non-empty subset
f outcomes to each situation.
Given G, define a game form g ∈ G, choosing an arbitrary outcome g(x, y) ∈ G(x, y) for each situation (x, y). Conversely,

given a game form g : X × Y → Ω , define a game correspondence G setting G(x, y) = g(x)∩ g(y). Then, obviously, g ∈ G.
By property (jj) of Section 4, if at least one g∗

∈ G is tight then all g ∈ G are tight. In this case G is called tight too.
Moreover, all g ∈ G have the same Sperner reduced dual hypergraphs A0(g) and B0(g), same simple situations, and for
any u and w, the same sets of simple situations in NE-A and NE-B.

8.3. Deterministic graphical multi-stage game structures

Let Γ = (V , E) be a directed graph (digraph) whose vertices and arcs are interpreted as positions and moves,
respectively. Denote by VT the set of terminal positions (of out-degree zero) and by VA, VB the sets of positions of positive
out-degree controlled by Alice and Bob, respectively. We assume that V = VA ∪ VB ∪ VT is a partition of V .

A strategy x ∈ X of Alice (respectively, y ∈ Y of Bob) is a mapping that assigns to each position v ∈ VA (respectively,
v ∈ VB) a move from this position. An initial position v0 ∈ VA ∪ VB is fixed. Each situation (x, y) defines a unique walk in
Γ that begins in v0 and then follows the decisions made by strategies x and y. This walk P(x, y) is called a play. Each play
either terminates in VT or is infinite. In the latter case, it forms a ‘‘lasso’’: first, an initial path, which may be empty, and
then, a directed cycle (dicycle) repeated infinitely. (Indeed, since both players are restricted to their stationary strategies,
a move may depend only on the current position but not on previous positions and/or moves. Hence, if a play visits a
position twice then all further moves will be repeated as well.)

The (positional structure defined above can also be represented in normal form. We introduce a game form g : X×Y →

Ω , where, as before, Ω denotes a set of outcomes. Yet, there are several ways to define this set. One is to ‘‘merge’’ all
infinite plays (lassos) and consider them as a single outcome c , thus, setting Ω = VT ∪ {c}. This model was introduced by
Washburn [47] and called deterministic graphical game structure (DGGS).

The following generalization was suggested in [27]. Digraph Γ is called strongly connected if for any v, v′
∈ V there is

a directed path from v to v′ (and, hence, from v′ to v, as well). By this definition, the union of two strongly connected
digraphs with a common vertex is strongly connected. A vertex-inclusion-maximal strongly connected induced subgraph
of Γ is called its strongly connected component (SCC). In particular, each terminal position v ∈ VT is an SCC. It is both
obvious and well-known that any digraph Γ = (V , E) admits a unique decomposition into SCCs: Γ ω

= Γ [Vω] = (Vω, Eω)
for ω ∈ Ω , where Ω is a set of indices. Furthermore, partition V = ∪ω∈ΩVω can be constructed in time linear in the size
of Γ , that is, in (|V | + |E|).

Partitioning into SCCs has numerous applications; see [43,46] for more details. One more application was suggested
in [27]. For each ω ∈ Ω , contract the SCC Γ ω into a single vertex vω . Then, all edges of Eω (including loops) disappear and
we obtain an acyclic digraph Γ ∗

= (Ω, E∗). Set Ω can be treated as the set of outcomes. Each situation (x, y) uniquely
defines a play P = P(x, y). This play either comes to a terminal v ∈ V or forms a lasso. The cycle of this lasso is contained
T
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Fig. 2. Acyclic deterministic graphical game structures and corresponding game forms.

in an SCC ω of Γ . Each terminal is an SCC as well. In both cases an SCC ω ∈ Ω is assigned to the play P(x, y). Thus, we
btain a game form g : X × Y → Ω , which is the normal form of the multi-stage DGGS (MSDGGS) defined by Γ .
An SCC is called transient if it is not a terminal and contains no dicycles. Obviously, a transient SCC consists of a single

vertex and no play can result in it. Thus, it is not an outcome. For example, Ω = VT in any acyclic digraph, while each
remaining SCC is transient.

Proposition 1. In both cases, DGGS and MSDGGS, the corresponding oracles satisfy requirements (I, II, III).

