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Flexibility

Notation
The ground field K is algebraically closed of characteristic zero.
We denote by Ga the additive group Ga(K) of K.
All the Ga-actions on an affine variety X over K generate the
special automorphism group SAut(X).
A point x ∈ X is flexible if TxX is generated by the tangent vectors
to the orbits of Ga-actions.
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Infinite transitivity

Theorem (Arzhantsev–Flenner–Kaliman–Kutzschebauch–
Zaidenberg 2010)
Let X be an affine algebraic variety of dimension ≥ 2 and Xreg be its
smooth locus. Then the following conditions are equivalent:

1. all points in Xreg are flexible (and X is called flexible);
2. the group SAut(X) acts transitively on Xreg;
3. the group SAut(X) acts infinitely transitively on Xreg.

2 17



Generic infinite transitivity

Theorem (Arzhantsev–Flenner–Kaliman–Kutzschebauch–
Zaidenberg 2010)
Let X be an affine algebraic variety of dimension ≥ 2 and
U be an open SAut(X)-invariant subset in X. Then the following
conditions are equivalent:

1. all points in U are flexible (and X is called generically flexible);
2. the group SAut(X) acts transitively on U;
3. the group SAut(X) acts infinitely transitively on U.
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Cylinders: motivation

Let Y ⊂ Pn and a hyperplane section H ⊂ Y be given by an equation,
say, x0 = 0.
The projection π : An+1 \ {0} → Pn induces the affine cone
X = π−1(Y) ∪ {0}.

Assume that U := Y \ H is a cylinder, i.e., U ∼= A1 × Z = X ∩ {x0 ̸= 0} for
some affine variety Z with Pic Z = 0.

Then π−1(U) is a cylinder, hence it possesses a Ga-action G. On the
other hand, we have π−1(U) = X ∩ {x0 ̸= 0}, so x0 is a G-invariant, and
we can extend G to X.
(see Kishimoto–Prokhorov–Zaidenberg’13)

Important: G-orbits on X are projected into fibers of U on Y.
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Ga-actions on affine cones

In sequel we denote by Y a normal projective variety, by H a very ample
divisor on Y, and by

X = AffConeH Y = Spec
⊕

k∈Z≥0

H0(Y, kH)

the affine cone over Y polarized by H.

Definition
A cylinder U in Y is an open subset isomorphic to Z × A1 for an affine Z.
An open subset U ⊂ Y is H-polar if Y \ U = suppD for some effective
Q-divisor D ∼ H.

A principal cylinder in an affine variety X corresponds to a Ga-action on
X. An H-polar cylinder in a projective variety Y corresponds to a
Ga-action on AffConeH Y. (see the survey
Cheltsov–Park–Prokhorov–Zaidenberg)
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SAut(X)-orbits

Let U = {U} be a set of H-polar cylinders on Y.

Definition
A subset Z of Y is U-invariant if for any U ∈ U the intersection U ∩ Z is
SAut(U)-invariant.

For any SAut(X)-orbit S ⊂ X its image π(S) ⊂ Y is U-invariant. In
particular, each fiber F of a cylinder U ∈ U either is contained in π(S) or
does not intersect it.

Definition
U is transversal if

⋃
U∈U U does not admit nontrivial U-invariant

subsets;

In this case π(S), where S is a general G-orbit on X, contains
suppU :=

⋃
U∈U U.
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Flexibility criterion

Definition
A subset Z ⊂ Y is H-complete if (suppD) ∩ Z ̸= ∅ for any Q-divisor D ∼ H.
A U is called H-complete if suppU is.

If π(S) ⊂ Y is open, then codimX S equals either 0 or 1. If π(S) is
H-complete, then S ⊂ X is open.

Theorem (P.’20)
Let U be a transversal collection of H-polar open affine subsets of Y.
Then there exists an SAut(X)-orbit S on X = AffConeH Y whose image
contains

⋃
U∈U U. If, moreover, U is H-complete, then S is open in X.
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Cylinders on P2

Let p1,p2,p3 ∈ P2 be non-collinear. Then lines Lij := pipj induce three
cylinders: U1 = P2 \ (L12 ∪ L13) etc.
Fibers of U1 are curves in the pencil ⟨L12, L13⟩ minus the base point.
Cylinders Ui are lifted isomorphically to the blowup of P2 at p1,p2,p3
and correspond to the complete linear systems |L − Ei|.

We study cylinders on (weak) del Pezzo surfaces, which are blowups of
P2, simultaneously.
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Bubble Picard group

We fix a smooth projective surface X and consider the category BX of
iterative blowups

ϕY : Y σ1→ Y1
σ2→ . . .

σn→ Yn = X,

where each σi is a contraction of a (−1)-curve into a smooth point.

Definition
The bubble Picard group of X is the direct limit

PicBX = lim−→
Y∈BX

Pic Y (1)

under injective maps σ∗ : Pic Y → Pic Y′ for Y′ σ→ Y → X. Since maps σ∗

preserve intersection forms, PicBX is also endowed with the
intersection form.
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Bubble cycles

Definition (Bubble space)
The bubble space is Xbb = ⊔BX Y/{p1 ∼ p2},
where p1 ∼ p2 if there exist neighbourhoods pi ∈ Ui ⊂ Yi such that
σ−1

Y1
◦ σY1 : U1 ∼= U2.

A point q is infinitely near p (denoted q ≻ p) if q ̸= p and σ(q) = p for
some morphism σ in BX .

