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Examples of oracles

Summary

Here we consider four types of oracles known in the literature
and verify that all four satisfy requirements (I, II, III).

J. Game forms corresponding to positional (graphical) game structures with
perfect information, for which Nash-solvabilty holds even in the n-person case.

We extend this class of such game forms by modifying the set of outcomes.
The standard approach assumes that the set of outcomes Ω is formed by the
terminal vertices of the input directed graph Γ.

Nash-solvability still holds if we extend Ω by redefining it as the set of all
strongly connected components of Γ.

But only if we restrict ourselves to 2-person games.
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JJ. So-called Jordan game forms in which Alice and Bob connect two pairs of
opposite sides of the square.

JJJ. Monotone bargaining Schemes

JV.Veto voting schemes.

In the last 3 examples perfect information is not assumed, nevertheless
requirements (I,II,III), tightness among them, hold.
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Game forms and game correspondences

A game correspondence is defined as an arbitrary mapping

G : X × Y → 2Ω \ {∅},

that is, G assigns a non-empty subset of outcomes to each situation.

Given G , define a game form g ∈ G , choosing an arbitrary outcome
g(x , y) ∈ G(x , y) for each situation (x , y).

Conversely, given a game form g : X × Y → Ω, define a game correspondence
G setting G(x , y) = g(x) ∩ g(y). Then, obviously, g ∈ G .

If at least one g∗ ∈ G is tight then all g ∈ G are tight.

In this case G is called tight too.

Moreover, all g ∈ G have the same Sperner reduced dual hypergraphs
A0(g) and B0(g), same simple situations, and for any u and w , the same sets
of simple situations in NE-A and NE-B.
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Deterministic graphical multi-stage game structures

Let Γ = (V ,E) be a directed graph (digraph) whose vertices and arcs are
interpreted as positions and moves, respectively. Denote by VT the set of
terminal positions (of out-degree zero) and by VA,VB the sets of positions of
positive out-degree controlled by Alice and Bob, respectively. We assume that
V = VA ∪ VB ∪ VT is a partition of V .

A strategy x ∈ X of Alice (respectively, y ∈ Y of Bob) is a mapping that
assigns to each position v ∈ VA (respectively, v ∈ VB) a move from this
position. An initial position v0 ∈ VA ∪ VB is fixed. Each situation (x , y) defines
a unique walk in Γ that begins in v0 and then follows the decisions made by
strategies x and y . This walk P(x , y) is called a play. Each play either
terminates in VT or is infinite. In the latter case, it forms a “lasso": first, an
initial path, which may be empty, and then, a directed cycle (dicycle) repeated
infinitely. (Indeed, since both players are restricted to their stationary
strategies, a move may depend only on the current position but not on previous
positions and/or moves. Hence, if a play visits a position twice then all further
moves will be repeated as well.)
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The (positional structure defined above can also be represented in normal form.
We introduce a game form g : X × Y → Ω, where, as before, Ω denotes a set
of outcomes. Yet, there are several ways to define this set. One is to “merge"
all infinite plays (lassos) and consider them as a single outcome c, thus, setting
Ω = VT ∪ {c}. This model was introduced by Washburn [Was90] and called
deterministic graphical game structure (DGGS).

The following generalization was suggested in [Gur18]. Digraph Γ is called
strongly connected if for any v , v ′ ∈ V there is a directed path from v to v ′

(and, hence, from v ′ to v , as well). By this definition, the union of two
strongly connected digraphs with a common vertex is strongly connected. A
vertex-inclusion-maximal strongly connected induced subgraph of Γ is called its
strongly connected component (SCC). In particular, each terminal position
v ∈ VT is an SCC. It is both obvious and well-known that any digraph
Γ = (V ,E) admits a unique decomposition into SCCs: Γω = Γ[V ω] = (V ω,Eω)

for ω ∈ Ω, where Ω is a set of indices. Furthermore, partition V = ∪ω∈ΩV
ω

can be constructed in time linear in the size of Γ, that is, in (|V |+ |E |).
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Partitioning into SCCs has numerous applications;
see [Sha81, Tar72] for more details.