Proof. Indeed, (I) holds since the SCCs, of a given digraph Γ can be generated in time linear in the size of Γ .
Both requirements, (II) and (III), for both oracles, DGGS and MSDGGS, can be verified simultaneously. Consider the

corresponding game forms g ′ and g and note that g ′ is obtained from g by merging some outcomes. Namely, all outcomes
corresponding to the non-terminal SCCs are replaced by a single outcome c . It is both obvious and well-known that
merging outcomes respects tightness. Hence, it is enough to verify (II) and (III) for MSDGGSs,

By Theorem 1, to verify (II) it is sufficient to prove ±1 solvability. For DGGS it was done in [47]; see also [5, Section
3], [2], [8, Section 12]. This result was extended to MSDGGS in [27]. Furthermore, all proofs in [27] were constructive, the
corresponding ±1 games were solved in time polynomial in the size of Γ , which implies (III).

For reader’s convenience, we briefly sketch here the proof of (II,III) from [27]. Consider a ±1 game (g;ΩA,ΩB) with
game form g = g(O) generated by a MSDGGS oracle O. We would like to apply Backward Induction, yet, digraph Γ may
have dicycles. So we modify Backward Induction to make it work in presence of dicycles. Recall that Ω is the set of SCCs
of Γ and Γ ∗

= (Ω, E∗) is acyclic. Consider an SCC Γ ′
= (V ′, E ′) in Γ that is not terminal, but each move (v′, v) from a

position v′
∈ V ′ either ends in a terminal v ∈ VT , or stays in Γ ′, that is, v, v′

∈ V ′. Obviously, such a SCC exists. Note that
it may be transient. In this case the standard Backward Induction is applicable.

Suppose that Γ ′ is not transient, in other words, it contains a dicycle. Wlog we can assume that ω ∈ ΩA, that is, Alice
wins if the play cycles in Γ ′. Then, Bob wins in a position v′

∈ V ′ if and only if he can force the play to terminate in ΩB,
while Alice wins in all other positions of V ′. Note that it is not necessary for Alice to force the play to come to a terminal
from ΩA, if the play cycles in Γ ′ Alice wins as well. Thus, every position of Γ ′ belongs either to ΩA or to ΩB. We make
all these positions terminal, by eliminating all edges E ′ of Γ ′, and repeat until the initial position v0 of Γ is evaluated.

This procedure proves solvability of game form g = g(O) (which is equivalent to its tightness (II), by Theorem 1),
moreover, a ±1 game (g;ΩA,ΩB) is solved in time linear in the size of O = Γ (which is (III)). □

Acyclic deterministic graphical game structures
A game form is called rectangular if all its situations are simple. It is shown in [22] that a game form g is generated

by a DGGS whose graph is a tree if and only if g is tight and rectangular. Two examples, Γ1 and Γ2 generating game tight
rectangular game forms g1 and g2 are given in Fig. 2; see also Fig. 1. More examples can be found in [25, Section 3], where
the above characterization is extended to the n-person case.

Acyclic DGGS Γ1 in Fig. 2 generates game form g1. Recall game (g1; u, w) from Section 6.4 with u(ω2) > u(ω1) >
u(ω3) and w(ω2) > w(ω3). Note that the Backward Induction NE (see [15,35] and also [26]) is NE-A and is not
Pareto-optimal. In general, this NE may differ from both, NE-A and NE-B.

Acyclic DGGS Γ in Fig. 2 generates game form g ; see also Fig. 1.
3 6
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Fig. 3. The Jordan game correspondence of the map of Wonderland.

Clearly, in absence of dicycles in Γ , the concepts of DGGS and MSDGGS coincide. It is also clear that an acyclic DGGS
is a special case of MSDGGS. Thus, properties (I, II, III) required from an oracle hold for both.

Cyclic deterministic graphical game structures
The outcomes of MSDGGS are all its non-transient SCCs. In particular, each terminal position is an outcome. Let us now

assume that every simple dicycle is a separate outcome (and each terminal remains an outcome as well). Such DGGSs,
called cyclic, were studied in [8]; some special cases were considered earlier [17–19]. Cyclic DGGS can also serve as oracles
generating game forms; see examples in [8, Figures 1 and 2]; compare examples 3 and 4 in [8, Figure 2] with game forms
g4 and g5 in Fig. 1.

Game forms generated by the cyclic DGGS may be not tight; see Figure 1 in [8]. In other words, property (II) fails for
the corresponding oracles, in general. Yet, it holds in some important special cases.

