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Introduction

Here we outline main results. Precise definitions will be given later.

Consider a finite n-person game in normal form representing it as a pair (g , u),
where u is the payoff function of n players and g is the so-called game form.

The latter can be viewed as a game without payoffs, which are not given yet.

Such approach is standard and convenient:

game form g “is responsible" for structural properties of game (g , u), which
hold for any payoff u.

For example, game form g is called Nash-solvable if game (g , u) has a Nash
equilibrium (NE) in pure strategies for every payoff u.
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In 1950 Nash proved that every n-person
normal form game has a NE in mixed strategies
[Nas50, Nas51].
Yet, there are large families of games solvable
in pure strategies, for example, finite n-person
positional (graphical) games with perfect
information.

John Forbes Nash, Jr.

Bargaining with Gods. https://www.mathnet.ru/php/archive.phtml?
wshow=paper&jrnid=mp&paperid=860&option_lang=rus

Its game structures Γ uniquely defines a finite n-person game form g(Γ) that is
Nash-solvable.

We expand the set of outcomes including not only terminal positions but also
other strongly connected components of the corresponding directed graph.

Doing so, we also expand substantially the corresponding family of game forms,
which remain Nash-solvable, but only in case of two players, n = 2.
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Yet, perfect information is only sufficient but not necessary for Nash-solvability.
A concept of tightness fits much better. This property is of algebraic nature.

It was introduced in [Gur73, Gur75] and in the latter paper it was shown that a
finite two-person game form is Nash-solvable if and only if it is tight.

Note that already for n = 3 tightness is neither necessary nor sufficient for
Nash-solvability. These results were obtained in [Gur75, Gur89]; several
different proofs were given later [BBM90, BG03, DS91, Gur18, GK18].

Tightness remains necessary (and, of course, sufficient) for Nash-solvablity in
the zero-sum case too. This result was obtained earlier: it follows easily from
the so-called Bottleneck Extrema Theorem by Edmonds and Fulkerson [EF70];
see also [Gur73].

Jack Edmonds Delbert Ray Fulkerson
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Here we suggest a new (and much simpler) proof of the general result.

We introduce a concept of lexicographically safe (lexsafe) pure strategy of a
player in a given game (g , u).

This is a refinement of the standard concept of a safe (maxmin) strategy that
maximizes the worst possible outcome, while the lexsafe strategy realizes the
lexicographical maximum of all possible outcomes.

Thus, the lexsafe strategies are most safe, but may be not rational.

(For comparison, recall that NE may be not Pareto optimal.)

One can view this as a price of stability.

We prove that a NE appears whenever one player applies a lexsafe strategy,
while the opponent chooses some special best response to it. Yet, if both
players choose their lexsafe strategies then the obtained pair may be not a NE.

Thus, there are two types of NE: lexsafe for one or for the other player.

These NE may coincide. For example, it happens in the zero-sum case, or when
the considered game has a unique NE.
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By definition, lexsafe strategies of a player do not depend on the payoff of the
opponent; the player may be just unaware of it.

This is an interesting property important for applications.

In the proof of [Gur75, Gur89] the lexsafe strategies were implicitly constructed
by an iterative algorithm increasing strategies in a lexicographical order.

Here we suggest a simple polynomial algorithm searching for a lexsafe strategy
of a player and for a corresponding NE.

Such algorithm is obvious when a game form g is given explicitly.

Yet, in applications g is frequently given by an oracle O, which size may be
logarithmic in the size of g . We assume that this oracle solves in polynomial
time any two-person game (g , u0) in which payoff u0 is zero-sum and takes
only values ±1; oracle O tells us who wins and determines a winning strategy.

Based on this assumption, we provide an algorithm computing a lexsafe NE in
an arbitrary game (g , u) in time polynomial in the size of O.

In the last section we consider four examples of such oracles from different
areas of game theory and show that all four satisfy the above assumption.
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Basic definitions

Game forms We consider finite, not necessarily zero-sum, normal form games
of two players, Alice and Bob.

They have finite sets of strategies X and Y , respectively.

A game form is a mapping g : X ×Y → Ω, where Ω is a finite set of outcomes.

A two-person game (in normal form) is a triplet (g ; u,w),
where u : Ω → R and w : Ω → R are payoff functions of Alice and Bob.

To separate game forms and payoffs is an efficient idea.

Game forms are responsible for the so-called “structural properties" of the
games, which hold for all payoffs, for example, Nash-solvability.

Nine examples are given in the next figure, where game forms are represented
by tables with rows x ∈ X , columns y ∈ Y , and outcomes ω ∈ Ω.
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Mapping g is assumed to be surjective, but not necessarily injective, that is, an
outcome ω ∈ Ω may occupy an arbitrary array in the table of g .

A pair of strategies (x , y) is called a situation (term "strategy profile" is also
used in literature). Sets

g(x) = {g(x , y) | y ∈ Y } and g(y) = {g(x , y) | x ∈ X}

are called the supports of strategies x ∈ X and y ∈ Y , respectively.

