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PART I

Algebraically Generated

Automorphism Group



Basic Facts on Linear Algebraic Groups - I

In this talk we work over an algebraically closed field K of
characteristic zero

Any connected linear algebraic group G has two decompositions:

G = G ss ⋌ Rad(G ), where G ss is a maximal semisimple subgroup
and Rad(G ) is the radical;

G = G red ⋌ Radu(G ), where G red is a maximal reductive subgroup
and Radu(G ) is the unipotent radical



Basic Facts on Linear Algebraic Groups - II

Any connected linear algebraic group G is generated by
one-parameter subgroups, i.e., Gm- and Ga-subgroups

Popov’2011:
G is generated by Ga-subgroups ⇔ G = G ss ⋌ Radu(G )

G is generated by Gm-subgroups ⇔ A’2024 (next slide)

Any connected linear algebraic group G is generated by a maximal
torus T and root subgroups, i.e., T -normalized Ga-subgroups



Algebraic Groups Generated by Seimisimple Elements - I

Proposition (A.’2024)

Let G be a connected linear algebraic group. Then the following
conditions are equivalent:

(a) G is generated by Gm-subgroups;
(b) G is generated by semisimple elements;
(c) any homomorpism G → Ga is trivial;
(d) G has no proper normal subgroup containing G red;
(e) the derived subgroup [G ,G ] equals G ss ⋌ Radu(G ).



Algebraic Groups Generated by Seimisimple Elements - II

Let g = Lie(G ). The nilpotent ideal n = Lie(Radu(G )) of g is a
G red-module with respect to the adjoint action. Let n1 be the sum
of all non-trivial simple G red-submodules in n and s be the
subalgebra in n generated by n1. Set U = exp(s) ⊆ Radu(G )

Theorem (A.’2024)

Let G be a connected linear algebraic group and G sem be the
subgroup of G generated by all semisimple elements. Then

G sem = G red ⋌ U.

Corollary
Let G be a regular subgroup of a reductive group. Then G is
generated by semisimple elements. In particular, any parabolic
subgroup is generated by semisimple elements.



Automorphism Groups of Complete Varieties

Let X be a complete (projective) algebraic variety and Aut(X ) be
the automorphism group

Then Aut(X )0 is an algebraic group (not necassarily linear)

and Aut(X )/Aut(X )0 need not be finitely generated

Theorem (Brion’2012)

Any connected algebraic group over a perfect field is the neutral
component of the automorphism group scheme of some normal
projective variety.



Automorphism Groups of Affine Varieties - I

Theorem (A.’2018, Kraft’2018)

Let X be affine. Assume that Aut(X ) has a structure of a linear
algebraic group such that the action map Aut(X )× X → X is a
morphism. Then either X = A1, or Aut(X ) is finite, or Aut(X ) is
a finite extension of a torus.

Theorem (Jelonek’2015)

Let X be quasi-affine. Assume that Aut(X ) is infinite. Then X is
uniruled, i.e., X is covered by rational curves.

Theorem (Jelonek’2014)

For every k ⩾ 1 and every finite group Γ there is a k-dimensional
smooth affine non-uniruled variety X such that Aut(X ) ∼= Γ.



Automorphism Groups of Affine Varieties - II

Let X be an affine algebraic variety. Then Aut(X ) can be infinite
dimensional, i.e., Aut(X ) contains an algebraic subgroup G of
arbitrary dimension

For example, take X = A2 and (x + f (y), y), deg(f ) < n

More generally, if there is a non-trivial action Ga × X → X and
dimX ⩾ 2, then Aut(X ) is infinite dimensional: we consider
replicas of the Ga-action

It is known that Aut(X ) is an ind-group, i.e., Aut(X ) =
⋃

i Zi and
ZiZj ⊆ Zf (i ,j), where each Zi has a structure of an affine variety



Algebraically Generated Groups

Let X be an algebraic variety. A subgroup H ⊆ Aut(X ) is algebraic
if H admits a structure of an algebraic group such that the action
map H × X → X is a morphism

A subgroup G ⊆ Aut(X ) is algebraically generated if G is
generated by a family of connected algebraic subgroups in Aut(X )

The group of special automorphisms SAut(X ) is the subgroup of
Aut(X ) generated by all Ga-subgroups

It is not known whether the group Aut(An) is algebraically
generated and whether SAut(An) coincides with the group of all
automorphisms with Jacobian 1



Basic Properties of Algebraically Generated Groups

Let X be an algebraic variety and G be an algebraically generated
subgroup in Aut(X ). Then

1) any G -orbit on X is locally closed;

2) there are finitely many rational G -invariants on X that separate
generic G -orbits (Rosenlicht’s Theorem)

3) Kleinman’s Transversality Theorem holds for actions with an
open orbit.