One more application was suggested in [Gur18].

For each ω ∈ Ω, contract the SCC Γω into a single vertex vω.

Then, all edges of Eω (including loops) disappear and we obtain an acyclic
digraph Γ∗ = (Ω,E∗).

Set Ω can be treated as the set of outcomes.

Each situation (x , y) uniquely defines a play P = P(x , y).

This play either comes to a terminal v ∈ VT or forms a lasso.

The cycle of this lasso is contained in an SCC ω of Γ.

Each terminal is an SCC as well. In both cases an SCC ω ∈ Ω is assigned to
the play P(x , y).

Thus, we obtain a game form g : X × Y → Ω,
which is the normal form of the multi-stage DGGS (MSDGGS) defined by Γ.
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An SCC is called transient if it is not a terminal and contains no dicycles.

Obviously, a transient SCC consists of a single vertex and no play results in it.

Thus, it is not an outcome. For example, Ω = VT in any acyclic digraph,
while each remaining SCC is transient.

Proposition
In both cases, DGGS and MSDGGS, the corresponding oracles satisfy
requirements (I, II, III).
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Proof

Indeed, (I) holds since the SCCs, of a given digraph Γ

can be generated in time linear in the size of Γ.

Both requirements, (II) and (III), for both oracles, DGGS and MSDGGS, can
be verified simultaneously.

Consider the corresponding game forms g ′ and g and note
that g ′ is obtained from g by merging some outcomes.

Namely, all outcomes corresponding to the non-terminal SCCs are replaced by a
single outcome c.

It is both obvious and well-known that merging outcomes respects tightness.

Hence, it is enough to verify (II) and (III) for MSDGGSs.
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By our main Theorem, to verify (II) it is sufficient to prove ±1 solvability.

For DGGS it was done in [Was90]; see also [BG03], [AHMS08], [BGMS07].

This result was extended to MSDGGS in [Gur18].

Furthermore, all proofs in [Gur18] were constructive,
the corresponding ±1 games were solved in time
polynomial in the size of Γ, which implies (III).
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For your convenience, we briefly sketch here the proof of (II,III) from [Gur18].

Consider a ±1 game (g ; ΩA,ΩB) with game form g = g(O) generated by a
MSDGGS oracle O.

We would like to apply Backward Induction, yet, digraph Γ may have dicycles.

So we modify Backward Induction to make it work in presence of dicycles.

Recall that Ω is the set of SCCs of Γ and Γ∗ = (Ω,E∗) is acyclic.

Consider an SCC Γ′ = (V ′,E ′) in Γ that is not terminal,
but each move (v ′, v) from a position v ′ ∈ V ′ either ends in a terminal
v ∈ VT , or stays in Γ′, that is, v , v ′ ∈ V ′.

Obviously, such a SCC exists. Note that it may be transient.

In this case the standard Backward Induction is applicable.
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Suppose that Γ′ is not transient, in other words, it contains a dicycle.

Wlog we can assume that ω ∈ ΩA, that is, Alice wins if the play cycles in Γ′.

Then, Bob wins in a position v ′ ∈ V ′ if and only if he can force the play to
terminate in ΩB , while Alice wins in all other positions of V ′.

Note that it is not necessary for Alice to force the play to come to a terminal
from ΩA, if the play cycles in Γ′ Alice wins as well.

Thus, every position of Γ′ belongs either to ΩA or to ΩB .

We make all these positions terminal, by eliminating all edges E ′ of Γ′, and
repeat until the initial position v0 of Γ is evaluated.

This procedure proves solvability of game form g = g(O)

(which is equivalent to its tightness (II), by Theorem 1),
moreover, a ±1 game (g ; ΩA,ΩB) is solved in time
linear in the size of O = Γ (which is (III)).
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Acyclic deterministic graphical game structures

A game form is called rectangular if all its situations are simple. It is shown in
[Gur82] that a game form g is generated by a DGGS whose graph is a tree if
and only if g is tight and rectangular. Two examples, Γ1 and Γ2 generating
game tight rectangular game forms g1 and g2 are given in Figure 5; see also
Figure ??. More examples can be found in [Gur09], where the above
characterization is extended to the n-person case.
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Acyclic DGGS Γ1 in the above Figure generates game form g1.