A strategy is called minimal if its support is not a proper superset of the
support of any other strategy. For example, in g6 the first strategies of Alice
and Bob are minimal, while the second are not; in the remaining eight game
forms all strategies are minimal. Moreover, any two strategies of a player have
distinct supports, for every game form, except g7.

A situation (x , y) is called simple if g(x) ∩ g(y) = {g(x , y)}. For example, all
situations of game forms g1, g2, g8, g9 are simple (such game forms are called
rectangular); in contrast, no situation is simple in g7; in g3 all are simple,
except three on the main diagonal; in g4 all are simple, except the central one;
in g6 all are simple, except one with the outcome ω2.

V. Gurvich Computing lexicographically safe Nash equilibria in finite two-person games 10



Payoffs and games in normal form

Payoffs of Alice and Bob are defined by real valued mappings

u : Ω → R and w : Ω → R, respectively. Both players are maximizers.

Triplet (g ; u,w) defines a finite two-person game in normal form, or just a
game, for short. Game (g ; u,w) and payoffs (u,w) are called:

• zero-sum if u + w = 0, that is, u(ω) + w(ω) = 0 for all ω ∈ Ω;

• zero-sum ±1 (or just ±1, for short) if, in addition, functions u and w take
only two values 1 and −1.

Alternatively, a ±1 payoff can be given by a partition Ω = ΩA ∪ ΩB , where ΩA

and ΩB are the outcomes preferred by Alice and by Bob, respectively:

u(ω) = 1,w(ω) = −1 for ω ∈ ΩA and u(ω) = −1,w(ω) = 1 for ω ∈ ΩB .

For a ±1 game notation (g ; ΩA,ΩB) will be used along with (g ; u,w).

There exist only 2k distinct ±1 payoffs versus (k!)2 orders, where k = |Ω|.
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Nash equilibria and saddle points

Given a game (g ; u,w), a situation (x , y) of its game form g : X × Y → A is
called a Nash equilibrium (NE) if

u(g(x , y)) ≥ u(g(x ′, y)), ∀x ′ ∈ X , and w(g(x , y)) ≥ w(g(x , y ′)),∀y ′ ∈ Y ;

that is, if neither Alice nor Bob can profit replacing her/his strategy provided
the opponent keeps his/her one unchanged, or in other words,

if x is a best response for y and y is a best response for x .

Note that a best response may be not unique.

This concept of solution was introduced in 1950 by John Nash [Nas50, Nas51].
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Zero-sum case; Matrix games;
maxmin, minmax, and saddle point

In this case, a game is called matrix, and a NE in it is called a saddle point
(SP).

This concept was known much earlier, it is about 200 years old. NE, its natural
extension to the non-zero-sum case, is 75 years old.

Alice is a maximizer, while Bob is a minimizer.

An SP is a situation (not a number!) (x , y), where x ∈ X , y ∈ Y are the
strategies of Alice and Bob such that the payoff u(x , y) realizes
a minimum in the row x and a maximum in the column y , respectively.

Here u is a payoff of Alice. The payoff of Bob is by default w = −u.

By the above definition a saddle point is a (Nash) equilibrium.

Alice (Bob) has no motivation to change her (his) strategy x (resp. y) provided
the opponent, Bob (Alice) will keep his (her) strategy y (resp. x) unchanged.
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Lemma

(i) An SP may be not unique; the set of SPs is a box X ∗ ×Y ∗ ⊆ X ⋊Y , where
X ∗ and Y ∗ are called the optimal strategies of Alice and Bob, respectively.

(ii) The saddle point value u(x , y) is the same for all x ∈ X and y ∈ Y . It is
called the value of the matrix game.

Thus, any pair of optimal strategies x ∈ X ∗ and y ∈ Y ∗ forms a SP with the
same value v , which is called the value of the considered matrix game.

Prove the lemma. Note that it cannot be extended to the non-zero-sum case.

Consider game form g6; assume that Alice and Bob both prefer ω2 to ω1. Then,

(i) NE form the main diagonal, not a box.

(ii) There are two distinct NE values.
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In a matrix game, maxmin and minmax are defined by formulas:

maxmin = max
x∈X

min
ω∈g(x)

u(ω); minmax = min
y∈Y

max
ω∈g(y)

u(ω); (1)

They are numbers, not situations. In other words, given a matrix game,

take a minimum in each row and then the maximum of all obtained minima;
this is maxmin, it is the best result that Alice can guarantee,
independently of Bob’s actions;

take a maximum in each column and then the minimum of all obtained maxima;
this is minmax, it is the best result that Bob can guarantee,
independently of Alice’s actions.

Lemma For every matrix (zero-sum) game (g , u,w) we have:

(j) maxmin ≤ minmax .

(jj) there exists a saddle point if and only if maxmin = minmax.