Open Problems Related to Automorphism Groups

The Jacobian Conjecture

The Cancellation Problem

The Rectification Problem

The Linearization Problem

The structure of Aut(An), tame and wild automorphisms



PART II

Flexibility

and
Infinite Transitivity



Multiple and Infinite Transitivity

Definition
Let G be a group, X a set, and m a positive integer. An action
G × X → X is m-transitive if for any two tuples (a1, . . . , am) and
(b1, . . . , bm) of pairwise distinct points on X there is g ∈ G such
that (ga1, . . . , gam) = (b1, . . . , bm).

Definition
An action G × X → X is infinitely transitive if it is m-transitive for
any positive integer m.

Example (of infinite transitivity)

1) Let X be an infinite set and G the group of all permutations
of X
2) Let X be an infinite set and G the group of all permutations
with finite support of X



The Case of Finite Groups

Let X be a finite set witn n elements.

1) The group Sn of all permutations of X is n-transitive

2) The group An of all even permutations of X is (n− 2)-transitive

3) All other finite permutation groups are at most 5-transitive

4) 5-transitive finite groups are precisely the Mathieu groups M12
and M24 and all 4-transitive finite groups are precisely the
Mathieu groups M11 and M23 (1861-1873)

5) There are infinitely many 3-transitive finite permutation groups,
for example, PGL2(Fq) acting on P1(Fq)



The Case of Algebraic Groups

Let G be a connected algebraic group over an algebraically closed
field K acting on an algebraic variety X .

1) Such an action is at most 3-transitive

2) The only 3-transitive action is PGL2(K)-action on P1(K)

3) The action of PGLn+1(K) on Pn(K) for n ⩾ 2 is 2-transitive

4) There is a classification of 2-transitive actions: Borel, Knop,
Kramer,....



The Case of Affine Spaces

Theorem
Over an infinite ground field K , the group Aut(An) is infinitely
transitive on An for any n ⩾ 2.

Idea (n = 2): use parallel translations (x1 + a, x2) , (x1, x2 + b) and
their replicas (x1 + af1(x2), x2) , (x1, x2 + bf2(x1)), where a, b ∈ K .

Example

The group Aut(A1) is isomorphic to K× ⋌ K . It is 2-transitive, but
not 3-transitive on A1.



General Problems

Let X be an affine algebraic variety over an algebraically closed
field K of characteristic zero.
When the group Aut(X ) is infinitely transitive on X?
If X is singular, we ask this question for the smooth locus X reg

Idea: use Ga-subgroups in the group Aut(X ) and their replicas
Recall: SAut(X ) is the subgroup of Aut(X ) generated by all
Ga-subgroups



Locally Nilpotent Derivations

Definition
A derivation D : A → A of an algebra A is locally nilpotent if for
any a ∈ A there is a positive integer k such that Dk(a) = 0.

Locally nilpotent derivations on K[X ] ⇔ Ga-subgroups in Aut(X ):

D ∈ LND(K[X ]) ⇐⇒ exp(KD) ⊆ Aut(X )

If D ∈ LND(A) and f ∈ Ker(D), then fD ∈ LND(A)

Ga-subgroups corresponding to LNDs of the form fD are replicas of
the Ga-subgroup corresponding to D



Flexibility vs Infinite Transitivity

Definition
An affine variety X is flexible if the tangent space Tx(X ) at any
smooth point x ∈ X reg is generated by velocity vectors to orbits of
Ga-subgroups passing through x

Theorem (A.-Flenner-Kaliman-Kutzschebauch-Zaidenberg’2013)

Let X be an irreducible affine variety of dimension ⩾ 2. The
following conditions are equivalent:
(a) the group SAut(X ) acts transitively on X reg;
(b) the group SAut(X ) acts infinitely transitively on X reg;
(c) the variety X is flexible



Examples of Flexible Varieties

• Suspensions Susp(X , f ) given by {uv = f (x)}, f ∈ K[X ] \K, in
A2 × X over a flexible variety X ;

• Non-degenerate (K[X ]× = K×) affine toric varieties;

• Non-degenerate horospherical varieties of reductive groups;

• Homogeneous spaces G/F , where G is semisimple and F is
reductive;

• Normal affine SL(2)-embeddings;

• Affine cones over flag varieties and over del Pezzo surfaces of
degree ⩾ 4



The Gromov-Winkellmann Theorem

Theorem (Flenner-Kaliman-Zaidenberg’2016)

Let X be a flexible quasiaffine variety and Z ⊆ X be a closed
subvariety with codimXZ ⩾ 2. Then X \ Z is flexible.