A digraph G = (V , E) is called symmetric if (v, v′) ∈ E whenever (v′, v) ∈ E. Cyclic DGGS on symmetric digraphs
are called symmetric. Symmetric Cyclic DGGSs satisfying (II) are called solvable and explicitly characterized in [8, sections
1–3 and Theorems 1–3]. It follows from results of [8] that (III) also holds for solvable cyclic symmetric DGGS. Hence,
Theorem 4 is applicable.

8.4. Jordan oracle; choosing battlefields in Wonderland

Wonderland is a subset of the plane homeomorphic to the closed disc. Wlog, we can consider a square Q with the sides
N, E, S,W . Let us partition Q into areas Ω = {ω1, . . . , ωp} each of which is homeomorphic to the closed disc, too. Every
two distinct areas ωi, ωj ∈ Ω are either disjoint or intersect in a set homeomorphic to a closed interval that contains
more than one point. Equivalently, we can require that the borders of the areas in Q form a regular graph of degree 3.
(Note that four vertices of the square are not vertices of this graph.) Two examples are given in Figs. 3 and 4.

Remark 9. Consider game form g5 in Fig. 1 and merge outcomes ω5 and ω6 in it getting g ′

5. (This operation respects
tightness). Note that g ′

5 ∈ G, where G is the game correspondence given in Fig. 3. See also [8, Figure 4], where g5 also
appears as the normal form of a cyclic game form.

The following interpretation was suggested in [30]. Two players, Alice Tweedledee and Bob Tweedledum, agreed to
have a battle. The next thing to do is to agree on a battlefield, which should be an area ω ∈ Ω . The strategies x ∈ X of
Alice are all (inclusion-minimal) subsets x ⊆ Ω connecting W and E, Respectively, the strategies y ∈ Y of Bob are all
(inclusion-minimal) subsets y ⊆ Ω connecting N and S.
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Fig. 4. Gray and white areas are in ΩA and ΩB , respectively. Alice wins.

Proposition 2. Any two such subsets x and y intersect.

Proof. It follows the Jordan curve theorem and the fact that all vertices in the square are of degree 3 (except its four
corners, which are of degree 2). Note that x and y might be disjoint if we allow vertices of degree 4 or more. □

Intersection x ∩ y may contain several areas of Ω . Thus, a game correspondence G : X × Y → 2Ω \ {∅} is defined.

Proposition 3. Game correspondence G is tight.

Proof. Again, it follows from the Jordan curve theorem and the assumption that all vertices in the square are of degree
3. Choose an arbitrary g ∈ G and consider a ±1 game (g;ΩA,ΩB) determined by a partition Ω = ΩA ∪ ΩB. Then, from
the following two options exactly one holds:

(a) areas from ΩA connect W and E; (b) areas from ΩB connect N and S. □
The above observations imply that Jordan oracle O satisfies requirements (I) and (II). It remains to verify (III),

Proposition 4. By using oracle O, one can decide whether (a) or (b) holds and find corresponding x or y, respectively, in time
linear in |O|.

Proof. Consider all areas from ΩB boarding N, then add all areas from ΩB boarding these areas, etc. Such iterations will
stop in time linear in |O| either reaching S (then, obviously, (b) holds) or not (then (a) holds, again by the Jordan curve
theorem). Moreover, in the first case we obtain a set of areas y′ from ΩB connecting N and S; in the second case — a set of
areas x′ from ΩA connecting W and E. The former strategy y′ is obtained explicitly; the latter one, x′, is easy to construct.
To do so, denote by Ω ′

B the set of areas obtained in the course of iterations. It does not reach S. Hence, the areas from ΩA
that border Ω ′

B connect W and E, by the Jordan curve theorem once more. □

This case is realized in Fig. 4; Alice wins.

Remark 10. It is not necessary to restrict ourselves by minimal strategies. In linear time we can reduce arbitrary strategy
(set) x′ of Alice to an inclusion-minimal set x connecting W and E, thus, getting minimal strategies of Alice. To do so, we
eliminate areas from x′ one by one until (a) still holds. We require inclusion-minimality of subsets x ∈ Ω just to reduce
the number of strategies (which may still remain exponential in |O|). Of course, the same is true for Bob’s strategies.

8.5. Monotone bargaining schemes

The following oracle was introduced in [30]. Two players, Alice and Bob, possess items A = {a1, . . . , am} and B =

{b1, . . . , bn}, respectively. Both sets are ordered: a1 ≺ · · · ≺ am and b1 ≺ · · · ≺ bn. Both players know both orders.
The direct product Ω = A × B = {(a, b) | a ∈ A, b ∈ B} is the set of outcomes.
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Alice’s strategies are monotone non-decreasing mappings x : A → B (that is, x(a) ≥ x(a′) whenever a > a′) showing
hat she is ready to exchange a for x(a) for any a ∈ A. Similarly, Bob’s strategies are monotone non-decreasing mappings
y : B → A (that is, y(b) ≥ y(b′) whenever b > b′) showing that he is ready to exchange b for y(b) for any b ∈ B.