Recall game (g1; u,w) from Introduction with

u(ω2) > u(ω1) > u(ω3) and w(ω2) > w(ω3).

Note that the Backward Induction NE (see [Gal53, Kuh53] and also [Gur17]) is
NE-A and is not Pareto-optimal.

In general, this NE may differ from both, NE-A and NE-B.

In absence of dicycles in Γ, the concepts of DGGS and MSDGGS coincide.

It is also clear that an acyclic DGGS is a special case of MSDGGS.

Thus, properties (I, II, III) required from an oracle hold for both.
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Cyclic deterministic graphical game structures

The outcomes of MSDGGS are all its non-transient SCCs.

In particular, each terminal position is an outcome.

Let us now assume that every simple dicycle is a separate outcome
(and each terminal remains an outcome as well).

Such DGGSs, called cyclic, were studied in [BGMS07];
some special cases were considered earlier [GG91, GG91a, GG92].

Cyclic DGGS can also serve as oracles generating game forms; [BGMS07];
compare examples 3 and 4 in [BGMS07] with game forms g4 and g5 from our 9
game forms given in Introduction.

Game forms generated by the cyclic DGGS may be not tight; see Figure 1 in
[BGMS07]. In other words, property (II) fails for the corresponding oracles, in
general. Yet, it holds in some important special cases.
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A digraph G = (V ,E) is called symmetric if (v , v ′) ∈ E whenever (v ′, v) ∈ E .

Cyclic DGGS on symmetric digraphs are called symmetric.

Symmetric Cyclic DGGSs satisfying (II) are called solvable and explicitly
characterized in [BGMS07].

It follows from results of [BGMS07] that (III) also holds for solvable cyclic
symmetric DGGS. Hence, main Theorem is applicable.
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Jordan oracle; choosing Battlefields in Wonderland

Wonderland is a subset of the plane homeomorphic to the closed disc.

Wlog, we can consider a square Q with the sides N,E , S ,W .

Let us partition Q into areas Ω = {ω1, . . . , ωp} each of which is homeomorphic
to the closed disc, too.

Every two distinct areas ωi , ωj ∈ Ω are either disjoint or intersect in a set
homeomorphic to a closed interval that contains more than one point.

Equivalently, we can require that the borders of the areas in Q form a regular
graph of degree 3.

(Note that four vertices of the square are not vertices of this graph.)
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Remark
Consider game form g5 from Introduction and merge outcomes ω5 and ω6 in
it getting g ′

5. (This operation respects tightness). Note that g ′
5 ∈ G , where G

is the game correspondence given in Figure 1. See also [BGMS07], where g5

also appears as the normal form of a cyclic game form.

Two examples are given in the Figures and 3.

Figure 1. The Jordan game correspondence of the map of Wonderland.
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The following interpretation was suggested in [GK18]. Two players, Alice
Tweedledee and Bob Tweedledum, agreed to have a battle. The next thing to
do is to agree on a battlefield, which should be an area ω ∈ Ω. The strategies
x ∈ X of Alice are all (inclusion-minimal) subsets x ⊆ Ω connecting W and E ,
Respectively, the strategies y ∈ Y of Bob are all (inclusion-minimal) subsets
y ⊆ Ω connecting N and S .
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Proposition
Any two such subsets x and y intersect.

Proof It follows the Jordan curve theorem and the fact that all vertices in the
square are of degree 3
(except its four corners, which are of degree 2).
Note that x and y might be disjoint if we allow vertices of degree 4 or
more.

Camille Jordan
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Intersection x ∩ y may contain several areas of Ω. Thus, a game
correspondence G : X × Y → 2Ω \ {∅} is defined.

Proposition
Game correspondence G is tight.

