Calabi-Yau threefolds in \mathbb{P}^7 and extensions of curves of genus 5

Hoang Le Truong

Institute of Mathematics, VAST, Hanoi, Vietnam

The field seminar "Flexibility and Computational Methods II", 2024

December 21, 2024

Extendibility problem

Given a projective (irreducible) variety $X \subset \mathbb{P}^n$, when does there exist a projective variety $Y \subset \mathbb{P}^{n+1}$, not a cone, of which *X* is a hyperplane section?

 $X = Y \cap \mathbb{P}^n$.

Definition

- Given a positive integer *r*, an *r*-extension of X ⊂ Pⁿ is a variety Y ⊂ P^{n+r} having X as a section by a linear space.
- The variety X is r-extendable if it has an r-extension that is not a cone,
- The variety X is extendable if it is at least 1-extendable.

Theorem (C. Segre)

Let $C \subseteq \mathbb{P}^{n-1}$ be a smooth linearly normal and non-degenerate curve of genus g > 0. Assume there exists a scroll $\Sigma \subseteq \mathbb{P}^n$ such that C is a hyperplane section of Σ . Then the scroll Σ is necessarily a cone.

Definition

- Surface S is a ruled surface if S is surface equipped with a locally trivial morphism $S \to C$ onto a smooth curve whose fibres are \mathbb{P}^1 .
- Surface *S* is scrolls if it is a ruled surface embedded in some projective space in such a way that the fibres are lines.

¹

¹ C. Segre, Ricerche sul le rigate el littiche di qualunque ordine, Atti Accad. Sci. Torino 21 (1885–86), 628–651.

Theorem (R. Hartshorne)

Let C be a smooth curve of genus g, sitting in a smooth surface S. If $C^2 > 4g + 5$, then S is a ruled surface having C as a section. If $C^2 = 4g + 5$, the only other possibility is that C is a cubic curve in $S = \mathbb{P}^2$.

Theorem (C. Ciliberto and T. Dedieu)

Let $S \subseteq \mathbb{P}^{r+1}$ be a nondegenerate irreducible, projective surface of degree $d \ge 4g - 4$, and whose general hyperplane section C is smooth, of genus $g \ge 2$, and linearly normal. If S is not a cone, then one of the following holds:

- S is the image by the Veronese map v₂ of a cone over an elliptic normal curve of degree g 1, and the hyperplane sections of S are bielliptic bicanonical curves;
- S is a rational surface represented by a linear system of plane δ-ics, 4 ≤ δ ≤ 6;
- S is the image by the Veronese map v₂ of a Del Pezzo surface;
- S is a rational surface with hyperelliptic sections, represented by a linear subsystem of |2H + (g + 1 − e)F| on F_e;
- S is a rational surface with trigonal sections, represented by a linear subsystem of |3H + ½(g − 3e + 2)F| on F_e.

23

³ C. Ciliberto and T. Dedieu *Extensions of curves with high degree with respect to the genus*, Épijournal de Géométrie Algébrique, special volume in honour of C. Voisin, article no. 16 (2024)

² R. Hartshorne, *Curves with high self-intersection on algebraic surfaces*, Inst. Hautes Etudes Sci. Publ. Math. (1969), no. 36, 111-125.

Open problem (C. Ciliberto and T. Dedieu)

Let $S \subseteq \mathbb{P}^{r+1}$ be a nondegenerate irreducible, projective surface of degree d < 4g - 4, and whose general hyperplane section *C* is smooth, of genus $g \ge 2$, and linearly normal. When is *S* not a cone?

- g = 3 C. Ciliberto and T. Dedieu ⁴
- *g* = 4 ??
- g = 5 Main topic in this talk

Open Problem

How many ways can a smooth curve (C, η) of degree *d* genus 5 extend to a surface *S* such that $C \in |H|$ and $\omega_S \otimes \mathcal{O}_C = \eta$?

⁴ C. Ciliberto and T. Dedieu *Extensions of curves with high degree with respect to the genus*, Épijournal de Géométrie Algébrique, special volume in honour of C. Voisin, article no. 16 (2024)

Theorem ($d \ge 12$)

Let $C \subseteq \mathbb{P}^{d-5}$ be a smooth irreducible nondegenerate linearly normal general curve of genus 5 and degree d. Then C is not extendable if $d \ge 12$.