Prove the lemma.
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Remark
In [Nas50, Nas51] solvability in mixed strategies is studies. In contrast, we
restrict the players to their pure strategies. Such approach is considered, for
example, in [AFPT10, AHMS08, BBM90, BCGM20, BFT17, BG03,
BGMP10, BGMS07, FHKOY20, Gur75, Gur89, Gur17, Gur18, GK18, GN22,
HKM21, Kuk11, MS96, Ros73, SM13, THS12, Was90].
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Solvability of game forms

A game form g is called:

(i) Nash-, (ii) zero-sum-, (iii) ±1-solvable

if the corresponding game (g ; u,w) has a NE for

(i) all, (ii) all zero-sum, (iii) all zero-sum ±1 payoffs, respectively.

Implications (i) ⇒ (ii) ⇒ (iii) are obvious.

In fact, all three properties are equivalent [Gur75, Gur89, Gur09].

For (ii) and (iii) it was shown earlier by Edmonds and Fulkerson

[EF70]; see also [Gur73].

The list of equivalent properties (i), (ii), (iii) was extended in [Gur75]
by adding the so-called tightness; see below.
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Replacing payoffs by preferences and eliminating ties

Given a game (g ; u,w), we can assume wlog that payoffs u : Ω → R and
w : Ω → R have no ties. Indeed, one can get rid of all ties by arbitrarily small
perturbations of values of u and w . In accordance with definition, the set of
NE will be either unchanged or reduced by such perturbations.

We focus on Nash-solvability (in pure strategies), that is we study conditions
that guarantee the existence of a NE for arbitrary payoffs u and w .

Hence, we can wlog assume that both, u and w , have no ties and replace them
by linear orders ≻A and ≻B over the set of outcomes Ω, which are called the
preferences of Alice and Bob, respectively.

Thus, game (g ; u,w) can be replaced by (g ;≻A,≻B) and it is enough to study
Nash-solvability of the latter.

Althgough some NE of (g ; u,w) may disappear in (g ;≻A,≻B), yet,
Nash-solvability holds or fails for both games simultaneously.

Remark
Above arguments would fail in the case of mixed strategies.
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Tight game forms

Mappings ϕ : X → Y and ψ : Y → X are called response strategies
of Bob and Alice, respectively. The motivation for this name is clear:

a player chooses his/her strategy as a function of a known strategy of the
opponent.

Standardly, gr(ϕ) and gr(ψ) denote the graphs of mappings ϕ and ψ in X ×Y .

Game form g : X × Y → Ω is called tight if

(l) g(gr(ϕ)) ∩ g(gr(ψ)) ̸= ∅ for any mappings ϕ and ψ.

It is easy to verify that in Figure 1 the first six game forms (g1 − g6) are tight,
while the last three (g7 − g9) are not.
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In [EF70, Gur73, Gur75, Gur89, Gur18] the reader can find several equivalent
properties characterizing tightness. Here we recall some of them:

(ll-A) For every response strategy ϕ : X → Y there exists a strategy y ∈ Y

such that g(y) ⊆ g(gr(ϕ)).

(ll-B) For every response strategy ψ : Y → X there exists a strategy x ∈ X

such that g(x) ⊆ g(gr(ϕ)).

It is not difficult to see that (l) and (ll-A) are equivalent [Gur73, Gur89].

Then, by transposing g , we conclude that (l) and (ll-B) are equivalent as well.

Hence, all three properties are equivalent. One can verify this for nine examples
g1 − g9.

Properties (ll-A) and (ll-B) show that playing a zero-sum game (g ; u,w) with a
tight game form g Bob and Alice do not need non-trivial response strategies but
can restrict themselves by the standard ones, that is, by Y and X , respectively.

V. Gurvich Computing lexicographically safe Nash equilibria in finite two-person games 20



Given a game form g : X × Y → Ω, introduce on the ground set Ω

of the outcomes two multi-hypergraphs A = A(g) and B = B(g)
whose edges are the supports of strategies of Alice and Bob, respectively:

A(g) = {g(x) | x ∈ X} and B(g) = {g(y) | y ∈ Y }.

Recall that distinct edges of a multi-hypergraph may contain one another or
even coincide. Obviously, the edges of A and B pairwise intersect, that is,
g(x) ∩ g(y) ̸= ∅ for all x ∈ X and y ∈ Y . Furthermore, g is tight if and only if

(lll) hypergraphs A(g) and B(g) are dual, that is, satisfy also the following two
(equivalent) properties:

(lll-A) for every ΩA ⊆ Ω such that ΩA ∩ g(y) ̸= ∅ for all y ∈ Y there exists an
x ∈ X such that g(x) ⊆ ΩA;

(lll-B) for every ΩB ⊆ Ω such that ΩB ∩ g(x) ̸= ∅ for all x ∈ X there exists an
y ∈ Y such that g(y) ⊆ ΩB .
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Remark
Verification of tightness of an explicitly given game form is an important open
problem. No polynomial algorithm is known. A quasi-polynomial one was
suggested in [FK96]; see also [GK99].

Tightness and solvability

Let us recall an old theorem.