It is not difficult to compute the numbers of strategies and outcomes:

|X | =

(
m + n − 1

m

)
, |Y | =

(
m + n − 1

n

)
; |Ω| = |A × B| = mn. (2)

Given a situation (x, y), an outcome (a, b) ∈ Ω is called a deal (in this situation) if x(a) = b and y(b) = a. Denote by
(x, y) ⊆ Ω the set of all deals in the situation (x, y). We will show that G(x, y) ̸= ∅. Yet, G(x, y) may contain several
eals.
This construction is called a monotone bargaining (MB) scheme. It can be viewed as an oracle O generating game

orrespondence G : X × Y → 2Ω \ {∅}. By (2), requirement (I) holds for O.
Note that G = Gm,n is uniquely defined by m and n. A game form g ∈ G is called an MB game form. For example, if
= n = 3 then |X | = |Y | = 3 and we obtain game form g4 in Fig. 1; game correspondence G(x, y) is given in [30, Figure

a].
The following interpretation was suggested in [30]. Alice and Bob are dealers possessing the sets of objects A and B,

espectively, and a deal (a, b) ∈ A × B means that they exchange a and b. They may be art-dealers, car dealers; or one of
hem may be just a buyer with a discrete budget. For example, A = {a1, . . . , am} and B = {b1, . . . , bn} may be paintings
r sculptures ordered in accordance with their age (not price or value).
To any pair of mappings x : A → B and y : B → A (not necessarily monotone non-decreasing) let us assign a bipartite

igraph Γ = Γ (x, y) on the vertex-set A ∪ B as follows: [a, b) (respectively, [b, a)) is an arc of Γ (x, y) whenever x(a) = b
respectively, y(b) = a).

Some visualization helps. Embed Γ (x, y) into a plane; putting ordered A and B in two parallel columns. Two arcs
orresponding to x may have a common head, but not tail. Furthermore, they cannot cross if mapping x is monotone
on-decreasing. Similarly for y. By construction, digraph Γ is bipartite, with parts A and B. Hence, every dicycle in Γ is
ven. There is an obvious one-to-one correspondence between the dicycles of length 2 in Γ (x, y) and the deals of G(x, y).

roposition 5. For each situation (x, y) its digraph Γ (x, y) contains at least one dicycle of length 2 (a deal) and cannot
ontain longer dicycles.

roof. For any initial vertex v ∈ A ∪ B, strategies x and y uniquely define an infinite walk from v, which is called a play.
ince sets A and B are finite and there are no terminals, this play is a lasso: it consists of an initial directed path, which
ay be empty, and a dicycle C repeated infinitely. Furthermore, C must be a dicycle of length 2 whenever mappings x
nd y are monotone non-decreasing. Indeed, if C is longer than 2 then crossing arcs appear and, hence, either x, or y, or
oth are not monotone, □

Consider a ±1 MB game (g;ΩA,ΩB), where g = g(O) is an MB game form generated by an MB scheme O. As we
already mentioned, requirement (I) holds for O. The following statement shows that (II) and (III) hold as well.

Proposition 6. Game form g = g(O) is tight and each ±1 MB game (g;ΩA,ΩB) can be solved in time polynomial in
|O| = mn.

The first part was already proven in [30]. Yet, here we provide a much shorter proof.

Proof. For the sake of simplicity, we will slightly abuse notation writing that both directed edges [a, b) and [b, a) are in
ΩA or in ΩB whenever the corresponding deal (a, b) is in ΩA or in ΩB, respectively.

Consider complete bipartite symmetric digraph Γ on m+ n vertices A = {a1, . . . , am}, B = {b1, . . . , bn}, and with 2mn
directed edges {[ai, bj), [bj, ai) | i = 1, . . . ,m; j = 1, . . . , n}. The following two statements are obvious:

(a) Alice wins if she has a monotone non-decreasing strategy x∗
: A → B such that [a, x∗(a)) ∈ ΩA for all a ∈ A.

(b) Bob wins if he has a monotone non-decreasing strategy y∗
: B → A such that [b, y∗(b)) ∈ ΩB for all b ∈ B.

