Ivan Arzhantsev (HSE University, Moscow)

Flexibility and Surjective Morphisms from Affine Spaces

Online-seminar

"Flexibility and Computational Methods"

December 21, 2024

PART I

Algebraically Generated Automorphism Group

Basic Facts on Linear Algebraic Groups - I

In this talk we work over an algebraically closed field \mathbb{K} of characteristic zero

Any connected linear algebraic group G has two decompositions:

 $G = G^{ss} \times Rad(G)$, where G^{ss} is a maximal semisimple subgroup and Rad(G) is the radical;

 $G = G^{\text{red}} \times \text{Rad}^{\text{u}}(G)$, where G^{red} is a maximal reductive subgroup and $\text{Rad}^{\text{u}}(G)$ is the unipotent radical

Basic Facts on Linear Algebraic Groups - II

Any connected linear algebraic group G is generated by one-parameter subgroups, i.e., \mathbb{G}_{m^-} and \mathbb{G}_{a^-} subgroups

Popov'2011:

G is generated by \mathbb{G}_{a} -subgroups $\Leftrightarrow G = G^{\mathsf{ss}} \rightthreetimes \mathsf{Rad}^{\mathsf{u}}(G)$

G is generated by \mathbb{G}_{m} -subgroups \Leftrightarrow A'2024 (next slide)

Any connected linear algebraic group G is generated by a maximal torus T and root subgroups, i.e., T-normalized \mathbb{G}_a -subgroups

Algebraic Groups Generated by Seimisimple Elements - I

Proposition (A.'2024)

Let G be a connected linear algebraic group. Then the following conditions are equivalent:

- (a) G is generated by \mathbb{G}_m -subgroups;
- (b) G is generated by semisimple elements;
- (c) any homomorpism $G \to \mathbb{G}_a$ is trivial;
- (d) G has no proper normal subgroup containing G^{red} ;
- (e) the derived subgroup [G, G] equals $G^{ss} \wedge Rad^u(G)$.

Algebraic Groups Generated by Seimisimple Elements - II

Let $\mathfrak{g}=\operatorname{Lie}(G)$. The nilpotent ideal $\mathfrak{n}=\operatorname{Lie}(Rad^{\mathrm{u}}(G))$ of \mathfrak{g} is a G^{red} -module with respect to the adjoint action. Let \mathfrak{n}_1 be the sum of all non-trivial simple G^{red} -submodules in \mathfrak{n} and \mathfrak{s} be the subalgebra in \mathfrak{n} generated by \mathfrak{n}_1 . Set $U=\exp(\mathfrak{s})\subseteq Rad^{\mathrm{u}}(G)$

Theorem (A.'2024)

Let G be a connected linear algebraic group and G^{sem} be the subgroup of G generated by all semisimple elements. Then

$$G^{\text{sem}} = G^{\text{red}} \wedge U$$
.

Corollary

Let G be a regular subgroup of a reductive group. Then G is generated by semisimple elements. In particular, any parabolic subgroup is generated by semisimple elements.

Automorphism Groups of Complete Varieties

Let X be a complete (projective) algebraic variety and $\operatorname{Aut}(X)$ be the automorphism group

Then $Aut(X)^0$ is an algebraic group (not necassarily linear)

and $\operatorname{Aut}(X)/\operatorname{Aut}(X)^0$ need not be finitely generated

Theorem (Brion'2012)

Any connected algebraic group over a perfect field is the neutral component of the automorphism group scheme of some normal projective variety.

Automorphism Groups of Affine Varieties - I

Theorem (A.'2018, Kraft'2018)

Let X be affine. Assume that $\operatorname{Aut}(X)$ has a structure of a linear algebraic group such that the action map $\operatorname{Aut}(X) \times X \to X$ is a morphism. Then either $X = \mathbb{A}^1$, or $\operatorname{Aut}(X)$ is finite, or $\operatorname{Aut}(X)$ is a finite extension of a torus.

Theorem (Jelonek'2015)

Let X be quasi-affine. Assume that $\operatorname{Aut}(X)$ is infinite. Then X is uniruled, i.e., X is covered by rational curves.

Theorem (Jelonek'2014)

For every $k \geqslant 1$ and every finite group Γ there is a k-dimensional smooth affine non-uniruled variety X such that $\operatorname{Aut}(X) \cong \Gamma$.