Theorem
([Gur75, Gur89]) The following properties of a game form are equivalent:

(i) Nash-, (ii) zero-sum- , (iii) ±1-solvability, and (iv) tightness.

V. Gurvich Computing lexicographically safe Nash equilibria in finite two-person games 22



Proof

As we already mentioned, implications (i) ⇒ (ii) ⇒ (iii) are obvious.

Also (iii) ⇒ (iv) is easily seen.
Indeed, assume for contradiction that a game form g is not tight.
Then, there exists a response strategies ϕ : X → Y and ψ : Y → X

of Bob and Alice such that g(gr(ϕ)) ∩ g(gr(ψ)) = ∅.
Then, we can partition Ω into two sets of outcomes ΩA and ΩB

(winning for Alice and Bob, respectively) in such a way that

g(gr(ϕ)) ⊆ ΩB and g(gr(ψ)) ⊆ ΩA.

(Note that for tight g this would not be possible.) Then,

−1 = maxmin < minmax = 1

in the obtained ±1 game (g ; ΩA,ΩB) and, hence, it has no saddle point.
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The inverse implication (iii) ⇐ (iv),
(as well as (ii) ⇐ (iv), which looks stronger)
are proven similarly; see [EF70, Gur73].

Assume that a zero-sum game (g ; u,w) has no saddle point.

Then, (1) fails and maxmin < minmax.

Consider arbitrary best response strategies ϕ : X → Y and ψ : Y → X

of Bob and Alice, respectively.

Obviously, g(gr(ϕ)) ∩ g(gr(ψ)) = ∅ and, thus, g is not tight.

The last claim means that a tight game form is SP-solvable.

Moreover, it has a simple SP situation in minimal strategies [Gur89].

To finish the proof of the theorem it only remains to show implication
(i) ⇐ (iv), that is, tightness implies Nash-solvability.

First, this was done in [Gur75], then, with more details, in [Gur89].

Several different proofs appeared later [BBM90, BG03, DS91, Gur18, GK18].
In the next section we suggest a new (and shortest) proof based on an
important general property of dual multi-hypergraphs.
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Lexicographical theorem for dual multi-hypergraphs

Summary

Let A = {A1, . . . ,Am} and B = {B1, . . . ,Bn} an arbitrary pair of finite dual
multi-hypergraphs on a common ground set Ω.
Each of them may have embedded or equal edges.

An edge is called containment minimal (or just minimal, for short) if it is not a
strict superset of another edge. (minimal edges may still be equal.)

V. Gurvich Computing lexicographically safe Nash equilibria in finite two-person games 25



If A and B are dual then

(j) A ∩ B ̸= ∅ for every pair A ∈ A and B ∈ B;
(jj) if A is minimal then for every ω ∈ A there exists a (minimal) B ∈ B such

that A ∩ B = {ω}. We will extend claim (jj) as follows. A linear order ≻
over Ω uniquely defines a lexicographic order ≻ℓ over the power set 2Ω.

(jjj-A) Let A be a lexicographically maximal (lexmax) edge of A. Then, edge A is
minimal in A and for every ω ∈ A there exists a (minimal) edge B ∈ B
such that A ∩ B = {ω} and ω ⪰ ω′ for each ω′ ∈ B.

By swapping A,A and B,B, we obtain the dual statement (jjj-B).

These two statements form the lexicographical theorem for dual
multi-hepergraphs. To formulate it accurately, we will need a few definitions.

Lexicographical orders over the subsets.

A linear order ≻ over a set Ω uniquely determines a lexicographical order ≻ℓ

over the power set 2Ω (of all subsets of Ω) as follows. Roughly speaking, the
more small elements are out of a set - the better it is. In particular, Ω′ ≻ℓ Ω

′′

whenever Ω′ ⊂ Ω′′ and, hence, the empty set ∅ ⊂ Ω is the best in 2Ω.
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Remark

Also {ω′} ≻ℓ {ω′, ω′′} for any ω′, ω′′ ∈ Ω and order ≻, although set {ω′, ω′′}
gives a chance for a better outcome ω′′ if ω′ ≺ ω′′; see game form g6 in
Figure 1 and subsection 20 for more detail.

More precisely, to compare two arbitrary subsets Ω′,Ω′′ ⊆ Ω consider their
symmetric difference ∆ = (Ω′ \ Ω′′) ∪ (Ω′′ \ Ω′). Clearly, ∆ ̸= ∅ if and only if
sets Ω′ and Ω′′ are distinct. Let ω be the minimum with respect to ≻ element
in ∆. If ω ∈ (Ω′ \ Ω′′) then Ω′′ ≻ℓ Ω

′; if ω ∈ (Ω′′ \ Ω′) then Ω′ ≻ℓ Ω
′′.

We can reformulate this definition equivalently as follows. Without loss of
generality (wlog), set Ω = {ω1, . . . , ωp} and assume that ω1 ≺ · · · ≺ ωp; assign
the negative weight w(ωi ) = −2k−i to every ωi ∈ Ω, and set
w(S) =

∑
ω∈S w(ω) for each subset S ⊆ Ω. Then, Ω′ ≻ℓ Ω

′′ if and only if
w(Ω′) > w(Ω′′).

