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Extensions

Extendibility problem

Given a projective (irreducible) variety X ⊂ Pn, when does there exist a
projective variety Y ⊂ Pn+1, not a cone, of which X is a hyperplane section?

X = Y ∩ Pn.

Definition

• Given a positive integer r , an r -extension of X ⊂ Pn is a variety
Y ⊂ Pn+r having X as a section by a linear space.

• The variety X is r -extendable if it has an r -extension that is not a cone,

• The variety X is extendable if it is at least 1-extendable.
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Motivations

Theorem (C. Segre)

Let C ⊆ Pn−1 be a smooth linearly normal and non-degenerate curve of
genus g > 0. Assume there exists a scroll Σ ⊆ Pn such that C is a
hyperplane section of Σ. Then the scroll Σ is necessarily a cone.

Definition

• Surface S is a ruled surface if S is surface equipped with a locally trivial
morphism S → C onto a smooth curve whose fibres are P1.

• Surface S is scrolls if it is a ruled surface embedded in some projective
space in such a way that the fibres are lines.

1

1
C. Segre, Ricerche sul le rigate el littiche di qualunque ordine, Atti Accad. Sci. Torino 21 (1885–86), 628–651.
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Curves of degree d ≥ 4g − 4

Theorem (R. Hartshorne)

Let C be a smooth curve of genus g, sitting in a smooth surface S. If C2 > 4g + 5, then S is a ruled surface having
C as a section.
If C2 = 4g + 5, the only other possibility is that C is a cubic curve in S = P2.

Theorem (C. Ciliberto and T. Dedieu)

Let S ⊆ Pr+1 be a nondegenerate irreducible, projective surface of degree d ⩾ 4g − 4, and whose general
hyperplane section C is smooth, of genus g ⩾ 2, and linearly normal. If S is not a cone, then one of the following
holds:

• S is the image by the Veronese map v2 of a cone over an elliptic normal curve of degree g − 1, and the
hyperplane sections of S are bielliptic bicanonical curves;

• S is a rational surface represented by a linear system of plane δ-ics, 4 ⩽ δ ⩽ 6;

• S is the image by the Veronese map v2 of a Del Pezzo surface;

• S is a rational surface with hyperelliptic sections, represented by a linear subsystem of
|2H + (g + 1 − e)F | on Fe ;

• S is a rational surface with trigonal sections, represented by a linear subsystem of
∣∣∣3H + 1

2 (g − 3e + 2)F
∣∣∣

on Fe .

2 3

2
R. Hartshorne, Curves with high self-intersection on algebraic surfaces, Inst. Hautes Etudes Sci. Publ. Math.

(1969), no. 36, 111-125.
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C. Ciliberto and T. Dedieu Extensions of curves with high degree with respect to the genus, Épijournal de
Géométrie Algébrique, special volume in honour of C. Voisin, article no. 16 (2024)
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Curves of degree d < 4g − 4

Open problem (C. Ciliberto and T. Dedieu)

Let S ⊆ Pr+1 be a nondegenerate irreducible, projective surface of degree
d < 4g − 4, and whose general hyperplane section C is smooth, of genus
g ⩾ 2, and linearly normal. When is S not a cone?

g = 3 C. Ciliberto and T. Dedieu 4

g = 4 ??

g = 5 Main topic in this talk

Open Problem

How many ways can a smooth curve (C, η) of degree d genus 5 extend to a
surface S such that C ∈ |H| and ωS ⊗OC = η?

4
C. Ciliberto and T. Dedieu Extensions of curves with high degree with respect to the genus, Épijournal de

Géométrie Algébrique, special volume in honour of C. Voisin, article no. 16 (2024)
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General curves

Theorem (d ≥ 12)

Let C ⊆ Pd−5 be a smooth irreducible nondegenerate linearly normal general
curve of genus 5 and degree d. Then C is not extendable if d ≥ 12.

Theorem (d = 11)

1) A smooth general curve C of degree 11 and genus 5 in P6, with a
divisor η ∈ Pic0(C), can be extended at most 3 steps.

2) Let (C, η) be a smooth general curve in P6 of degree 11, genus 5 with a
divisor η ∈ Pic0(C). Then there exists a unique family of 1-extensions S
of (C, η) with K 2

S = −1.

3) Let (S,H) be a general, non-degenerate projective surface in P7 of
degree 11, sectional genus 5, and K 2

S = −1. Then the surface S
possesses only a two-step extension pathway.
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General curves

Theorem (d = 10)

1) General curves C of degree 10 and genus 5 in P5 exhibit two distinct
extension pathways. One of these pathways involves three steps, while
the other comprises just two steps.

2) Let (C, η) be a smooth general curve in P5 of degree 10, genus 5 with a
divisor η ∈ Pic0(C). Then there exists a unique family of 1-extensions S
of (C, η) with K 2

S = −2.