Automorphism Groups of Affine Varieties - II

Let X be an affine algebraic variety. Then $\operatorname{Aut}(X)$ can be infinite dimensional, i.e., $\operatorname{Aut}(X)$ contains an algebraic subgroup G of arbitrary dimension

For example, take
$$X = \mathbb{A}^2$$
 and $(x + f(y), y)$, $\deg(f) < n$

More generally, if there is a non-trivial action $\mathbb{G}_a \times X \to X$ and dim $X \geqslant 2$, then $\operatorname{Aut}(X)$ is infinite dimensional: we consider replicas of the \mathbb{G}_a -action

It is known that $\operatorname{Aut}(X)$ is an ind-group, i.e., $\operatorname{Aut}(X) = \bigcup_i Z_i$ and $Z_i Z_j \subseteq Z_{f(i,j)}$, where each Z_i has a structure of an affine variety

Algebraically Generated Groups

Let X be an algebraic variety. A subgroup $H\subseteq \operatorname{Aut}(X)$ is algebraic if H admits a structure of an algebraic group such that the action map $H\times X\to X$ is a morphism

A subgroup $G \subseteq \operatorname{Aut}(X)$ is algebraically generated if G is generated by a family of connected algebraic subgroups in $\operatorname{Aut}(X)$

The group of special automorphisms SAut(X) is the subgroup of Aut(X) generated by all \mathbb{G}_a -subgroups

It is not known whether the group $\operatorname{Aut}(\mathbb{A}^n)$ is algebraically generated and whether $\operatorname{SAut}(\mathbb{A}^n)$ coincides with the group of all automorphisms with Jacobian 1

Basic Properties of Algebraically Generated Groups

Let X be an algebraic variety and G be an algebraically generated subgroup in $\operatorname{Aut}(X)$. Then

- 1) any G-orbit on X is locally closed;
- 2) there are finitely many rational G-invariants on X that separate generic G-orbits (Rosenlicht's Theorem)
- 3) Kleinman's Transversality Theorem holds for actions with an open orbit.

Open Problems Related to Automorphism Groups

The Jacobian Conjecture

The Cancellation Problem

The Rectification Problem

The Linearization Problem

The structure of $Aut(\mathbb{A}^n)$, tame and wild automorphisms

PART II

Flexibility
and
Infinite Transitivity

Multiple and Infinite Transitivity

Definition

Let G be a group, X a set, and m a positive integer. An action $G \times X \to X$ is m-transitive if for any two tuples (a_1, \ldots, a_m) and (b_1, \ldots, b_m) of pairwise distinct points on X there is $g \in G$ such that $(ga_1, \ldots, ga_m) = (b_1, \ldots, b_m)$.

Definition

An action $G \times X \to X$ is *infinitely transitive* if it is *m*-transitive for any positive integer m.

Example (of infinite transitivity)

- 1) Let X be an infinite set and G the group of all permutations of X
- 2) Let X be an infinite set and G the group of all permutations with finite support of X

The Case of Finite Groups

Let *X* be a finite set witn *n* elements.

- 1) The group S_n of all permutations of X is n-transitive
- 2) The group A_n of all even permutations of X is (n-2)-transitive
- 3) All other finite permutation groups are at most 5-transitive
- 4) **5-transitive** finite groups are precisely the Mathieu groups M_{12} and M_{24} and all **4-transitive** finite groups are precisely the Mathieu groups M_{11} and M_{23} (1861-1873)
- 5) There are infinitely many 3-transitive finite permutation groups, for example, $\operatorname{PGL}_2(\mathbb{F}_q)$ acting on $\mathbb{P}^1(\mathbb{F}_q)$

The Case of Algebraic Groups

Let G be a connected algebraic group over an algebraically closed field \mathbb{K} acting on an algebraic variety X.

- 1) Such an action is at most 3-transitive
- 2) The only **3-transitive** action is $PGL_2(\mathbb{K})$ -action on $\mathbb{P}^1(\mathbb{K})$
- 3) The action of $PGL_{n+1}(\mathbb{K})$ on $\mathbb{P}^n(\mathbb{K})$ for $n \ge 2$ is **2-transitive**
- 4) There is a classification of **2-transitive actions**: Borel, Knop, Kramer,....

The Case of Affine Spaces

Theorem

Over an infinite ground field K, the group $Aut(\mathbb{A}^n)$ is infinitely transitive on \mathbb{A}^n for any $n \ge 2$.

Idea (n = 2): use parallel translations $(x_1 + a, x_2)$, $(x_1, x_2 + b)$ and their replicas $(x_1 + af_1(x_2), x_2)$, $(x_1, x_2 + bf_2(x_1))$, where $a, b \in K$.

Example

The group $\operatorname{Aut}(\mathbb{A}^1)$ is isomorphic to $K^{\times} \wedge K$. It is 2-transitive, but not 3-transitive on \mathbb{A}^1 .

General Problems

Let X be an affine algebraic variety over an algebraically closed field \mathbb{K} of characteristic zero.