Theorem (d = 11)

- A smooth general curve C of degree 11 and genus 5 in P⁶, with a divisor η ∈ Pic⁰(C), can be extended at most 3 steps.
- Let (C, η) be a smooth general curve in P⁶ of degree 11, genus 5 with a divisor η ∈ Pic⁰(C). Then there exists a unique family of 1-extensions S of (C, η) with K²_S = −1.
- Let (S, H) be a general, non-degenerate projective surface in P⁷ of degree 11, sectional genus 5, and K²_S = −1. Then the surface S possesses only a two-step extension pathway.

Theorem (d = 10)

- General curves C of degree 10 and genus 5 in P⁵ exhibit two distinct extension pathways. One of these pathways involves three steps, while the other comprises just two steps.
- Let (C, η) be a smooth general curve in P⁵ of degree 10, genus 5 with a divisor η ∈ Pic⁰(C). Then there exists a unique family of 1-extensions S of (C, η) with K²_S = −2.
- Let (S, H) be a general, non-degenerate projective surface in ℙ⁶ of degree 10, sectional genus 5 and K²_S = −2. Then the surface S exhibits two distinct extension pathways. One of these pathways involves two steps, while the other comprises just one step.

General curves

Theorem (d = 9)

- General curves C of degree 9 and genus 5 in ℙ⁴ exhibit three distinct extension pathways. Two of these pathways involve three steps, while the other comprises just one step.
- 2) Let (C, η) be a smooth general curve in \mathbb{P}^4 of degree 9, genus 5 with a divisor $\eta \in \operatorname{Pic}^0(C)$. Then
 - a) there is a unique family of an 1-extension S of (C, η) with $K_S^2 = -3$,
 - b) there is a unique family of an 1-extension S of (C, η) with $K_S^2 = -1$,

and no other.

Let (S, H) be a general, non-degenerate projective surface in P⁵ of degree 9 sectional genus 5. Then where K²_S = −1, the surface S is not extendable. However, if K²_S = −3, the surface exhibits two distinct extension pathways, each comprising two steps.

Trigonal Curves

Theorem ($d \ge 10$)

- 1) Trigonal curves C of degree d and genus 5 in \mathbb{P}^4 have only a 17 d-step extension pathway, for $10 \le d \le 15$.
- Let C be trigonal curve of degree d and genus 5 in P^{d-g} for 10 ≤ d ≤ 15. Then there is a variety Σ in P¹² of dimension 18 − d, degree d and sectional genus 5, not a cone, having C as a linear section, and satisfying the following property: the surface linear sections of Σ containing C are in one-to-one correspondence with the surface extensions of C in P^{d-g+1} that are not cones.
- 3) Let (S, H) be a general non-degenerate projective surface of degree d ≥ 10 sectional genus 5 and K_S² = d - 13. Then the surface S has only a 16 - d-step extension pathway. In particular, there exists a variety Σ ⊂ P¹² of dimension 18 - d with S as a section through a linear space and satisfying the following property: the threefold linear sections of Σ containing S are in one-to-one correspondence with the threefold extensions of S in P^{d-g+2} that are not cones.

Trigonal curves

Theorem (Trigonal curves of degree 9)

- Trigonal curves C of degree 9 and genus 5 in P⁴ exhibit two distinct extension pathways. One involves a single step, while the other comprises seven steps.
- 2) Let (C, η) be a smooth trigonal curve in \mathbb{P}^4 of degree 9, genus 5 with a divisor $\eta \in \operatorname{Pic}^0(C)$. Then
 - a) there is a unique family of an 1-extension S of (C, η) with $K_S^2 = -4$,
 - b) there is a unique family of an 1-extension *S* of (C, η) with $K_S^2 = -1$, and no other.
- Let (S, H) be a smooth trigonal non-degenerate projective surface in P⁵ of degree 9 sectional genus 5 and K²_S = −1. Then the surface S are not extendable.
- 4) Let (S, H) be a smooth trigonal non-degenerate projective surface in P⁵ of degree 9 sectional genus 5 and K²_S = −4. Then the surface S only has a 7-step extension pathway. Furthermore, there exists a variety Y₄ ⊂ P¹² with S as a section through a linear space and satisfying the following property: the threefold linear sections of Σ containing S are in one-to-one correspondence with the threefold extensions of S in P⁶ that are not cones.