Indeed, it is easily seen that x∗ and y∗ are the winning strategies of Alice and Bob, respectively. It is enough to show
that g(x∗, y) ∈ ΩA for any y ∈ Y . Recall the proof of Proposition 5: Fix x∗, choose an arbitrary y ∈ Y , and consider the
play P = P(x∗, y) beginning from an arbitrary initial position v ∈ A∪B. By Proposition 5, P is a lasso resulting in a 2-cycle
(a, b).

The corresponding deal (a, b) ∈ ΩA, in case (a), for any y, by the choice of x∗, and hence, Alice wins. Similarly,
g(x, y∗) ∈ ΩB in case (b) for any x ∈ X , by the choice of y∗, and Bob wins.

Obviously, (a) and (b) cannot hold simultaneously, since otherwise (a, b) ∈ ΩA ∩ ΩB, which is a contradiction, since
Ω = ΩA ∪ΩB is a partition.

Let us show that either (a) or (b) holds (in other words, g is tight, which implies (II)). The proof will be constructive:
we obtain either x∗ satisfying (a) or y∗ satisfying (b) in time polynomial in mn (which in its turn, implies (III)).

We will construct a play P by the following greedy iterative algorithm. Let a1 = a1 be an initial position of P . (We use
superscripts to number iterations.)
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If [a1, b) ∈ ΩB for all b ∈ B then Bob wins. (His winning strategy y∗ is defined by: y∗(b) = a1 for all b ∈ B. Then
y∗(b), b) ∈ ΩB for all b ∈ B and (b) holds.) Otherwise, denote by b1 the (unique) minimal b ∈ B such that [a1, b) ∈ ΩA.
hen, by definition, [b1, a1) ∈ ΩA too. Furthermore, by this choice of b1, we have: [b, a1) ∈ ΩB for all b ≺ b1, while
b1, a1) ∈ ΩA.

If [b1, a) ∈ ΩA for all a ⪰ a1 then Alice wins. (Her winning strategy x∗ is defined by: x∗(a) = b1 for all a ∈ A. Then
[a, x∗(a)) ∈ ΩA for all a ∈ A.) Otherwise, denote by a2 the (unique) minimal a ∈ A such that [b1, a) ∈ ΩB. Then, by
definition, [a2, b1) ∈ ΩB too. Furthermore, by the choice of a2, we have: [a, b1) ∈ ΩA for all a ≺ a2, while [a2, b1) ∈ ΩB.

The general kth step of this greedy recursion is as follows.
If [ak, b) ∈ ΩB for all b ⪰ bk−1 then Bob wins. (His winning strategy y∗ is defined by: y∗(b) = ai for each b such that

bi ≻ b ⪰ bi−1, for i = 1, . . . , k, assuming conventionally that b ≻ b0 holds for all b ∈ B).
Otherwise, denote by bk the (unique) minimal b ∈ B such that b ≻ bk−1 and [ak, b) ∈ ΩA. Then [bk, ak) ∈ ΩA too.
Furthermore, by the choice of bk, we have: [b, ak) ∈ ΩB for all b such that bk ≻ b ⪰ bk−1, while [bk, ak) ∈ ΩA.
If [bk, a) ∈ ΩA for all a ⪰ ak then Alice wins. (Her winning strategy x∗ is defined by: x∗(a) = bj for each a such that

aj+1
≻ a ⪰ aj, for j = 1, . . . , k, assuming conventionally that ak+1

≻ a holds for all a ∈ A.)
Otherwise, denote by ak+1 the (unique) minimal a ∈ A such that [bk, a) ∈ ΩB. Then [ak+1, bk) ∈ ΩB, too.
Furthermore, by the choice of ak+1, we have: [a, bk) ∈ ΩA for all a such that ak+1

≻ a ⪰ ak, while [ak+1, bk) ∈ ΩB.
After each iteration ak (respectively, bk) both Alice and Bob have winning moves in all positions a ≺ ak and b ⪯ bk−1

(respectively, a ⪯ ak and b ≺ bk). Since sets A and B are finite, the procedure will stop on some iteration either ak
∗

≺ am
or bk

∗

≺ bn, indicating that Bob or, respectively, Alice wins.
Furthermore, we obtain his or her winning strategy in time linear in mn.
The following slightly different procedure can be applied too. First, we start looking for a winning strategy x∗ for Alice.