When the group $\operatorname{Aut}(X)$ is infinitely transitive on X? If X is singular, we ask this question for the smooth locus X^{reg} Idea: use $\mathbb{G}_{\operatorname{a}}$ -subgroups in the group $\operatorname{Aut}(X)$ and their replicas Recall : $\operatorname{SAut}(X)$ is the subgroup of $\operatorname{Aut}(X)$ generated by all $\mathbb{G}_{\operatorname{a}}$ -subgroups

Locally Nilpotent Derivations

Definition

A derivation $D: A \to A$ of an algebra A is *locally nilpotent* if for any $a \in A$ there is a positive integer k such that $D^k(a) = 0$.

Locally nilpotent derivations on $\mathbb{K}[X] \Leftrightarrow \mathbb{G}_{\mathsf{a}}\text{-subgroups}$ in $\mathsf{Aut}(X)$:

$$D \in \mathsf{LND}(\mathbb{K}[X]) \iff \exp(\mathbb{K}D) \subseteq \mathsf{Aut}(X)$$

If $D \in LND(A)$ and $f \in Ker(D)$, then $fD \in LND(A)$

 \mathbb{G}_a -subgroups corresponding to LNDs of the form fD are replicas of the \mathbb{G}_a -subgroup corresponding to D

Flexibility vs Infinite Transitivity

Definition

An affine variety X is *flexible* if the tangent space $T_x(X)$ at any smooth point $x \in X^{\text{reg}}$ is generated by velocity vectors to orbits of \mathbb{G}_{a} -subgroups passing through x

Theorem (A.-Flenner-Kaliman-Kutzschebauch-Zaidenberg'2013)

Let X be an irreducible affine variety of dimension $\geqslant 2$. The following conditions are equivalent:

- (a) the group SAut(X) acts transitively on X^{reg} ;
- (b) the group SAut(X) acts infinitely transitively on X^{reg} ;
- (c) the variety X is flexible

Examples of Flexible Varieties

- Suspensions Susp(X, f) given by $\{uv = f(x)\}, f \in \mathbb{K}[X] \setminus \mathbb{K}$, in $\mathbb{A}^2 \times X$ over a flexible variety X;
- Non-degenerate ($\mathbb{K}[X]^{\times} = \mathbb{K}^{\times}$) affine toric varieties;
- Non-degenerate horospherical varieties of reductive groups;
- Homogeneous spaces G/F, where G is semisimple and F is reductive;
- Normal affine SL(2)-embeddings;
- \bullet Affine cones over flag varieties and over del Pezzo surfaces of degree $\geqslant 4$

The Gromov-Winkellmann Theorem

Theorem (Flenner-Kaliman-Zaidenberg'2016)

Let X be a flexible quasiaffine variety and $Z \subseteq X$ be a closed subvariety with $codim_X Z \geqslant 2$. Then $X \setminus Z$ is flexible.

PART III

Infinite Transitivity
and
Finite Generation

Finite Generation

Conjecture A. Any flexible affine variety X admits a finite collection H_1, \ldots, H_k of \mathbb{G}_a -subgroups in $\operatorname{Aut}(X)$ such that the group $G = \langle H_1, \ldots, H_k \rangle$ acts infinitely transitively on X^{reg} .

Plan of a possible proof:

- Step 1. Find $G = \langle H_1, \dots, H_s \rangle$ that acts transitively on X^{reg}
- Step 2. Prove that the closure G of the subgroup G in Aut(X) in the ind-topology contains 'many other' \mathbb{G}_a -subgroups
- Step 3. Prove that \overline{G} acts infinitely transitively on X^{reg}
- Step 4. Prove that G acts infinitely transitively on X^{reg}

Implication Step 3 \Rightarrow Step 4 turns out to be true in general.

A Conjecture on Locally Nilpotent Derivations

To Step 2:

Conjecture B. Let X be an affine variety and $A = \mathbb{K}[X]$. Consider the group $G = \langle H_1, \dots, H_k \rangle$ generated by a finite collection of \mathbb{G}_a -subgroups $H_i = \exp(\mathbb{K}D_i) \subseteq \mathsf{SAut}(X)$, where $D_i \in \mathsf{LND}(A)$. Then the \mathbb{G}_a -subgroup

$$H = \exp(\mathbb{K}D) \subseteq \mathsf{SAut}(X),$$

where $D \in LND(A)$, is contained in $\overline{G} \Leftrightarrow D \in Lie \langle D_1, \dots, D_k \rangle$.