Definition
A bubble cycle on X is a finite formal sum

η =
∑

p∈Xbb

η(p)p ∈ Z(Ybb) =
⊕

p∈Xbb

Zp.

We have a correspondence η → {BlηX → X} by blowing up points in
supp η := {p | η(p) ̸= 0}.

(cf. I.Dolgachev “Classical Algebraic Geometry: a Modern View”)
10 17



Bubble linear systems

Bubble cycles can be viewed as elements of PicBX by sending
p ∈ Y ⊂ Xbb to the class of the corresponding exceptional curve
[Ep] ∈ PicBlpY. This defines an injective map Z(Xbb) ↪→ PicBX and the
factorization

PicBX = Pic Y ⊕Z(Ybb)

for any Y ∈ BX.

Definition
A bubble class (D, η) on Y ∈ BX is a pair of a divisor class D ∈ Pic Y and
a bubble cycle η on Ybb ⊂ Xbb. We let D + η ∈ PicBX be the
corresponding divisor class.

Definition
A bubble linear system corresponding to the bubble class (D,−η) on
Y ∈ BX , where η is effective, is the linear system |D − η| with the base
scheme η, cf. notation of [CAG, Section 7.3.2].
That is, |D − η| consists of divisors D′ ∈ |D| that (up to taking a strict
transform) have multiplicity at least η(p) at p for each p ∈ supp η.
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Negative curves on del Pezzo surfaces

Definition
A del Pezzo surface Y of degree d distinct from P1 × P1 is obtained from
P2 by blowing up k := 9 − d points p1, . . . ,pk ∈ P2 in general position:

No three points on a line;
No 5 points on a conic;
No 8 points on a cuspidal cubic, one of them is a node.

Equivalently, the only negative curves are (-1)-curves, namely:
exceptional curves E1, . . . , Ek;
Lij ∈ [L − Ei − Ej], which is the strict transform of the line passing
through pi and pj, for i ̸= j;
Strict transforms of conics passing through 5 points, e.g.,
Q ∈ [2L − E1 − . . .− E5].
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Weak del Pezzo surfaces

Definition
A weak del Pezzo surface Y of degree d distinct from P1 × P1 is obtained
from P2 by blowing up k := 9 − d points p1, . . . ,pk ∈ P2 in almost
general position:

Diagram of infinitely near points (Enriques diagram) is a union of
chains;
No four points on a line;
No seven points on a conic.

Negative curves are (-1)- and (-2)-curves, the latter ones are:
The strict transform of Ei if there is pj infinitely near pi, its class
|Ei − Ej|;
The strict transform of a line passing through 3 points, its class
|L − Ei − Ej − Ek|;
The strict transform of a conic passing through 6 points,
The strict transform of a cuspidal curve passing through 8 points,
one of them is a node.
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Types of weak surfaces

Definition
We say that Y, Y′ ∈ BP2 are equivalent if there is an isomorphism
Pic Y ∼= Pic Y′ respecting the intersection form that induces a bijection
on classes of negative curves.
The equivalence class of surfaces in BP2 is called the type of surfaces.
We define the type of a blowup cycle η on P2 as one of BlηP2.

The type of a weak del Pezzo surface is determined by the same data:
pj infinitely near pi;
a line passing through 3 points;
a conic passing through 6 points,
a cuspidal curve passing through 8 points, one of them is a node.
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Cylinders from P2

A cylinder U ⊂ BlηP2 is described by the corresponding pencil of
curves, which is a one-dimensional linear system S ⊂ |(kL,−η′)|, and
reducible fibers. The conditions on (kL,−η′) are:

0 ≤ η′ ≤ η,
dim |kL − η′| ≥ 1,
a general element of |kL − η′| is irreducible and contains A1

outside of the base locus.
So, U can be expressed in terms of the combinatorial type of η′ and
similar data for components of reducible fibers and their intersections.
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The conic and a tangent

Example
Consider a cubic del Pezzo surface Y, which is the blowup of P2 at
points p1, . . . ,p6, and choose a point p ∈ P2 such that p,p1, . . . ,p5 lie on
a conic. Consider a conic Q ∈ |2L − p1 − . . .− p5| and a line
T ∈ |L − p − p6| tangent to Q.

p6

p1 p5

p3
p2 p4

T

Q

The cylinder U is the isomorphic preimage of
P2 \ T ∪ Q. Fibration is given by the pencil ⟨Q, 2T⟩,
the corresponding bubble class is (2L,−p).
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The cuspidal curve construction

Example
Consider a del Pezzo surface Y of degree 5, which is the blowup of P2 at
points p1, . . . ,p4.
Choose another point p ∈ Y and consider a cuspidal curve C, a conic Q
and lines L1, . . . , L4 as follows.

C ∈(3L,−2p − p1 − . . .− p4),

Q ∈(2L,−p − p1 − . . .− p4),

Li ∈(L,−p − pi).

Then U = Y \ (C ∪ Q ∪ L1 ∪ . . . ∪ L4) is a cylinder corresponding to the
pencil ⟨2C,Q + L1 + . . .+ L4⟩ and the bubble class
(6L,−2p − p1 − . . .− p4) on P2, which is (6L − 2E1 − . . .− 2E4,−2p) on Y.

On BlpY we can take the contraction to σ′ : BlpY → P2 of
{E′

1, . . . , E′
5} := {Q′, L′1, . . . , L′4}. Then C ∈ |L′|, Ep ∈ |2L − p′

1 − . . .− p′
5|, and

σ′(C) is a tangent line to the conic σ′(Ep).
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