PART III

Infinite Transitivity

and
Finite Generation



Finite Generation

Conjecture A. Any flexible affine variety X admits a finite
collection H1, . . . ,Hk of Ga-subgroups in Aut(X ) such that the
group G = ⟨H1, . . . ,Hk⟩ acts infinitely transitively on X reg.

Plan of a possible proof:
Step 1. Find G = ⟨H1, . . . ,Hs⟩ that acts transitively on X reg

Step 2. Prove that the closure G of the subgroup G in Aut(X ) in
the ind-topology contains ‘many other’ Ga-subgroups
Step 3. Prove that G acts infinitely transitively on X reg

Step 4. Prove that G acts infinitely transitively on X reg

Implication Step 3 ⇒ Step 4 turns out to be true in general.



A Conjecture on Locally Nilpotent Derivations

To Step 2:

Conjecture B. Let X be an affine variety and A = K[X ]. Consider
the group G = ⟨H1, . . . ,Hk⟩ generated by a finite collection of
Ga-subgroups Hi = exp(KDi ) ⊆ SAut(X ), where Di ∈ LND(A).
Then the Ga-subgroup

H = exp(KD) ⊆ SAut(X ),

where D ∈ LND(A), is contained in G ⇔ D ∈ Lie ⟨D1, . . . ,Dk⟩.



Kraft-Zaidenberg’s Theorem

Theorem (Kraft-Zaidenberg’2024)

Let X be an affine variety. A subgroup G ⊆ Aut(X ) generated by a
family of connected algebraic subgroups Gi is algebraic if and only
if the Lie algebras Lie(Gi ) ⊆ Vec(X ) generate a finite-dimensional
Lie subalgebra in Vec(X ).
In particular, G = ⟨H1, . . . ,Hk⟩ is a linear algebraic group if and
only if Lie ⟨D1, . . . ,Dk⟩ is finite-dimensional.



Root Subgroups and Demazure Roots

Let X be a variety with an action of a torus T . A Ga-subgroup H
in Aut(X ) is called a root subgroup if H is normalized in Aut(X ) by
the torus T . In this case T acts on H by some character e. Such a
character is called a root of the T -variety X .
Assume X is toric with acting torus T . What are the roots of X?
Let p1, . . . , ps be the primitive lattice vectors on rays of the fan ΣX .

Definition
A Demazure root of the fan ΣX in a character e ∈ M such that
there exists 1 ⩽ i ⩽ s with ⟨e, pi ⟩ = −1 and ⟨e, pj⟩ ⩾ 0 for j ̸= i .

Theorem (Demazure’1970)

Let X be a complete or affine toric variety. Then root subgroups on
X are in bijection with Demazure roots of the fan ΣX .



The Toric Case

Theorem (A.-Kuyumzhiyan-Zaidenberg’2019)

For any non-degererate affine toric variety X of dimension at
least 2, which is smooth in codimention 2, one can find root
subgroups H1, . . . ,Hk such that the group G = ⟨H1, . . . ,Hk⟩ acts
infinitely transitively on the smooth locus X reg.

In the proof we use Cox rings and the quotient presentation
π : As → X by an action of a quasitorus.



Finite Generation for Affine Spaces - I

Theorem (Bodnarchuk’2001)

For any n ⩾ 3 and any triangular h ∈ Aut(An) \ Affn we have
⟨Affn, h⟩ = Tamen.

Corollary

For any n ⩾ 3 and any non-affine root subgroup H in Aut(An) the
group ⟨Affn,H⟩ acts on An infinitely transitively. In particular, one
can find n + 2 root subgroups which generate a subgroup acting
infinitely transitively on An.