Proof

Again, it follows from the Jordan curve theorem and the assumption that all
vertices in the square are of degree 3. Choose an arbitrary g ∈ G and consider
a ±1 game (g ; ΩA,ΩB) determined by a partition Ω = ΩA ∪ ΩB . Then, from
the following two options exactly one holds:

(a) areas from ΩA connect W and E; (b) areas from ΩB connect N and S.
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The above observations imply that Jordan oracle O satisfies requirements (I)
and (II). It remains to verify (III),

Proposition
By using oracle O, one can decide whether (a) or (b) holds and find
corresponding x or y , respectively, in time linear in |O|.

Proof Consider all areas from ΩB boarding N, then add all areas from ΩB

boarding these areas, etc. Such iterations will stop in time linear in |O| either
reaching S (then, obviously, (b) holds) or not (then (a) holds, again by the
Jordan curve theorem). Moreover, in the first case we obtain a set of areas y ′

from ΩB connecting N and S; in the second case - a set of areas x ′ from ΩA

connecting W and E. The former strategy y ′ is obtained explicitly; the latter
one, x ′, is easy to construct. To do so, denote by Ω′

B the set of areas obtained
in the course of iterations. It does not reach S. Hence, the areas from ΩA that
border Ω′

B connect W and E, by the Jordan curve theorem once more.
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This case is realized in Figure 3; Alice wins.

Figure 2. Gray and white areas are in ΩA and ΩB , respectively. Alice wins.
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Remark
It is not necessary to restrict ourselves by minimal strategies. In linear time
we can reduce arbitrary strategy (set) x ′ of Alice to an inclusion-minimal set
x connecting W and E, thus, getting minimal strategies of Alice.
To do so, we eliminate areas from x ′ one by one until (a) still holds.
We require inclusion-minimality of subsets x ∈ Ω just to reduce the number
of strategies (which may still remain exponential in |O|).
Of course, the same is true for Bob’s strategies.
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Monotone bargaining schemes

The following oracle was introduced in [GK18].
Two players, Alice and Bob, possess items

A = {a1, . . . , am} and B = {b1, . . . , bn}, respectively. Both sets are ordered:
a1 ≺ · · · ≺ am and b1 ≺ · · · ≺ bn. Both players know both orders.

The direct product Ω = A×B = {(a, b) | a ∈ A, b ∈ B} is the set of outcomes.

Alice’s strategies are monotone non-decreasing mappings x : A → B

(that is, x(a) ≥ x(a′) whenever a > a′)
showing that she is ready to exchange a for x(a) for any a ∈ A.

Similarly, Bob’s strategies are monotone non-decreasing mappings y : B → A

(that is, y(b) ≥ y(b′) whenever b > b′)
showing that he is ready to exchange b for y(b) for any b ∈ B.
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It is not difficult to compute the numbers of strategies and outcomes:

|X | =

(
m + n − 1

m

)
, |Y | =

(
m + n − 1

n

)
; |Ω| = |A× B| = mn. (1)

Given a situation (x , y), an outcome (a, b) ∈ Ω is called a deal
(in this situation) if x(a) = b and y(b) = a.
Denote by G(x , y) ⊆ Ω the set of all deals in the situation (x , y).

We will show that G(x , y) ̸= ∅. Yet, G(x , y) may contain several deals.

This construction is called a monotone bargaining (MB) scheme.

It can be viewed as an oracle O generating game correspondence
G : X × Y → 2Ω \ {∅}. By (1), requirement (I) holds for O.
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Note that G = Gm,n is uniquely defined by m and n.

A game form g ∈ G is called an MB game form.

For example, if m = n = 3 then |X | = |Y | = 3
and we obtain game form g4 in Figure 1;
game correspondence G(x , y) is given in [GK18].

The following interpretation was suggested in [GK18].

Alice and Bob are dealers possessing the sets of objects A and B, respectively,
and a deal (a, b) ∈ A× B means that they exchange a and b.