Denote by supp(S) the 0, 1-vector (s1, . . . , sk), where si = 1 if and only if
ωi ∈ S . Then obviously, Ω′ ≻ℓ Ω

′′ if and only if supp(Ω′) is less than supp(Ω′′)

in the standard lexicographical order.
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Dual multi-hypergraphs

Two finite multi-hypergraphs A and B on the common ground set Ω are called
dual if (j) holds: A ∩ B ̸= ∅ for every pair A ∈ A and B ∈ B, and also
(jv-A) for each BT ⊆ Ω such that BT ∩ B ̸= ∅ for every B ∈ B there exists an
A ∈ A such that A ⊆ BT .

If (j) and (jv-A) both hold we say that A is dual to B and write A = Bd .

Swapping A,A and B,B in (jv-A) we obtain (jv-B) and an equivalent definition
of duality, that is, (j) and (jv-A) hold if and only (j) and (jv-B) hold.

In other words, A = Bd if and only if B = Ad .
So we just say that multi-hypergraphs A and B are dual.

Remark
Dual multi-hypergraphs have numerous applications and appear in different
areas under different names, such as “clutters" and “blockers" [EF70] or DNFs
and CNFs of monotone Boolean functions [CH11].
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Lexicographical Theorem

Claims (j) and (jj) are well-known [CH11]. Actually, (j) is required by the
definition of duality and (jj) is obvious. Indeed, if (jj) fails then edge A cannot
be minimal, since its proper subset A \ {ω} would still intersect all B ∈ B.

Our main result is statement (jjj-A).
Fix an arbitrary order ≻ over Ω and find a lexmax edge AL ∈ A, that is, one
maximal with respect to the lexicographical order ≻ℓ over 2Ω. Note that such
AL may be not unique but all lexmax edges are equal. The lexicographic
theorem is formulated as follows:

Theorem

A lexmax edge AL is minimal in A.
Furthermore, for every ω∗ ∈ AL there exists a (minimal) edge BM ∈ B
such that AL ∩ BM = {ω∗} and ω∗ ≻ ω for each ω ∈ BM \ {ω∗}.
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Proof A lexmax edge must be minimal, since a set is strictly less than any its
proper subset in order ≻ℓ.

Assume for contradiction that there exists an ω∗ ∈ AL such that for every
(minimal) B ∈ B satisfying (jj), B ∩ AL = {ω∗}, there exists an ω ∈ B such
that ω ≻ ω∗. Clearly, this assumption holds for every B0 ∈ B if it holds for
each minimal B0 ∈ B. Let us show that it contradicts the lexmaximality of AL.
To do so partition all edges B ∈ B into two types:

(a) there is an ω ∈ B ∩ AL distinct from ω∗;

(b) B ∩ AL = {ω∗}.
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In case (b), by our assumption, there is an ω ∈ B such that ω ≻ ω∗.

In both cases, (a) and (b), choose the specified ω from B,
thus, getting a transversal BT .

By (jv-A), there exists an A ∈ A such that A ⊆ BT and, hence, A ⪰ℓ B
T .

Furthermore, by construction, BT ≻ℓ A
L.

Indeed, ω∗ ̸∈ BT and it is replaced in BT by some larger elements, ω ≻ ω∗,
in case (b), while all other elements of BT , if any, belong to AL \ {ω∗},
according to case (a).

Thus, by transitivity, A ≻ℓ A
L. Yet, by assumption of the theorem,

AL is a lexmax edge of A, which is a contradiction.
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Sperner hypergraphs

A multi-hypergraph is called Sperner if no two of its distinct edges contain one
another; in particular, they cannot be equal. In this case, we have a hypergraph
rather than multi-hypergraph. For a multi-hypergraph there exists a unique
dual Sperner hypergraph. If A and B are dual and Sperner then

Add = A and Bdd = B; furthermore ∪A∈AA = ∪B∈BB = Ω.

In general, ∪A∈AA and ∪B∈BB may be different subsets of Ω.

Remark

Here we assume that the reader is familiar with basic notions related to
monotone Boolean functions, in particular, with DNFs and duality. An
introduction can be found in [CH11].

It is well known [CH11] that (dual) multi-hypergraphs are in one-to-one
correspondence with (dual) monotone DNFs: (prime) implicants of the latter
correspond to (minimal) edges of the former. Furthermore, Sperner
hypergraphs correspond to irredundant DNFs. However, we do not restrict
ourselves to this case. Although the lexicographical theorem would not lose
much but its applications to Nash-solvability would.
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Determining edges AL and BM in polynomial time.

Preliminaries

Edges A and B mentioned in (jjj-A) can be found in polynomial time.

The problem is trivial when multi-hypergraphs A and B are given explicitly.