Theorem (Andrist’2019, A.-Kuyumzhiyan-Zaidenberg’2019)

For any n ⩾ 2 one can find Ga-subgroups H1,H2,H3 in Aut(An)
such that G = ⟨H1,H2,H3⟩ acts infinitely transitively on An.



Finite Generation for Affine Spaces - II

Let H be the Ga-subgroup of Aut(An) given by

(x1 + ax2
2 , x2, . . . , xn).

Theorem (A.-Kuyumzhiyan-Zaidenberg’2019)

Consider the action of the symmetric group Sn on An by
permutations. Then for any n ⩾ 3 the subgroup

G = ⟨H, Sn⟩ ⊂ Aut(An)

acts infinitely transitively in An \ {0}.



Finite Generation for Affine Plane - I

Let Lk and Rs be the Ga-subgroups of Aut(A2) given by

(x1 + axk2 , x2) and (x1, x2 + bx s1), respectively.

Let Gk,s = ⟨Lk ,Rs⟩. We claim that if ks ̸= 2 then Gk,s can not be
2-transitive. Indeed,
if k = 0 or s = 0, then there are only parallel translations along one
coordinate;
if k = s = 1, then G1,1 is the group SL(2) preserving colinearity;
if ks > 2, we take a root of unity ω of degree ks − 1 and consider

S = {(P,Q) ∈ A2 × A2 |P = (x1, x2), Q = (ωx1, ω
sx2)}

P ′ = (x1 + axk2 , x2), Q
′ = (ωx1 + a(ωsx2)

k , ωsx2) = (ω(x1 + axk2 ), ω
sx2)

P ′′ = (x1, x2 + bx s1), Q
′′ = (ωx1, ω

sx2 + b(ωx1)
s) = (ωx1, ω

s(x2 + bx s1))



Finite Generation for Affine Plane - II

Theorem (Lewis-Perry-Straub’2019)

The group G1,2 generated by two subgroups

(x1 + ax2, x2) and (x1, x2 + bx2
1 )

acts infinitely transitively on A2 \ {0}.

The proof is based on a detailed study of the Polydegree
Conjecture for plane polynomial automorphisms.

Chistopolskaya-Taroyan: arxiv.org/abs/2202.02214, a simpler proof



Finite Generation for Other Affine Varieties

Theorem (Andrist’2023)

There are Ga-subgroups H1,H2,H3 such that G = ⟨H1,H2,H3⟩ is
infinitely transitive on the regular locus of the cone xy = z2.

Theorem (Andrist’2024)

There are Ga-subgroups H1,H2,H3,H4 such that the group
G = ⟨H1,H2,H3,H4⟩ is infinitely transitive on the smooth
Danielewski surface xy = p(z). A generalization to higher
dimensions is also available.

Theorem (Andrist’2024)

If for X and Y the infinite transitivity is achieved on finite
collections of Ga-subgroups, then the same holds for X × Y .



Tits Type Alternative - I

Conjecture C. Let X be an affine variety and G = ⟨H1, . . . ,Hk⟩,
where H1, . . . ,Hk are Ga-subgroups in Aut(X ). Then the group G
is either a unipotent linear algebraic group, or contains the free
group F2.

Corollary
If G is 2-transitive then G contains F2 and is of exponential growth.



Tits Type Alternative - II

Theorem (A.-Zaidenberg’2022)

Let X be an affine toric variety and G = ⟨H1, . . . ,Hk⟩, where
H1, . . . ,Hk are root Ga-subgroups in Aut(X ). Then the group G is
either a unipotent linear algebraic group, or contains F2.

Theorem (A.-Zaidenberg’2023)

Let X be an affine surface and G = ⟨H1, . . . ,Hk⟩, where
H1, . . . ,Hk are Ga-subgroups in Aut(X ). Then the group G is
either a metabelian unipotent linear algebraic group, or contains F2.



PART IV

Unirationality

and
Images of Affine Spaces



A Key Lemma

Lemma
Let X be a flexible variety. Then there are Ga-subgroups
H1, . . . ,Hm in Aut(X ) such that
(a) H1 · H2 · . . . · Hm · x = X reg for any x ∈ X reg;
(b) Tx(X ) = ⟨h1, . . . , hm⟩, where hi is a tangent vector to the

orbit Hi · x at x .

Remark: properties (a) and (b) do not imply each other.