3) Let (S,H) be a general, non-degenerate projective surface in P6 of
degree 10, sectional genus 5 and K 2

S = −2. Then the surface S exhibits
two distinct extension pathways. One of these pathways involves two
steps, while the other comprises just one step.

Hoang Le Truong, Curves of genus 5 7/18



General curves

Theorem (d = 9)

1) General curves C of degree 9 and genus 5 in P4 exhibit three distinct extension
pathways. Two of these pathways involve three steps, while the other comprises just
one step.

2) Let (C, η) be a smooth general curve in P4 of degree 9, genus 5 with a divisor

η ∈ Pic0(C). Then

a) there is a unique family of an 1-extension S of (C, η) with K 2
S = −3,

b) there is a unique family of an 1-extension S of (C, η) with K 2
S = −1,

and no other.

3) Let (S,H) be a general, non-degenerate projective surface in P5 of degree 9 sectional
genus 5. Then where K 2

S = −1, the surface S is not extendable. However, if
K 2

S = −3, the surface exhibits two distinct extension pathways, each comprising two
steps.

Hoang Le Truong, Curves of genus 5 8/18



Trigonal Curves

Theorem (d ≥ 10)

1) Trigonal curves C of degree d and genus 5 in P4 have only a
17 − d-step extension pathway, for 10 ≤ d ≤ 15.

2) Let C be trigonal curve of degree d and genus 5 in Pd−g for
10 ≤ d ≤ 15. Then there is a variety Σ in P12 of dimension 18 − d,
degree d and sectional genus 5, not a cone, having C as a linear
section, and satisfying the following property: the surface linear
sections of Σ containing C are in one-to-one correspondence with the
surface extensions of C in Pd−g+1 that are not cones.

3) Let (S,H) be a general non-degenerate projective surface of degree
d ≥ 10 sectional genus 5 and K 2

S = d − 13. Then the surface S has
only a 16 − d-step extension pathway. In particular, there exists a
variety Σ ⊂ P12 of dimension 18 − d with S as a section through a linear
space and satisfying the following property: the threefold linear sections
of Σ containing S are in one-to-one correspondence with the threefold
extensions of S in Pd−g+2 that are not cones.
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Trigonal curves

Theorem (Trigonal curves of degree 9)

1) Trigonal curves C of degree 9 and genus 5 in P4 exhibit two distinct extension
pathways. One involves a single step, while the other comprises seven steps.

2) Let (C, η) be a smooth trigonal curve in P4 of degree 9, genus 5 with a divisor
η ∈ Pic0(C). Then

a) there is a unique family of an 1-extension S of (C, η) with K 2
S = −4,

b) there is a unique family of an 1-extension S of (C, η) with K 2
S = −1,

and no other.

3) Let (S,H) be a smooth trigonal non-degenerate projective surface in P5 of
degree 9 sectional genus 5 and K 2

S = −1. Then the surface S are not
extendable.

4) Let (S,H) be a smooth trigonal non-degenerate projective surface in P5 of
degree 9 sectional genus 5 and K 2

S = −4. Then the surface S only has a 7-step
extension pathway. Furthermore, there exists a variety Y4 ⊂ P12 with S as a
section through a linear space and satisfying the following property: the threefold
linear sections of Σ containing S are in one-to-one correspondence with the
threefold extensions of S in P6 that are not cones.
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Calabi-Yau varieties

• X : a closed subscheme in Pn of codimension c.

• R : the polynomial ring k [x0, . . . , xn] over an algebraically closed field k .

• A(X ) = R/IX : the coordinate ring of X .

• ωA(X) : the canonical module of X .

• E : coherent sheaf on X .

• H i
•(E) =

⊕
m∈Z

H i(X , E(m)).

Definition 1

A smooth threefold X is Calabi-Yau if

KX ≃ OX and H1 (OX ) = H2 (OX ) = 0.
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Examples

Definition 1

A smooth threefold X is Calabi-Yau if

KX ≃ OX and H1 (OX ) = H2 (OX ) = 0.

• A quintic hypersurface in P4.

• When X is a complete intersection (CI) of type {d1, . . . , dn−3} ⊆ Pn we
have

KX ≃ OX

(
−n − 1 +

∑
di

)
So a complete intersection Calabi-Yau (CICY) threefold in Pn must have
{d1, . . . , dn−3} satisfying

{5} in P4

{2, 4} in P5

{3, 3} in P5

{2, 2, 3} in P6

{2, 2, 2, 2} in P7
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Problems
• Calabi-Yau threefolds X ⊆ P6 giving the complete classification of the

examples of degree d ≤ 14 (Kapustka G., Kapustka M. 2013)

• If X is Calabi-Yau threefolds in P6 then 11 ≤ d(X ) ≤ 41.

Problem 1 (Okonek)

Classify the Calabi-Yau threefolds in P6

• All smooth threefolds (so also all Calabi-Yau threefolds) can be
smoothly projected to P7.

Problem 2 (Coughlan-Golebiowski-Kapustka-Kapustka (CGKK) 2016)

Classify the Calabi-Yau threefolds X in P7 such that X is ACM.