Kraft-Zaidenberg's Theorem

Theorem (Kraft-Zaidenberg'2024)

Let X be an affine variety. A subgroup $G \subseteq \operatorname{Aut}(X)$ generated by a family of connected algebraic subgroups G_i is algebraic if and only if the Lie algebras $\operatorname{Lie}(G_i) \subseteq \operatorname{Vec}(X)$ generate a finite-dimensional Lie subalgebra in $\operatorname{Vec}(X)$.

In particular, $G = \langle H_1, \dots, H_k \rangle$ is a linear algebraic group if and only if $\text{Lie} \langle D_1, \dots, D_k \rangle$ is finite-dimensional.

Root Subgroups and Demazure Roots

Let X be a variety with an action of a torus T. A \mathbb{G}_a -subgroup H in $\operatorname{Aut}(X)$ is called a *root subgroup* if H is normalized in $\operatorname{Aut}(X)$ by the torus T. In this case T acts on H by some character e. Such a character is called a *root* of the T-variety X.

Assume X is toric with acting torus T. What are the roots of X? Let p_1, \ldots, p_s be the primitive lattice vectors on rays of the fan Σ_X .

Definition

A *Demazure root* of the fan Σ_X in a character $e \in M$ such that there exists $1 \le i \le s$ with $\langle e, p_i \rangle = -1$ and $\langle e, p_j \rangle \ge 0$ for $j \ne i$.

Theorem (Demazure'1970)

Let X be a complete or affine toric variety. Then root subgroups on X are in bijection with Demazure roots of the fan Σ_X .

The Toric Case

Theorem (A.-Kuyumzhiyan-Zaidenberg'2019)

For any non-degererate affine toric variety X of dimension at least 2, which is smooth in codimention 2, one can find root subgroups H_1,\ldots,H_k such that the group $G=\langle H_1,\ldots,H_k\rangle$ acts infinitely transitively on the smooth locus X^{reg} .

In the proof we use Cox rings and the quotient presentation $\pi\colon \mathbb{A}^s \to X$ by an action of a quasitorus.

Finite Generation for Affine Spaces - I

Theorem (Bodnarchuk'2001)

For any $n \geqslant 3$ and any triangular $h \in Aut(\mathbb{A}^n) \setminus Aff_n$ we have $\langle Aff_n, h \rangle = Tame_n$.

Corollary

For any $n \geqslant 3$ and any non-affine root subgroup H in $Aut(\mathbb{A}^n)$ the group $\langle Aff_n, H \rangle$ acts on \mathbb{A}^n infinitely transitively. In particular, one can find n+2 root subgroups which generate a subgroup acting infinitely transitively on \mathbb{A}^n .

Theorem (Andrist'2019, A.-Kuyumzhiyan-Zaidenberg'2019)

For any $n \ge 2$ one can find \mathbb{G}_a -subgroups H_1, H_2, H_3 in $\operatorname{Aut}(\mathbb{A}^n)$ such that $G = \langle H_1, H_2, H_3 \rangle$ acts infinitely transitively on \mathbb{A}^n .

Finite Generation for Affine Spaces - II

Let H be the \mathbb{G}_{a} -subgroup of $\operatorname{Aut}(\mathbb{A}^{n})$ given by

$$(x_1+ax_2^2,x_2,\ldots,x_n).$$

Theorem (A.-Kuyumzhiyan-Zaidenberg'2019)

Consider the action of the symmetric group S_n on \mathbb{A}^n by permutations. Then for any $n \geqslant 3$ the subgroup

$$G = \langle H, S_n \rangle \subset \operatorname{Aut}(\mathbb{A}^n)$$

acts infinitely transitively in $\mathbb{A}^n \setminus \{0\}$.

Finite Generation for Affine Plane - I

Let L_k and R_s be the \mathbb{G}_a -subgroups of $\operatorname{Aut}(\mathbb{A}^2)$ given by

$$(x_1 + ax_2^k, x_2)$$
 and $(x_1, x_2 + bx_1^s)$, respectively.

Let $G_{k,s} = \langle L_k, R_s \rangle$. We claim that if $ks \neq 2$ then $G_{k,s}$ can not be 2-transitive. Indeed,

if k = 0 or s = 0, then there are only parallel translations along one coordinate;

if k = s = 1, then $G_{1,1}$ is the group SL(2) preserving colinearity; if ks > 2, we take a root of unity ω of degree ks - 1 and consider

$$S = \{ (P, Q) \in \mathbb{A}^2 \times \mathbb{A}^2 \mid P = (x_1, x_2), \ Q = (\omega x_1, \ \omega^s x_2) \}$$

$$P' = (x_1 + a x_2^k, x_2), \ Q' = (\omega x_1 + a (\omega^s x_2)^k, \ \omega^s x_2) = (\omega (x_1 + a x_2^k), \omega^s x_2)$$

$$P'' = (x_1, x_2 + b x_1^s), \ Q'' = (\omega x_1, \ \omega^s x_2 + b (\omega x_1)^s) = (\omega x_1, \omega^s (x_2 + b x_1^s))$$

Finite Generation for Affine Plane - II

Theorem (Lewis-Perry-Straub'2019)

The group $G_{1,2}$ generated by two subgroups

$$(x_1 + ax_2, x_2)$$
 and $(x_1, x_2 + bx_1^2)$

acts infinitely transitively on $\mathbb{A}^2 \setminus \{0\}$.