Consider successively a1, a2, . . . and construct (again recursively and greedily) her monotone non-decreasing strategy x∗

as follows: x∗(ai) = bi such that [ai, bi) ∈ ΩA, bi ⪰ bi−1, and bi is the minimal element of B satisfying these two properties.
If this will work for all i = 1, . . . ,m then Alice wins and we obtain her winning strategy x∗ satisfying (a). Otherwise, if
the procedure stops on some i < m (no required bi exists for ai) then Bob wins. His winning strategy y∗ satisfying (b)
is defined as follows: y∗(b) = ai for all b such that bi−1

⪯ b ≺ bi, where ai is the smallest a such that x∗(a) = bi, for
i = 1, 2, . . . By convention, b0 ≺ b for all b ∈ B. □

Thus, requirements (I,II,III) hold for the MB schemes and, hence, Theorem 4 is applicable.

8.6. Veto voting schemes

Two voters (players), Alice and Bob choose among candidates (options, outcomes)Ω = {ω1, . . . , ωp}. They are assigned
some positive integer veto powers and given µA and µB veto cards, respectively. Each candidate ω ∈ Ω is assigned an
integer positive veto resistance λω . We assume that

µA + µB + 1 = λω1 + · · · + λωp . (3)

A strategy of a voter is an arbitrary distribution of her/his veto cards among the candidates. Given a pair of strategies
x and y, a candidate ω ∈ Ω who got at least λω veto cards (from Alice and Bob together) is vetoed. From the set G(x, y)
of all not vetoed candidates one g(x, y) ∈ G(x, y) is elected. By (3), G(x, y) ̸= ∅. Thus, we obtain a veto voting (VV) scheme
O, VV game form g = g(O), and VV game correspondence G = G(O); see, for example, [24],[38, Chapter 6],[41, Chapter
5] for more details.

By construction, VV schemes are oracles satisfying (I). For example, game form g3 in Fig. 1 corresponds to the VV
scheme defined by

µA = µB = λω1 = λω2 = λω3 = 1.

Let us show that requirements (II) and (III) also hold for VV schemes.

Proposition 7. Each game form g defined by a VV scheme satisfying (3) is tight. Furthermore, every ±1 game (g;ΩA,ΩB)
can be solved in time linear in |O| = log(µAµB

∏
ω∈Ω λω).

Proof. To see this, consider a ±1 game (g;ΩA,ΩB). By (3), from two options, (a) Alice can veto ΩB and (b) Bob can veto
ΩA, exactly one holds. Alice or Bob wins in case of (a) or (b), respectively. Given numbers µA, µB, and λω, ω ∈ Ω , one
can decide in linear time whether (a) or (b) holds. In each case the winning strategy of Alice or Bob is straightforward:
just veto all opponent’s candidates, ΩB or ΩA, respectively. □

Thus, the VV oracles satisfy (I,II,III) and Theorem 4 is applicable.
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.7. Tight game correspondences and forms of arbitrary monotone properties

The most general setting is defined as follows. Given a finite ground set Ω , consider a family of its subsets P ⊆ 2Ω .
tandardly, we call P a property and say that a subset Ω ′

⊆ Ω satisfies P or not if Ω ′
∈ P or Ω ′

̸∈ P , respectively.
roperty P is called inclusion monotone non-decreasing (or simplymonotone, for short) ifΩ ′′

∈ P impliesΩ ′
∈ P whenever

′′
⊆ Ω ′

⊆ Ω . We restrict ourselves to monotone properties.
Define the sets of strategies X of Alice and Y of Bob as follows:
x ∈ X is any (inclusion minimal) subset ΩA ⊆ Ω such that ΩA ∈ P;
y ∈ Y is any (inclusion minimal) subset ΩB ⊆ Ω such that Ω \ΩB ̸∈ P .
The restriction in parenthesis does not matter, it can be waved or kept. In the latter case, sets X and Y are significantly

reduced.
Define a game correspondence G = G(P) by setting G(x, y) = x∩ y. It is both obvious and well-known that G(x, y) ̸= ∅

for any x ∈ X, y ∈ Y and, moreover, G is tight. Hence, any game form g ∈ G is tight too.
Thus, (I) and (II) hold automatically whenever a monotone property P is given by an oracle O(P). Yet, (III) must be

equired in addition. In other words, O(P) must be a polynomial membership oracle, which for a given subset Ω ′
⊆ Ω ,

ecides if Ω ′
∈ P in time polynomial in |Ω| + |O(P)|.

It is easily seen that this general setting includes in particular all four examples of oracles given in this section before;
ee more examples in [6,28].
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