Calabi-Yau varieties

- *X* : a closed subscheme in \mathbb{P}^n of codimension *c*.
- *R* : the polynomial ring $k[x_0, ..., x_n]$ over an algebraically closed field *k*.
- $A(X) = R/I_X$: the coordinate ring of X.
- $\omega_{A(X)}$: the canonical module of X.
- \mathcal{E} : coherent sheaf on X.

•
$$H^i_{\bullet}(\mathcal{E}) = \bigoplus_{m \in \mathbb{Z}} H^i(X, \mathcal{E}(m)).$$

Definition 1

A smooth threefold X is Calabi-Yau if

$$K_X \simeq \mathcal{O}_X$$
 and $H^1(\mathcal{O}_X) = H^2(\mathcal{O}_X) = 0$.

Examples

Definition 1

A smooth threefold X is Calabi-Yau if

$$K_X \simeq \mathcal{O}_X$$
 and $H^1(\mathcal{O}_X) = H^2(\mathcal{O}_X) = 0$.

- A quintic hypersurface in ℙ⁴.
- When X is a complete intersection (CI) of type {d₁,..., d_{n-3}} ⊆ ℙⁿ we have

$$K_X \simeq \mathcal{O}_X \left(-n-1+\sum d_i\right)$$

So a complete intersection Calabi-Yau (CICY) threefold in \mathbb{P}^n must have $\{d_1, \ldots, d_{n-3}\}$ satisfying

{

Problems

- Calabi-Yau threefolds X ⊆ P⁶ giving the complete classification of the examples of degree d ≤ 14 (Kapustka G., Kapustka M. 2013)
- If X is Calabi-Yau threefolds in \mathbb{P}^6 then $11 \le d(X) \le 41$.

Problem 1 (Okonek)

Classify the Calabi-Yau threefolds in \mathbb{P}^6

• All smooth threefolds (so also all Calabi-Yau threefolds) can be smoothly projected to $\mathbb{P}^7.$

Problem 2 (Coughlan-Golebiowski-Kapustka-Kapustka (CGKK) 2016)

Classify the Calabi-Yau threefolds X in \mathbb{P}^7 such that X is ACM.

- A closed subscheme X ⊂ Pⁿ_k is arithmetically Cohen-Macaulay (ACM), if R_X = R/I_X is a Cohen-Macaulay ring.
- A closed subscheme X ⊂ Pⁿ_k is arithmetically Gorenstein, if X is ACM and

$$\exists a \in \mathbb{Z} : \omega_{R_X} \cong R_X(a).$$

arithmetically Gorenstein

Theorem (Goto-Watanabe, 1978)

Let *X* be a projective variety and *D* an ample divisor. Set $R = R(X, D) = \bigoplus_{m \ge 0} H^0(X, mD)$, the corresponding graded ring, so that $X = \operatorname{Proj} R$. If *R* is Cohen-Macaulay then:

- (i) $H^i(X, \mathcal{O}_X) = 0$ for $0 < i < \dim X$;
- (ii) *R* is Gorenstein if and only if $K_X = kD$ for some integer *k*.

Problem 2' (Coughlan-Golebiowski-Kapustka-Kapustka (CGKK) 2016)

Classify the Gorenstein Calabi-Yau threefolds X in \mathbb{P}^7 .

Remark

- $14 \le \deg X \le 20$.
- The Hodge numbers of X :

$$h^{i,j}(X) := \dim_{\mathbb{C}} H^j\left(X, \Omega^i_X
ight), 0 \leq i, j \leq d.$$

Then we may characterize a Calabi-Yau variety of dimension d in terms of its Hodge numbers.