• A closed subscheme X ⊂ Pn
k is arithmetically Cohen-Macaulay (ACM),

if RX = R/IX is a Cohen-Macaulay ring.

• A closed subscheme X ⊂ Pn
k is arithmetically Gorenstein, if X is ACM

and
∃ a ∈ Z : ωRX

∼= RX (a).
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arithmetically Gorenstein

Theorem (Goto-Watanabe, 1978)

Let X be a projective variety and D an ample divisor.
Set R = R(X ,D) =

⊕
m≥0

H0(X ,mD), the corresponding graded ring, so that X = ProjR.

If R is Cohen-Macaulay then:

(i) H i (X ,OX ) = 0 for 0 < i < dimX ;

(ii) R is Gorenstein if and only if KX = kD for some integer k .

Problem 2’ (Coughlan-Golebiowski-Kapustka-Kapustka (CGKK) 2016)

Classify the Gorenstein Calabi-Yau threefolds X in P7.

Remark

• 14 ≤ deg X ≤ 20.

• The Hodge numbers of X :

hi,j(X) := dimC H j
(

X ,Ωi
X

)
, 0 ≤ i, j ≤ d .

Then we may characterize a Calabi-Yau variety of dimension d in terms of its Hodge
numbers.
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List of Coughlan-Golebiowski-Kapustka-Kapustka

No. Deg. h1,1 h1,2 Description cite
1 14 2 86 (2, 4) divisor in P1 × P3 Kapustka G.
2 15 1 76 G(2, 5) ∩ X3 ∩ P7 Bertin
3 16 1 65 X2,2,2,2

4 17 1 55 bilinked on Y2,2,2 to P3 Bertin
5 17 2 58 2 × 2 minors of a 3 × 3 matrix with degrees Bertin 1 1 1

1 1 1
2 2 2


6 17 2 54 rolling factors, codim 2 in cubic scroll CGKK
7 18 1 46 bilinked on Y2,2,3 ⊂ P7 to F1 Kapustka G.
8 18 1 45 bilinked on Y2,2,3 ⊂ P7 to F2 Kapustka G.
9 19 2 37 bilinked on special P13 to F1 CGKK
10 19 2 36 bilinked on special P13 to F2 CGKK
11 20 2 34 3 × 3 minors of 4 × 4 matrix with linear forms in P7 Bertin

Problem (Coughlan-Golebiowski-Kapustka-Kapustka, 2016)

Does Table give the complete classification of a Gorenstein Calabi-Yau smooth threefolds in
P7?
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Main theorems

Theorem 1

There are a new family of smooth Gorenstein Calabi-Yau threefolds X in P7

with
deg(X ) = 19 and h1,1(X ) = 1 and h1,2 = 35.

No. Deg. h1,1 h1,2 Description cite
1 14 2 86 (2, 4) divisor in P1 × P3 Kapustka G.
2 15 1 76 G(2, 5) ∩ X3 ∩ P7 Bertin
3 16 1 65 X2,2,2,2

4 17 1 55 bilinked on Y2,2,2 to P3 Bertin
5 17 2 58 2 × 2 minors of a 3 × 3 matrix with degrees Bertin 1 1 1

1 1 1
2 2 2


6 17 2 54 rolling factors, codim 2 in cubic scroll CGKK
7 18 1 46 bilinked on Y2,2,3 ⊂ P7 to F1 Kapustka G.
8 18 1 45 bilinked on Y2,2,3 ⊂ P7 to F2 Kapustka G.
9 19 2 37 bilinked on special P13 to F1 CGKK
10 19 2 36 bilinked on special P13 to F2 CGKK
11 19 1 35 deformation
12 20 2 34 3 × 3 minors of 4 × 4 matrix with linear forms in P7 Bertin
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Deformations of Calabi-Yau threefolds

0 1 2 3 4
0 1 · · · ·
1 · 1 · · ·
2 · 12 24 12 ·
3 · · · 1 ·
4 · · · · 1

0 1 2 3 4
0 1 · · · ·
1 · 1 · · ·
2 · 4 · · ·
3 · · 4 · ·
4 · · 15 24 9

• Let X be Calabi-Yau threefold with h1,1(X) = 1 and h2,1(X) = 38. Then

(A + φ) ◦ (B + ψ) = 0.

• P7 ∪ P14 = V (AB) ⊂ P16.

• Writing I/I2 for both the graded S-module and the sheaf, by local duality

h1
(

I/I2
)
= dimExtn−1

(
I/I2,S

)
−n−1

= 0 and h2
(

I/I2
)
= dimExtn−2

(
I/I2,S

)
−n−1

= 0

•
h1,1(X) = h2

(
I/I2

)
− h1

(
I/I2

)
+ 1 = 1.

• Euler characteristic X is 34. Thus h2,1(X) = 35.

• X is smooth.
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Thank you for your attention

Hoang Le Truong, Curves of genus 5 18/18