We will solve it when only A is given, and not explicitly, but by a polynomial
containment oracle.

For an arbitrary subset ΩA ⊆ Ω this oracle answers in polynomial time the
question Q(A,ΩA): whether ΩA contains an edge A ∈ A.

By duality of A and B, we have A ̸⊆ ΩA for all A ∈ A if and only if
B ⊆ ΩB = Ω \ ΩA for some B ∈ B.

In other words, question Q(A,ΩA) is answered in the negative
if and only if Q(B,ΩB) is answered in the positive.
Thus, we do not need two separate oracles for A and B;
it is sufficient to have one, say, for A.
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Determining a lexmax edge AL in polynomial time.

Recall that multi-hypergraph A may contain several lexmax edges AL,
but obviously they are all equal.

Fix an arbitrary linear order ≻ over Ω.

Wlog we can assume that Ω = {ω1, . . . , ωp} and ω1 ≺ · · · ≺ ωp.

Step 1: Consider Ω1
t = {ωt , . . . , ωp} and, by asking question Q(A,Ω1

t )

for t = 1, . . . , p, find the maximum t1 for which the answer is still positive.

Then, ωt1 belongs to AL, while ω1, . . . , ωt1−1 do not.

Step 2: Consider Ω2
t = {ωt1 , ωt1+t , . . . , ωp} and, by asking question Q(A,Ω2

t )

for t = 1, . . . , p − t1, find the maximum t2 for which the answer is still positive.

Then, ωt1 , ωt1+t2 ∈ AL, while ωt ̸∈ AL for any other t < t1 + t2.
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Step 3: Consider Ω3
t = {ωt1 , ωt1+t2 , ωt1+t2+t , . . . , ωp} and,

by asking question Q(A,Ω3
t ) for t = 1, . . . , p − (t1 + t2),

find the maximum t3 for which the answer is still positive.

Then, ωt1 , ωt1+t2 , ωt1+t2+t3 ∈ AL, while ωt ̸∈ AL for any other t < t1 + t2 + t3;
etc.

We obtain a lexmax edge AL in at most p polynomial iterations.

Note that on each step i we can speed up the search of ti by applying
dichotomy.
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Determining an edge BM

First, find a lexmax edge AL ∈ A and choose an arbitrary ω∗ ∈ AL.
We look for an edge BM ∈ B such that AL ∩ BM = {ω∗} and ω∗ ≻ ω for every
ω ∈ BM \ {ω∗}. In other “words",

BM ⊆ ΩB = Ω \ [(AL \ {ω∗}) ∪ {ω | ω ≻ ω∗}].

By Theorem 2, such BM exists and, hence, the oracle answers Q(B,ΩB) in the
positive, or equivalently, Q(A,Ω \ ΩB) in the negative. We could take any
BM ∈ B such that BM ⊆ ΩB . Yet, multi-hypergraph B is not given explicitly.

To get BM we need “to minimize" ΩB . To do so, let us delete its elements one
by one in some order until we obtain a minimum set Ω∗

B for which the answer
to Q(A,Ω \ Ω∗

B) is still negative, that is, answers to Q(A,Ω \ (Ω∗
B \ {ω})

become positive for every ω ∈ Ω∗
B . Then, we set BM = Ω∗

B .
Again we can speed up the procedure by applying dichotomy.

Note that the above reduction procedure may be not unique, since we can
eliminate elements of Ω \ ΩB in an arbitrary order. Thus, in contrast to AL,
there may be several not equal edges BM satisfying all conditions of Theorem 2.

V. Gurvich Computing lexicographically safe Nash equilibria in finite two-person games 36



Lexicographically safe NE in games with tight game forms

Summary

First, we apply Theorem 2 to finish the proof of Theorem 1. It remains to show
that (i) ⇐ (iv), that is, tightness implies Nash-solvability. In other words, a
game (g ; u,w) has a NE for any payoffs u and w whenever game form g is
tight. The proof is constructive: we will obtain two special types of NE.

Given g and u, choose a lexmax strategy x ∈ X of Alice. By Theorem 2, there
is a strategy y ∈ Y of Bob such that (x , y) is a NE. By definition, y must be a
best response to x such that x is also a best response to y . By Theorem 2, the
obtain situation (x , y) is simple and both strategies, x and y are minimal.
More precisely, x must be minimal, while y can be chosen minimal. These NE
will be called lexsafe NE of Alice and the set of these NE will denoted by NE-A.
Similarly, we define a set NE-B of Bob’s lexsafe NE.
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Remark
We assume that both players are maximizers and adjective “lexsafe" can be
replaced by “lexmax". If both players are minimizers then it can be replaced
by “lexmin". In the zero-sum case Alice is the maximizer, while Bob is the
minimizer. Flexible term lexsafe may replace both, lexmax or lexmin.