Rationality and Unirationality

An irreducible variety X is
• rational if K(X ) = K(x1, . . . , xn) with algebraically independent
x1, . . . , xn ⇔ there is an open U ⊆ X such that U is isomorphic to
an open subset of Kn ⇔ there is a birational rational map from Kn

to X ;
• stably rational if X ×Kd is rational for some d ∈ Z⩾0;
• unirational if K(X ) ⊆ K(y1, . . . , ym) with algebraically
independent y1, . . . , ym ⇔ there is a dominant rational map from
Km to X



Unirationality vs Flexibility

Theorem (A.-Flenner-Kaliman-Kutzschebauch-Zaidenberg’2013)

Any flexible variety X is unirational.

Proof.
The morphism φ : Am → X ,

(a1, a2, . . . , am) 7→ H1(a1) · H2(a2) · . . . · Hm(am) · x ,

is dominant for any x ∈ X reg.

Remark: there are homogeneous spaces SLn/F , where F is a finite
subgroup, that are not stably rational.



Bogomolov’s Conjecture

Definition
An irreducible variety X is stably birationally infinitely transitive if
for some m > 0 the variety X × Am is birational to an affine
flexible variety.

Conjecture (Bogomolov’2013) An irreducible variety X is
unirational if and only if it is stably birationally infinitely transitive.

In Bogomolov-Karzhemanov-Kuyumzhiyan’2013, this conjecture is
proved for some classes of (unirational non-rational) varieties.



Unirationality vs Images of Affine Spaces

Observation. If a flexible variety X is smooth, then the morphism
φ : Am → X is surjective.

Definition
An algebraic variety X is an A-image, if there is a surjective
morphism Am → X for some m ∈ Z>0.

Corollary
Any smooth flexible variety X is an A-image.

Example

The morphism A1 → P1, x 7→ [x : 1 + x2] is surjective.



Three Necessary Conditions

If X is an A-image, then

(1) X is irreducible;

(2) K[X ]× = K×;

(3) X is unirational

Quetsion. Do (1)-(3) imply that X is an A-image?



Three Results on A-Images

Definition
An algebraic variety X is A-covered if X = ∪iUi , and each Ui is
isomorphic to An.

Problem
Which homogeneous spaces G/H are A-covered?

Theorem (A.’2023)

1) Any A-covered variety is an A-image.
2) A toric variety X is an A-image ⇔ K[X ]× = K×.
3) A homogeneous space X of a linear algebraic group G is an

A-image ⇔ K[X ]× = K×.



Infinite Transitivity for Endomorphisms

Definition
Let X be an algebraic variety. The monoid End(X ) acts on X
infinitely transitively if for any finite subset Z ⊆ X and any map
ψ : Z → X there is a morphism φ : X → X such that φ|Z = ψ.

Theorem (Kaliman-Zaidenberg’2023)

Let X be an affine variety, which is an A-image. Then the monoid
End(X ) acts on X infinitely transitively.



Proof

Let Z = {z1, . . . , zk}. Given ψ : Z → X , fix a1, . . . , ak ∈ Am with
π(ai ) = ψ(zi ).

Am

X ⊇ Z X
ψ

φ̃ π

Consider hj ∈ K[Z ], j = 1, . . . ,m, where hj(zi ) is the jth
coordinate of ai . There are fj ∈ K[X ] with fj |Z = hj and the
functions (f1, . . . , fm) define the morphism φ̃ : X → Am with
φ̃(zi ) = ai . Then with φ := π ◦ φ̃ : X → X we have φ|Z = ψ.



The Main Result

Theorem (A.-Kaliman-Zaidenberg’2024)

Let X be a complete variety. Then X is an A-image if and only if
X is unirational.

The proof is based on the ellipticity property.



PART V

Ellipticity after Mikhail Gromov



Elliptic Varieties: Gromov’1989

Definition
A spray of rank r over a smooth algebraic variety X is a triple
(E , p, s), where p : E → X is a vector bundle of rank r with zero
section Z , and s : E → X is a morphism such that p|Z = s|Z .

Definition
A spray (E , p, s) is dominant at x ∈ X if the map
sx := s|Ex : Ex → X is dominant at zero, i.e. dsx : Ex → TxX is
surjective.

Definition
A smooth algebraic variety X is elliptic if there is a spray (E , p, s),
which is dominant at every x ∈ X .



Ellipticity vs Flexibility

Remark: elliptic =⇒ unirational

Example
Any smooth flexible variety X is elliptic: take E = Am × X and
sx : Am → X , sx(a1, . . . , am) = H1(a1) · . . . · Hm(am) · x .