The proof is based on a detailed study of the Polydegree Conjecture for plane polynomial automorphisms.

Chistopolskaya-Taroyan: arxiv.org/abs/2202.02214, a simpler proof

Finite Generation for Other Affine Varieties

Theorem (Andrist'2023)

There are \mathbb{G}_a -subgroups H_1, H_2, H_3 such that $G = \langle H_1, H_2, H_3 \rangle$ is infinitely transitive on the regular locus of the cone $xy = z^2$.

Theorem (Andrist'2024)

There are \mathbb{G}_a -subgroups H_1 , H_2 , H_3 , H_4 such that the group $G = \langle H_1, H_2, H_3, H_4 \rangle$ is infinitely transitive on the smooth Danielewski surface xy = p(z). A generalization to higher dimensions is also available.

Theorem (Andrist'2024)

If for X and Y the infinite transitivity is achieved on finite collections of \mathbb{G}_a -subgroups, then the same holds for $X \times Y$.

Tits Type Alternative - I

Conjecture C. Let X be an affine variety and $G = \langle H_1, \dots, H_k \rangle$, where H_1, \dots, H_k are \mathbb{G}_a -subgroups in $\operatorname{Aut}(X)$. Then the group G is either a unipotent linear algebraic group, or contains the free group F_2 .

Corollary

If G is 2-transitive then G contains F_2 and is of exponential growth.

Tits Type Alternative - II

Theorem (A.-Zaidenberg'2022)

Let X be an affine toric variety and $G = \langle H_1, \ldots, H_k \rangle$, where H_1, \ldots, H_k are root \mathbb{G}_a -subgroups in $\operatorname{Aut}(X)$. Then the group G is either a unipotent linear algebraic group, or contains F_2 .

Theorem (A.-Zaidenberg'2023)

Let X be an affine surface and $G = \langle H_1, \ldots, H_k \rangle$, where H_1, \ldots, H_k are \mathbb{G}_a -subgroups in $\operatorname{Aut}(X)$. Then the group G is either a metabelian unipotent linear algebraic group, or contains F_2 .

PART IV

Unirationality and Images of Affine Spaces

A Key Lemma

Lemma

Let X be a flexible variety. Then there are \mathbb{G}_a -subgroups H_1, \ldots, H_m in $\operatorname{Aut}(X)$ such that

- (a) $H_1 \cdot H_2 \cdot \ldots \cdot H_m \cdot x = X^{\text{reg}}$ for any $x \in X^{\text{reg}}$;
- (b) $T_x(X) = \langle h_1, \dots, h_m \rangle$, where h_i is a tangent vector to the orbit $H_i \cdot x$ at x.

Remark: properties (a) and (b) do not imply each other.

Rationality and Unirationality

An irreducible variety X is

- rational if $\mathbb{K}(X) = \mathbb{K}(x_1, \dots, x_n)$ with algebraically independent $x_1, \dots, x_n \Leftrightarrow$ there is an open $U \subseteq X$ such that U is isomorphic to an open subset of $\mathbb{K}^n \Leftrightarrow$ there is a birational rational map from \mathbb{K}^n to X;
- stably rational if $X \times \mathbb{K}^d$ is rational for some $d \in \mathbb{Z}_{\geq 0}$;
- unirational if $\mathbb{K}(X) \subseteq \mathbb{K}(y_1,\ldots,y_m)$ with algebraically independent $y_1,\ldots,y_m \Leftrightarrow$ there is a dominant rational map from \mathbb{K}^m to X

Unirationality vs Flexibility

Theorem (A.-Flenner-Kaliman-Kutzschebauch-Zaidenberg'2013)

Any flexible variety X is unirational.

Proof.

The morphism $\varphi \colon \mathbb{A}^m \to X$,

$$(a_1, a_2, \ldots, a_m) \mapsto H_1(a_1) \cdot H_2(a_2) \cdot \ldots \cdot H_m(a_m) \cdot x,$$

is dominant for any $x \in X^{\text{reg}}$.