They may be art-dealers, car dealers; or one of them may be just a buyer with a
discrete budget. For example, A = {a1, . . . , am} and B = {b1, . . . , bn} may be
paintings or sculptures ordered in accordance with their age (not price or value).
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To any pair of mappings x : A → B and y : B → A

(not necessarily monotone non-decreasing) let us assign a bipartite digraph
Γ = Γ(x , y) on the vertex-set A ∪ B as follows:

[a, b) (resp., [b, a)) is an arc of Γ(x , y) whenever x(a) = b (resp., y(b) = a).

Some visualization helps.
Embed Γ(x , y) into a plane; putting ordered A and B in two parallel columns.
Two arcs corresponding to x may have a common head, but not tail.
Furthermore, they cannot cross if mapping x is monotone non-decreasing.
Similarly for y . By construction, digraph Γ is bipartite, with parts A and B.
Hence, every dicycle in Γ is even.
There is an obvious one-to-one correspondence between the dicycles of length 2
in Γ(x , y) and the deals of G(x , y).

V. Gurvich Computing lexicographically safe Nash equilibria in finite two-person games 29



Figure 3. Monotone bargaining game correspondence G(2, 2).
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Proposition

For each situation (x , y) its digraph Γ(x , y) contains at least one dicycle of
length 2 (a deal) and cannot contain longer dicycles.

Proof For any initial vertex v ∈ A ∪ B, strategies x and y uniquely define an
infinite walk from v , which is called a play.

Since sets A and B are finite and there are no terminals, this play is a lasso:

it consists of an initial directed path, which may be empty, and a dicycle C

repeated infinitely.

Furthermore, C must be a dicycle of length 2 whenever mappings x and y are
monotone non-decreasing. Indeed, if C is longer than 2 then crossing arcs
appear and, hence, either x , or y , or both are not monotone,
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Figure 4. Monotone bargaining game correspondence G(2, 3).
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Figure 5. Monotone bargaining game correspondence G(3, 3).
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Consider a ±1 MB game (g ; ΩA,ΩB), where g = g(O) is an MB game form
generated by an MB scheme O. As we already mentioned, requirement (I)
holds for O. The following statement shows that (II) and (III) hold as well.

Proposition

Game form g = g(O) is tight and each ±1 MB game (g ; ΩA,ΩB) can be
solved in time polynomial in |O| = mn.

The first part was already proven in [GK18]. Yet, here we provide a much
shorter proof.
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Proof

For the sake of simplicity, we will slightly abuse notation writing that both
directed edges [a, b) and [b, a) are in ΩA or in ΩB whenever the corresponding
deal (a, b) is in ΩA or in ΩB , respectively.

Consider complete bipartite symmetric digraph Γ on m + n vertices
A = {a1, . . . , am},B = {b1, . . . , bn}, and with 2mn directed edges
{[ai , bj), [bj , ai ) | i = 1, . . . ,m; j = 1, . . . , n}.

The following two statements are obvious:
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(a) Alice wins if she has a monotone non-decreasing strategy x∗ : A → B

such that [a, x∗(a)) ∈ ΩA for all a ∈ A.

(b) Bob wins if he has a monotone non-decreasing strategy y∗ : B → A

such that [b, y∗(b)) ∈ ΩB for all b ∈ B.

Indeed, it is easily seen that x∗ and y∗ are the winning strategies of Alice and
Bob, respectively. It is enough to show that g(x∗, y) ∈ ΩA for any y ∈ Y .

Recall the proof of Proposition 5: Fix x∗, choose an arbitrary y ∈ Y ,
and consider the play P = P(x∗, y) beginning from an arbitrary initial position
v ∈ A ∪ B. By Proposition 5, P is a lasso resulting in a 2-cycle (a, b).

The corresponding deal (a, b) ∈ ΩA, in case (a), for any y , by the choice of x∗,
and hence, Alice wins. Similarly, g(x , y∗) ∈ ΩB in case (b) for any x ∈ X , by
the choice of y∗, and Bob wins.
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Obviously, (a) and (b) cannot hold simultaneously, since otherwise
(a, b) ∈ ΩA ∩ ΩB , which is a contradiction, since Ω = ΩA ∪ ΩB is a partition.

Let us show that either (a) or (b) holds (in other words, g is tight, which
implies (II)).