Previous results provide a polynomial algorithm determining at least one NE
from NE-A and at least one from NE-B (which may coincide) in a given game
(g ; u,w) with a tight game form g . This is trivial when g is given explicitly.
Yet, the algorithm works when one of two multi-hypergraphs A(g) or B(g) is
given by a polynomial containment oracle.
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Lexicographically safe strategies of players

Given g and preference ≻A of Alice, let us introduce the lexicographical
pre-order over Alice’s strategies x ∈ X as follows. Consider lexicographical
order ≻ℓ

A over 2Ω defined by the linear order ≻A over Ω. The larger is the
support g(x) ⊆ Ω in order ≻ℓ

A, the safer is strategy x for Alice, while strategies
with the same support are equally safe. Alice’s strategies that maximize
support g(x) in order ≻ℓ

A will be called her lexmax (or lexsafe) strategies.

In particular, all lexmax strategies have the same support.

Furthermore, a lexsafe strategy is minimal. Indeed, x is safer than x ′ whenever
g(x) ⊂ g(x ′) and containment is strict.

Note also that Alice’s lexsafe strategies are defined by g and ≻A, while Bob’s
preference ≻B is irrelevant. Alice may be even unaware of it, which is
important for applications.
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Similarly, using y ∈ Y and ≻B instead of x and ≻A, we define Bob’s lexsafe
strategies. Respectively, they depend only on g and ≻B , while ≻A is irrelevant.

The concept of a lexsafe strategy can be viewed as a refinement of the classical
concept of a safe (maxmin) strategy. The latter optimizes the worst case
scenario outcome, while lexsafe strategies optimize the whole set of outcomes
in the lexicographical order defined above.

Thus, lexsafe strategies are safest, but sometimes may be not rational. For
example, let g(x) = {ω}, g(x ′) = {ω, ω′} and ω ≺A ω

′. Then x ≻A x ′,
although strategy x ′ is better for Alice than x . Indeed, x ′ gives her a chance to
obtain the better outcome ω′, while x excludes ω′ and ensures ω; see Remark 5.
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Consider a preference over Ω such that outcomes ω, ω′ ∈ Ω are, respectively,
the worst and the best outcomes for both Alice and Bob simultaneously.
Consider a game form g : X × Y → Ω having two strategies x∗ ∈ X and
y∗ ∈ Y such that g(x , y) = ω if and only if x = x∗ or y = y∗ and g(x , y) = ω′

otherwise. Then, x∗ and y∗ are the only lexsafe strategies of Alice and Bob;
furthermore, situation (x∗, y∗) is a unique lexsafe NE, but outcome
g(x∗, y∗) = ω is worse than ω′ for both players. One can view this as a price of
stability. For comparison, recall that NE may be not Pareto optimal.
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Lexsafe Nash equilibria in games with tight game forms

Recall that game form g : X × Y → Ω is tight if and only if its hypergraphs
A = A(g) = {g(x) | x ∈ X} and B = B(g) = {g(y) | y ∈ Y } are dual.

Given a game (g ;≻A,≻B) with a tight game form g , choose any lexsafe
strategy xL of Alice. By Theorem 2 it is minimal. Let us show that there exists
a strategy yM of Bob such that (xL, yM) is a NE. By definition, yM is a best
response to xL, that is, g(xL, yM) ⪰B g(xL, y) for any y ∈ Y . (Note, however,
that the preference is not strict, because for some y two outcomes may
coincide: g(xL, yM) = g(xL, y).) Let us apply Theorem 2 setting

g(xL) = AL, g(yM) = BM , g(xL, yM) = ω∗,

and conclude that there exists a (minimal) strategy yM such that xL, in its
turn, is a best response to yM . Thus, (xL, yM) is a NE. Theorem 1 is proven.
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Moreover, we can strengthen it summarizing remarkable properties of the
obtained NE. Recall that in Theorem 2 both edges AL and BM are minimal and
AL ∩ BM = {ω∗}. Hence, for the obtained NE (xL, yM) both strategies xL and
yM are minimal and situation (xL, yM) is simple, that is,
g(xL) ∩ g(yM) = {ω∗}; see [Gur89]. More precisely, X L must be minimal,
while Y L can be chosen minimal.

Denote by X L the set of all lexmax strategies of Alice. By definition, they all
have the same support. Let us fix xL ∈ X L and denote by YM(xL) the set of all
Bob’s best responses to xL. In fact, YM(xL) does not depend on xL provided
xL ∈ X L. Indeed, set g(xL) is unique, that is, the same for all xL ∈ XL and
g(xL) ∩ g(yM) = ω∗ for all yM ∈ YM(x ′L) and for all x ′L ∈ X L. Hence, yM(xL)

is a best response of Bob to each Alice’s lexmax strategy. Denote by yM the
set of all such best responses.
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Thus, we obtain X L ⊆ X and YM ⊆ Y such that for any pair xL ∈ X L and
yM ∈ YM situation (xL, yM) is simple, g(xL, yM) = {ω∗}, and (xL, yM) is a
NE, because X L is a best response to YM and vice versa.