Remark: there are homogeneous spaces SL_n/F , where F is a finite subgroup, that are not stably rational.

Bogomolov's Conjecture

Definition

An irreducible variety X is stably birationally infinitely transitive if for some m>0 the variety $X\times \mathbb{A}^m$ is birational to an affine flexible variety.

Conjecture (Bogomolov'2013) An irreducible variety X is unirational if and only if it is stably birationally infinitely transitive.

In Bogomolov-Karzhemanov-Kuyumzhiyan'2013, this conjecture is proved for some classes of (unirational non-rational) varieties.

Unirationality vs Images of Affine Spaces

Observation. If a flexible variety X is smooth, then the morphism $\varphi \colon \mathbb{A}^m \to X$ is surjective.

Definition

An algebraic variety X is an A-image, if there is a surjective morphism $\mathbb{A}^m \to X$ for some $m \in \mathbb{Z}_{>0}$.

Corollary

Any smooth flexible variety X is an A-image.

Example

The morphism $\mathbb{A}^1 \to \mathbb{P}^1$, $x \mapsto [x : 1 + x^2]$ is surjective.

Three Necessary Conditions

If X is an A-image, then

- (1) X is irreducible;
- (2) $\mathbb{K}[X]^{\times} = \mathbb{K}^{\times}$;
- (3) X is unirational

Quetsion. Do (1)-(3) imply that X is an A-image?

Three Results on A-Images

Definition

An algebraic variety X is A-covered if $X = \bigcup_i U_i$, and each U_i is isomorphic to \mathbb{A}^n .

Problem

Which homogeneous spaces G/H are A-covered?

Theorem (A.'2023)

- 1) Any A-covered variety is an A-image.
- 2) A toric variety X is an A-image $\Leftrightarrow \mathbb{K}[X]^{\times} = \mathbb{K}^{\times}$.
- 3) A homogeneous space X of a linear algebraic group G is an A-image $\Leftrightarrow \mathbb{K}[X]^{\times} = \mathbb{K}^{\times}$.

Infinite Transitivity for Endomorphisms

Definition

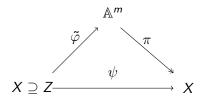
Let X be an algebraic variety. The monoid $\operatorname{End}(X)$ acts on X infinitely transitively if for any finite subset $Z\subseteq X$ and any map $\psi\colon Z\to X$ there is a morphism $\varphi\colon X\to X$ such that $\varphi|_Z=\psi$.

Theorem (Kaliman-Zaidenberg'2023)

Let X be an affine variety, which is an A-image. Then the monoid $\operatorname{End}(X)$ acts on X infinitely transitively.

Proof

Let $Z = \{z_1, \ldots, z_k\}$. Given $\psi \colon Z \to X$, fix $a_1, \ldots, a_k \in \mathbb{A}^m$ with $\pi(a_i) = \psi(z_i)$.



Consider $h_j \in \mathbb{K}[Z]$, $j=1,\ldots,m$, where $h_j(z_i)$ is the jth coordinate of a_i . There are $f_j \in \mathbb{K}[X]$ with $f_j|_Z = h_j$ and the functions (f_1,\ldots,f_m) define the morphism $\tilde{\varphi}\colon X\to \mathbb{A}^m$ with $\tilde{\varphi}(z_i)=a_i$. Then with $\varphi:=\pi\circ\tilde{\varphi}\colon X\to X$ we have $\varphi|_Z=\psi$.

The Main Result

Theorem (A.-Kaliman-Zaidenberg'2024)

Let X be a complete variety. Then X is an A-image if and only if X is unirational.

The proof is based on the ellipticity property.

PART V

Ellipticity after Mikhail Gromov

Elliptic Varieties: Gromov'1989

Definition

A spray of rank r over a smooth algebraic variety X is a triple (E, p, s), where $p: E \to X$ is a vector bundle of rank r with zero section Z, and $s: E \to X$ is a morphism such that $p|_Z = s|_Z$.

Definition

A spray (E, p, s) is dominant at $x \in X$ if the map $s_x := s|_{E_x} : E_x \to X$ is dominant at zero, i.e. $ds_x : E_x \to T_x X$ is surjective.

Definition

A smooth algebraic variety X is *elliptic* if there is a spray (E, p, s), which is dominant at every $x \in X$.

Ellipticity vs Flexibility

Remark: elliptic \Longrightarrow unirational

Example

Any smooth flexible variety X is elliptic: take $E = \mathbb{A}^m \times X$ and $s_x \colon \mathbb{A}^m \to X$, $s_x(a_1, \ldots, a_m) = H_1(a_1) \cdot \ldots \cdot H_m(a_m) \cdot x$.