Locally Elliptic Varieties

Definition
A local spray on a smooth algebraic variety X is a tuple
(U,E , p, s), where U ⊆ X is open, p : E → U is a vector bundle
with s : E → X and p|Z = s|Z .

Definition
A smooth algebraic variety X is locally elliptic if for every x ∈ X
there is a local spray (U,E , p, s) with x ∈ U that is dominant at x .



Subelliptic Varieties

Definition
A smooth algebraic variety X is subelliptic if there is a finite
collections (Ei , pi , si ) of sprays such that TxX =

∑
i (dsi )x((Ei )x)

for all x ∈ X .

Theorem (Kaliman-Zaidenberg’2023)

Let X be a smooth algebraic variety. Then
elliptic ⇔ locally elliptic ⇔ subelliptic.



Uniformly Rational Varieties

Definition
An irreducible variety X is uniformly rational if X = ∪iUi and every
Ui is isomorphic to an open subset of An.

Theorem (Gromov,...)

Uniform rationality is preserved under blow ups of smooth
subvarieties.

Question (Gromov):
Is any smooth rational variety X uniformly rational?



Uniform Rationality vs Ellipticity

Theorem (A.-Kaliman-Zaidenberg’2024)

Let X be a smooth complete uniformly rational variety. Then
(a) X is elliptic;
(b) if X is projective and Y is an affine cone over X , then Y \ {0}

is elliptic.



Ellipticity vs A-Image

Theorem (Kusakabe’2022)

Any elliptic variety X is an A-image. Moreover, if dimX = n then
there is a surjective morphism An+1 → X .

Proof.
Let (E , p, s) be a dominant spray of rank r on X . ∃ x1, . . . , xk ∈ X
with s(Ex1) ∪ . . . ∪ s(Exk ) = X . Since X is unirational ⇒ rationally
connected ⇒ ∃ γ : A1 → X , x1, . . . , xk ∈ γ(A1). Lift E to A1 ⇒
trivial vector bundle, so Ar × A1 → X is surjective. Take Vi ⊆ Exi ,
dimVi = n, such that dsxi : Vi → Txi (X ) is surjective. We can
assume that s(V1) ∪ . . . ∪ s(Vk) = X . Fix yi ∈ A1, γ(yi ) = xi . As
γ∗(E ) ∼= Ar × A1, take linear operators Li on γ∗(E )yi that map a
fixed subspace An in Ar to the preimage of Vi . Then
L : An × A1 → Ar × A1, L(v , a) = (

∑
i ξi (a)Li (v), a), where

ξi (yj) = δij . Then s ◦ γ∗ ◦ L : An+1 → X is surjective.



The Field of Complex Numbers

Theorem (Forstnerič’2017)

Let K = C and X be a compact algebraically (sub)elliptic manifold
of dimension n. Then X admits a surjective strongly dominating
algebraic map Cn → X .

A morphism F : Y → X is strongly dominating if for any x ∈ X
there is y ∈ Y such that F (y) = x and the tangent map

dFy : TyY → TxX

is surjective.



Return to the Result

Theorem (A.-Kaliman-Zaidenberg’2024)

Let X be a complete variety. Then X is an A-image if and only if
X is unirational.

Let us prove that a complete unirational variety X is an A-image.

By Chow’s Lemma, ∃ a birational surjection X ′ → X with X ′

projective ⇒ we assume further that X is projective.



Proof

X is unirational ⇒ ∃ a dominant rational map h from Pn to X .
By Hironaka’s Theorem on elimination of indeterminacy, we have

X̃

Pn X ,
h

f g

where f is a composition of blowups with smooth centers and g is
a generically finite morphism, which is birational if h is.

So X̃ is uniformly rational ⇒ elliptic ⇒ A-image
⇒ X is an A-image.



Affine Cones

Theorem (A.’2025)

Let X be an affine cone. Then X is an A-image if and only if
X is unirational.

Ak \ {0}

Ad Pk−1.
β

β̃ π

So we have β : Ad → Proj(X ) and let the morphism
β̃ : Ad → Ak \ {0} be given by polynomials h1, . . . , hk ∈ K[Ad ],
which have no common zero. Then we have

γ : Ad+1 = Ad × A1 → Ak , (x , z) 7→ (h1(x)z , . . . , hk(x)z).
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