In other words, the direct product NE-A = (xL × yM) ⊆ X × Y consists of
simple NE situations corresponding to the same outcome ω∗ ∈ Ω. Furthermore,
all strategy of X L are lexsafe and, hence, minimal, while YM contains minimal
strategies. We will call NE-A the box of Alice’s lexsafe equilibria.
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By construction, X L depends only on Alice’s preference ≻A, while Bob’s
preference ≻B is irrelevant and Alice may be just unaware of it, which is
important for applications. In contrast, YM is a set of some (special) Bob’s
best responses to X L, which are the same for all xL ∈ X L.

Swapping the players, we obtain the box of Bob’s lexsafe equilibria NE-B
= (xM × yL) ⊆ X × Y with similar properties. Thus, we can strengthen
Theorem 1 as follows:

Theorem

Every game (g ;≻A,≻B) with a tight game form g has two non-empty boxes
of lexmax equilibria NE-A = X L × YM and NE-B = XM × Y L

of Alice and Bob satisfying the above properties.

Boxes NE-A and NE-B may intersect or even coincide. For example, this always
happens in the sero-sum case. Then X L and XM are maxmin strategies of Alice,
while YM and Y L are minmax strategies of Bob. More detail can be found in
the first arXiv version of this paper [GN21]. NE-A and NE-B may be equal in
the non-zero-sum case too. For example a game may have a unique NE.
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A pair of lexsafe strategies of Alice and Bob may be not a NE

For example, consider tight game form g1 in Figure 1.
Define preferences ≻A and ≻B such that ω2 ≻A ω1 ≻A ω3 and ω2 ≻B ω3.
It is easily seen that x1 and y1 are lexsafe strategies of Alice and Bob,
respectively. Yet, situation (x1, y1) is not an NE. Alice can improve her result
g1(x1, y1) = ω1 by switching to x2 and getting g(x2, y1) = ω2.
Thus, two lexsafe strategies, of Alice and Bob, do not form an NE.
However, sets NE-A and NE-B are not empty, in accordance with Theorem 3:
NE-A = {(x2, y1)} and NE-B = {(x1, y2)}.
The corresponding NE outcomes are ω1 and ω2, respectively.

Note that ω2 is the best outcome for both players if ω2) ≻B ω1.
In this case NE-B is not Pareto-optimal.
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Remark
One could conjecture that each player prefers lexsafe NE of the opponent to
his/her own. Such result would be similar to the analogous one from the
matching theory; see, for example, [GI89].
There are two types of stable matchings given by the Gale-Shapley algorithm
[GS62], depending on men propose to women or vice versa.
Yet, this conjecture is disproved by the above example.
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Computing lexsafe NE in polynomial time

If game form g : X × Y → Ω is given explicitly then to find all its NE is simple:
one can just consider all situations (x , y) ∈ X × Y one by one verifying Nash’s
definition for each of them. Yet, in applications g is frequently given by an
oracle O such that size of g is exponential in size |O| of this oracle.
Then, the straightforward search for NE suggested above becomes not efficient.

Four such oracles will be considered in the next section.

The following three properties of oracle O will allow us to construct
an algorithm computing two lexsafe NE (from NE-A and NE-B, respectively)
for a given game (g ;≻A,≻B) with tight game form g = g(O) realized by O, in
time polynomial in |O|.

(I) Oracle O contains explicitly all outcomes Ω of g .
(In contrast, the strategies x ∈ X and y ∈ Y may be implicit in O;
moreover, |X | and |Y | may be exponential in |O|.)

(II) The game form g = g(O) defined by O is tight.
(III) Every ±1 game (g(O); ΩA,ΩB) can be solved in time polynomial in |O|.
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Requirement (III) needs a discussion.

By tightness of g , exactly one of the following two options holds:

(a) there exists x ∈ X with g(x) ⊆ ΩA (Alice wins);
(b) there exists y ∈ Y with g(y) ⊆ ΩB (Bob wins).

Note that (a) (respectively, (b)) holds if and only if the monotone Boolean
function corresponding to multi-hypergraph A(g) (respectively, B(g))
takes value 1; see Remark 6.

To solve a ±1 game we determine which option, (a) or (b), holds and output a
winning strategy, x or y , respectively.

Note that it is possible to output a minimal winning strategy whenever (III)
holds. Indeed, suppose Alice wins and we output her winning strategy x , with
g(x) ⊆ ΩA. Reduce ΩA by one outcome ω by moving it to ΩB , solve the
obtained ±1 game, and repeat the procedure for all ω ∈ ΩA. If Bob wins in all
obtained games then x is already minimal. Otherwise we can move an outcome
ω from ΩA to ΩB and Alice still wins. Repeating, we obtain a minimal winning
strategy of Alice (in the original game) in at most |ΩA| steps. We can speed up
the above procedure using dichotomy. The same works for Bob.
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Theorems 1–3 immediately imply the following statement.

Theorem

Given an oracle O satisfying requirements (I,II,III), a lexsafe NE of Alice
(and of Bob, as well) exists and can be computed in time polynomial in
|O|.
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