The proof will be constructive: we obtain either x∗ satisfying (a) or y∗

satisfying (b) in time polynomial in mn

(which in its turn, implies (III)).
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We will construct a play P by the following greedy iterative algorithm.
Let a1 = a1 be an initial position of P.
(We use superscripts to number iterations.)

If [a1, b) ∈ ΩB for all b ∈ B then Bob wins.
(His winning strategy y∗ is defined by: y∗(b) = a1 for all b ∈ B.

Then [y∗(b), b) ∈ ΩB for all b ∈ B and (b) holds.)

Otherwise, denote by b1 the (unique) minimal b ∈ B such that [a1, b) ∈ ΩA.

Then, by definition, [b1, a1) ∈ ΩA too.

Furthermore, by this choice of b1, we have:

[b, a1) ∈ ΩB for all b ≺ b1, while [b1, a1) ∈ ΩA.
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If [b1, a) ∈ ΩA for all a ⪰ a1 then Alice wins.
(Her winning strategy x∗ is defined by: x∗(a) = b1 for all a ∈ A.
Then [a, x∗(a)) ∈ ΩA for all a ∈ A.)

Otherwise, denote by a2 the (unique) minimal a ∈ A such that [b1, a) ∈ ΩB .

Then, by definition, [a2, b1) ∈ ΩB too. Furthermore, by the choice of a2, we
have: [a, b1) ∈ ΩA for all a ≺ a2, while [a2, b1) ∈ ΩB .

The general k-th step of this greedy recursion is as follows.

If [ak , b) ∈ ΩB for all b ⪰ bk−1 then Bob wins.
(His winning strategy y∗ is defined by:
y∗(b) = ai for each b such that bi ≻ b ⪰ bi−1,
for i = 1, . . . , k, assuming conventionally that b ≻ b0 holds for all b ∈ B).

Otherwise, denote by bk the (unique) minimal b ∈ B such that
b ≻ bk−1 and [ak , b) ∈ ΩA. Then [bk , ak) ∈ ΩA too.
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Furthermore, by the choice of bk , we have:
[b, ak) ∈ ΩB for all b such that bk ≻ b ⪰ bk−1, while [bk , ak) ∈ ΩA.

If [bk , a) ∈ ΩA for all a ⪰ ak then Alice wins.
(Her winning strategy x∗ is defined by:
x∗(a) = bj for each a such that aj+1 ≻ a ⪰ aj ,
for j = 1, . . . , k, assuming conventionally that ak+1 ≻ a holds for all a ∈ A.)

Otherwise, denote by ak+1 the (unique) minimal a ∈ A such that [bk , a) ∈ ΩB .
Then [ak+1, bk) ∈ ΩB , too.
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Furthermore, by the choice of ak+1, we have: [a, bk) ∈ ΩA for all a such that
ak+1 ≻ a ⪰ ak , while [ak+1, bk) ∈ ΩB .

After each iteration ak (respectively, bk) both Alice and Bob have winning
moves in all positions a ≺ ak and b ⪯ bk−1 (respectively, a ⪯ ak and b ≺ bk).
Since sets A and B are finite, the procedure will stop on some iteration either
ak

∗
≺ am or bk∗ ≺ bn, indicating that Bob or, respectively, Alice wins.

Furthermore, we obtain his or her winning strategy in time linear in mn.
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The following slightly different procedure can be applied too.

First, we start looking for a winning strategy x∗ for Alice.

Consider successively a1, a2, . . . and construct (again recursively and greedily)
her monotone non-decreasing strategy x∗ as follows:

x∗(ai ) = bi such that [ai , b
i ) ∈ ΩA, bi ⪰ bi−1, and

bi is the minimal element of B satisfying these two properties.

If this will work for all i = 1, . . . ,m then Alice wins and
we obtain her winning strategy x∗ satisfying (a).

Otherwise, if the procedure stops on some i < m

(no required bi exists for ai ) then Bob wins.
His winning strategy y∗ satisfying (b) is defined as follows:
y∗(b) = ai for all b such that bi−1 ⪯ b ≺ bi , where ai is the smallest a

such that x∗(a) = bi , for i = 1, 2, . . .

