• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

125319, Moscow,
3 Kochnovsky Proezd (near metro station 'Aeroport'). 

Phone: +7 (495) 772-95-90 *12332

Email: computerscience@hse.ru



Dean Ivan Arzhantsev

First Deputy Dean Tamara Voznesenskaya

Deputy Dean for Research and International Relations Sergei Obiedkov

Deputy Dean for Methodical and Educational Work Ilya Samonenko

Deputy Dean for Development, Finance and Administration Irina Plisetskaya

Branching rules related to spherical actions on flag varieties
In press

Roman Avdeev, Petukhov A.

Algebras and Representation Theory. 2019.

Minimax theorems for American options without time-consistency

Belomestny D., Kraetschmer V., Hübner T. et al.

Finance and Stochastics. 2019. Vol. 23. P. 209-238.

Separable discrete functions: Recognition and sufficient conditions

Boros E., Cepek O., Gurvich V.

Discrete Mathematics. 2019. Vol. 342. No. 5. P. 1275-1292.

Cherenkov detectors fast simulation using neural networks

Kazeev N., Derkach D., Ratnikov F. et al.

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2019.

Book chapter
Averaging Weights Leads to Wider Optima and Better Generalization

Izmailov P., Garipov T., Подоприхин Д. А. et al.

In bk.: Proceedings of the international conference on Uncertainty in Artificial Intelligence (UAI 2018). 2018. P. 876-885.

Colloquium: Computational cognitive neuroscience: A brief primer. Speaker: Joseph MacInnes, HSE

Event ended

September 11, 18:10 – 19:30
Kochnovskii proezd, 3, room 205

Joseph MacInnes

Head of vision modelling lab / HSE

Computational cognitive neuroscience: A brief primer

Computational models in psychology and neuroscience share many algorithms with machine learning, machine vision and artificial intelligence, but the focus of the research is different. Where applied fields try to create algorithms that solve or automate a specific problem, computational modelling uses these algorithms to better understand fundamental workings of human brain and cognition. Rather than optimizing a new process, we try to simulate and understand an existing process. While computational modelling is still a growing field, there have emerged a number of contenders that perform very well in simulating various neural and cognitive processes. Diffusion models of decision making, salience models of vision and more recently deep learning models of object classification have all shown promise on their respective tasks. This talk will give an overview of a number of these models and discuss possible points of overlap with computer science and cognitive psychology.