List of Coughlan-Golebiowski-Kapustka-Kapustka

No.	Deg.	$h^{1,1}$	h ^{1,2}	Description	cite
1	14	2	86	(2, 4) divisor in $\mathbb{P}^1 \times \mathbb{P}^3$	Kapustka G.
2	15	1	76	$G(2,5)\cap X_3\cap \mathbb{P}^7$	Bertin
3	16	1	65	X _{2,2,2,2}	
4	17	1	55	bilinked on $Y_{2,2,2}$ to \mathbb{P}^3	Bertin
5	17	2	58	2×2 minors of a 3×3 matrix with degrees	Bertin
				$\left(\begin{array}{rrrr}1 & 1 & 1\\ 1 & 1 & 1\\ 2 & 2 & 2\end{array}\right)$	
6	17	2	54	rolling factors, codim 2 in cubic scroll	CGKK
7	18	1	46	bilinked on $Y_{2,2,3} \subset \mathbb{P}^7$ to F_1	Kapustka G.
8	18	1	45	bilinked on $Y_{2,2,3} \subset \mathbb{P}^7$ to F_2	Kapustka G.
9	19	2	37	bilinked on special P_{13} to F_1	CGKK
10	19	2	36	bilinked on special P_{13} to F_2	CGKK
11	20	2	34	3×3 minors of 4×4 matrix with linear forms in \mathbb{P}^7	Bertin

Problem (Coughlan-Golebiowski-Kapustka-Kapustka, 2016)

Does Table give the complete classification of a Gorenstein Calabi-Yau smooth threefolds in $\mathbb{P}^7?$

Main theorems

Theorem 1

There are a new family of smooth Gorenstein Calabi-Yau threefolds X in \mathbb{P}^7 with

$$deg(X) = 19$$
 and $h^{1,1}(X) = 1$ and $h^{1,2} = 35$.

No.	Deg.	h ^{1,1}	h ^{1,2}	Description	cite
1	14	2	86	(2, 4) divisor in $\mathbb{P}^1 imes \mathbb{P}^3$	Kapustka G.
2	15	1	76	$\widehat{G}(2,5)\cap X_3\cap \mathbb{P}^7$	Bertin
3	16	1	65	X _{2,2,2,2}	
4	17	1	55	bilinked on $Y_{2,2,2}$ to \mathbb{P}^3	Bertin
5	17	2	58	2×2 minors of a 3×3 matrix with degrees	Bertin
				$\left(\begin{array}{rrrr}1 & 1 & 1\\ 1 & 1 & 1\\ 2 & 2 & 2\end{array}\right)$	
6	17	2	54	rolling factors, codim 2 in cubic scroll	CGKK
7	18	1	46	bilinked on $Y_{2,2,3} \subset \mathbb{P}^7$ to F_1	Kapustka G.
8	18	1	45	bilinked on $Y_{2,2,3} \subset \mathbb{P}^7$ to F_2	Kapustka G.
9	19	2	37	bilinked on special P_{13} to F_1	CGKK
10	19	2	36	bilinked on special P_{13} to F_2	CGKK
11	19	1	35	deformation	
12	20	2	34	3×3 minors of 4×4 matrix with linear forms in \mathbb{P}^7	Bertin

Deformations of Calabi-Yau threefolds

	0	1	2	3	4			0	1	2	3	4
0	1	•	•	•	•	-	0	1	•	•	•	•
1		1	•	•			1	•	1		•	
2		12	24	12			2	•	4		•	
3			•	1			3	•		4	•	
4					1		4			15	24	9

• Let X be Calabi-Yau threefold with $h^{1,1}(X) = 1$ and $h^{2,1}(X) = 38$. Then

$$(\mathbf{A}+\varphi)\circ(\mathbf{B}+\psi)=\mathbf{0}.$$

•
$$\mathbb{P}^7 \cup \mathbb{P}^{14} = V(AB) \subset \mathbb{P}^{16}.$$

• Writing I/I^2 for both the graded S-module and the sheaf, by local duality

$$h^{1}(I/I^{2}) = \dim \operatorname{Ext}^{n-1}(I/I^{2}, S)_{-n-1} = 0 \text{ and } h^{2}(I/I^{2}) = \dim \operatorname{Ext}^{n-2}(I/I^{2}, S)_{-n-1} = 0$$

$$h^{1,1}(X) = h^2(I/I^2) - h^1(I/I^2) + 1 = 1.$$

- Euler characteristic X is 34. Thus $h^{2,1}(X) = 35$.
- X is smooth.

Thank you for your attention