By convention, b0 ≺ b for all b ∈ B.

Thus, requirements (I,II,III) hold for the MB schemes and, hence, our main
Theorem is applicable.
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Veto voting schemes

Two voters (players), Alice and Bob choose among candidates (options,
outcomes) Ω = {ω1, . . . , ωp}.

They are assigned some positive integer veto powers and given µA and µB veto
cards, respectively.

Each candidate ω ∈ Ω is assigned an integer positive veto resistance λω. We
assume that

µA + µB + 1 = λω1 + · · ·+ λωp . (2)
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A strategy of a voter is an arbitrary distribution of her/his veto cards among
the candidates.

Given a pair of strategies x and y , a candidate ω ∈ Ω who got at least λω veto
cards (from Alice and Bob together) is vetoed.

From the set G(x , y) of all not vetoed candidates one g(x , y) ∈ G(x , y) is
elected. By (2), G(x , y) ̸= ∅.

Thus, we obtain a veto voting (VV) scheme O, VV game form g = g(O),
and VV game correspondence G = G(O); see, for example,
[Gur08],[Mou83],[Pel84] for more details.

By construction, VV schemes are oracles satisfying (I). For example, game form
g3 in Figure 1 corresponds to the VV scheme defined by

µA = µB = λω1 = λω2 = λω3 = 1.
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Let us show that requirements (II) and (III) also hold for VV schemes.

Proposition
Each game form g defined by a VV scheme satisfying (2) is tight.

Furthermore, every ±1 game (g ; ΩA,ΩB) can be solved in time linear in
|O| = log(µAµB

∏
ω∈Ω λω).

Proof

To see this, consider a ±1 game (g ; ΩA,ΩB).

By (2), from two options,
(a) Alice can veto ΩB and (b) Bob can veto ΩA, exactly one holds.

Alice or Bob wins in case of (a) or (b), respectively. Given numbers µA, µB ,
and λω, ω ∈ Ω, one can decide in linear time whether (a) or (b) holds.

In each case the winning strategy of Alice or Bob is straightforward:
just veto all opponent’s candidates, ΩB or ΩA, respectively.

Thus, the VV oracles satisfy (I,II,III) and main Theorem is applicable.
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Tight game correspondences and forms of arbitrary
monotone properties

The most general setting is defined as follows. Given a finite ground set Ω,
consider a family of its subsets P ⊆ 2Ω. Standardly, we call P a property and
say that a subset Ω′ ⊆ Ω satisfies P or not if Ω′ ∈ P or Ω′ ̸∈ P, respectively.
Property P is called inclusion monotone non-decreasing (or simply monotone,
for short) if Ω′′ ∈ P implies Ω′ ∈ P whenever Ω′′ ⊆ Ω′ ⊆ Ω. We restrict
ourselves to monotone properties.

Define the sets of strategies X of Alice and Y of Bob as follows:

x ∈ X is any (inclusion minimal) subset ΩA ⊆ Ω such that ΩA ∈ P;

y ∈ Y is any (inclusion minimal) subset ΩB ⊆ Ω such that Ω \ ΩB ̸∈ P.
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The restriction in parenthesis does not matter, it can be waved or kept. In the
latter case, sets X and Y are significantly reduced.

Define a game correspondence G = G(P) by setting G(x , y) = x ∩ y . It is
both obvious and well-known that G(x , y) ̸= ∅ for any x ∈ X , y ∈ Y and,
moreover, G is tight. Hence, any game form g ∈ G is tight too.

Thus, (I) and (II) hold automatically whenever a monotone property P is given
by an oracle O(P). Yet, (III) must be required in addition. In other words,
O(P) must be a polynomial membership oracle, which for a given subset
Ω′ ⊆ Ω, decides if Ω′ ∈ P in time polynomial in |Ω|+ |O(P)|.

It is easily seen that this general setting includes in particular all four examples
of oracles given in this section before; see more examples in [BGEK02, Gur18a].
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