Locally Elliptic Varieties

Definition

A *local spray* on a smooth algebraic variety X is a tuple (U, E, p, s), where $U \subseteq X$ is open, $p \colon E \to U$ is a vector bundle with $s \colon E \to X$ and $p|_Z = s|_Z$.

Definition

A smooth algebraic variety X is *locally elliptic* if for every $x \in X$ there is a local spray (U, E, p, s) with $x \in U$ that is dominant at x.

Subelliptic Varieties

Definition

A smooth algebraic variety X is *subelliptic* if there is a finite collections (E_i, p_i, s_i) of sprays such that $T_x X = \sum_i (ds_i)_x ((E_i)_x)$ for all $x \in X$.

Theorem (Kaliman-Zaidenberg'2023)

Let X be a smooth algebraic variety. Then elliptic \Leftrightarrow locally elliptic \Leftrightarrow subelliptic.

Uniformly Rational Varieties

Definition

An irreducible variety X is *uniformly rational* if $X = \bigcup_i U_i$ and every U_i is isomorphic to an open subset of \mathbb{A}^n .

Theorem (Gromov,...)

Uniform rationality is preserved under blow ups of smooth subvarieties.

Question (Gromov):

Is any smooth rational variety X uniformly rational?

Uniform Rationality vs Ellipticity

Theorem (A.-Kaliman-Zaidenberg'2024)

Let X be a smooth complete uniformly rational variety. Then

- (a) X is elliptic;
- (b) if X is projective and Y is an affine cone over X, then $Y \setminus \{0\}$ is elliptic.

Ellipticity vs A-Image

Theorem (Kusakabe'2022)

Any elliptic variety X is an A-image. Moreover, if dim X = n then there is a surjective morphism $\mathbb{A}^{n+1} \to X$.

Proof.

Let (E, p, s) be a dominant spray of rank r on X. $\exists x_1, \ldots, x_k \in X$ with $s(E_{x_1}) \cup \ldots \cup s(E_{x_k}) = X$. Since X is unirational \Rightarrow rationally connected $\Rightarrow \exists \gamma \colon \mathbb{A}^1 \to X$, $x_1, \ldots, x_k \in \gamma(\mathbb{A}^1)$. Lift E to $\mathbb{A}^1 \Rightarrow$ trivial vector bundle, so $\mathbb{A}^r \times \mathbb{A}^1 \to X$ is surjective. Take $V_i \subseteq E_{x_i}$, dim $V_i = n$, such that $ds_{x_i} \colon V_i \to T_{x_i}(X)$ is surjective. We can assume that $s(V_1) \cup \ldots \cup s(V_k) = X$. Fix $y_i \in \mathbb{A}^1$, $\gamma(y_i) = x_i$. As $\gamma^*(E) \cong \mathbb{A}^r \times \mathbb{A}^1$, take linear operators L_i on $\gamma^*(E)_{y_i}$ that map a fixed subspace \mathbb{A}^n in \mathbb{A}^r to the preimage of V_i . Then $L \colon \mathbb{A}^n \times \mathbb{A}^1 \to \mathbb{A}^r \times \mathbb{A}^1$, $L(v, a) = (\sum_i \xi_i(a) L_i(v), a)$, where $\xi_i(y_i) = \delta_{ij}$. Then $s \circ \gamma_* \circ L \colon \mathbb{A}^{n+1} \to X$ is surjective.

The Field of Complex Numbers

Theorem (Forstnerič'2017)

Let $\mathbb{K} = \mathbb{C}$ and X be a compact algebraically (sub)elliptic manifold of dimension n. Then X admits a surjective strongly dominating algebraic map $\mathbb{C}^n \to X$.

A morphism $F: Y \to X$ is strongly dominating if for any $x \in X$ there is $y \in Y$ such that F(y) = x and the tangent map

$$dF_y \colon T_y Y \to T_x X$$

is surjective.

Return to the Result

Theorem (A.-Kaliman-Zaidenberg'2024)

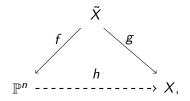
Let X be a complete variety. Then X is an A-image if and only if X is unirational.

Let us prove that a complete unirational variety X is an A-image.

By Chow's Lemma, \exists a birational surjection $X' \to X$ with X' projective \Rightarrow we assume further that X is projective.

Proof

X is unirational $\Rightarrow \exists$ a dominant rational map h from \mathbb{P}^n to X. By Hironaka's Theorem on elimination of indeterminacy, we have



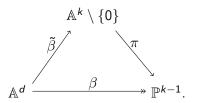
where f is a composition of blowups with smooth centers and g is a generically finite morphism, which is birational if h is.

So \tilde{X} is uniformly rational \Rightarrow elliptic \Rightarrow A-image \Rightarrow X is an A-image.

Affine Cones

Theorem (A.'2025)

Let X be an affine cone. Then X is an A-image if and only if X is unirational.



So we have $\beta \colon \mathbb{A}^d \to \operatorname{Proj}(X)$ and let the morphism $\tilde{\beta} \colon \mathbb{A}^d \to \mathbb{A}^k \setminus \{0\}$ be given by polynomials $h_1, \dots, h_k \in \mathbb{K}[\mathbb{A}^d]$, which have no common zero. Then we have

$$\gamma \colon \mathbb{A}^{d+1} = \mathbb{A}^d \times \mathbb{A}^1 \to \mathbb{A}^k, \quad (x, z) \mapsto (h_1(x)z, \dots, h_k(x)z).$$

Some References - I

- [1] Andrist. Integrable generators of Lie algebras of vector fields on \mathbb{C}^n . Forum Math. 31 (2019), no. 4, 943-949
- [2] Andrist. Integrable generators of Lie algebras of vector fields on $SL_2(\mathbb{C})$ and on $xy=z^2$. J. Geom. Anal. 33 (2023), article 240
- [3] A. Automorphisms of algebraic varieties and infinite transitivity. St. Petersburg Math. J. 34 (2023), 143-178
- [4] A. On images of affine spaces. Indag. Math. 34 (2023), 812-819
- [5] A.-Flenner-Kaliman-Kutzschebauch-Zaidenberg. Flexible varieties and automorphism groups. Duke Math. J. 162 (2013), 767-823
- [6] A.-Kaliman-Zaidenberg. Varieties covered by affine spaces, uniformly rational varieties and their cones. Adv. Math. 437 (2024), article 109449

Some References - II

- [7] A.-Kuyumzhiyan-Zaidenberg. Flag varieties, toric varieties, and suspensions: three instances of infinite transitivity. Sb. Math. 203 (2012), 3-30
- [8] A.-Kuyumzhiyan-Zaidenberg. Infinite transitivity, finite generation, and Demazure roots. Adv. Math. 351 (2019), 1-32
- [9] A.-Perepechko-Süss. Infinite transitivity on universal torsors.
- J. London Math. Soc. 89 (2014), 762-778
- [10] A.-Zaidenberg. Tits-type alternative for groups acting on toric affine varieties. IMRN 2022 (2022), 8162-8195
- [11] A.-Zaidenberg. Tits-type alternative for certain groups acting on algebraic surfaces. Proc. Amer. Math. Soc. 151 (2023), 2813-2829

Some References - III

- [12] Berest-Eshmatov-Eshmatov. Multitransitivity of Calogero-Moser spaces. Transform. Groups 21 (2016), 35-50
- [13] Bogomolov-Karzhemanov-Kuyumzhiyan. Unirationality and existence of infinitely transitive models. In: Birational Geometry, Rational Curves, and Arithmetic, 77-92. Springer-Verlag, 2013
- [14] Demazure. Sous-groupes algébriques de rang maximum du groupe de Cremona. Ann. Sci. École Norm. Sup. (4) (1970), 507-588
- [15] Flenner-Kaliman-Zaidenberg. The Gromov-Winkelmann theorem for flexible varieties. J. Eur. Math. Soc. 18 (2016), 2483-2510
- [16] Gaifullin-Shafarevich. Flexibility of normal affine horospherical varieties. Proc. Amer. Math. Soc. 147 (2019), 3317-3330
- [17] Hang-Truong. The affine cones over Fano-Mukai fourfolds of genus 7 are flexible. IMRN 2024 (2024), 8417-8426

Some References - IV

- [18] Kaliman-Zaidenberg. Gromov ellipticity and subellipticity. Forum Math. 36 (2023), no. 2, 373-376
- [19] Kaliman-Zaidenberg. Gromov ellipticity of cones over projective manifolds, Math. Res. Lett. (2024), in print
- [20] Kraft-Zaidenberg. Algebraically generated groups and their Lie algebras. J. Lond. Math. Soc. 109 (2024), no. 2, article e12866
- [21] Lewis-Perry-Straub. An algorithmic approach to the polydegree conjecture for plane polynomial automorphisms. J. Pure Appl. Algebra 223 (2019), 5346-5359
- [22] Perepechko. Flexibility of affine cones over del Pezzo surfaces of degree 4 and 5. Func. Anal. Appl. 47 (2013), 45-52
- [23] Shafarevich. Flexibility of affine horospherical varieties of semisimple groups. Sbornik: Math. 208 (2017), 285-310