FLEXIBILITY OF AFFINE CONES OVER DEL PEZZO SURFACES

ALEXANDER PEREPECHKO

HSE UNIVERSITY

2024-12-22

Notation

- The ground field K is algebraically closed of characteristic zero.
- We denote by \mathbb{G}_a the additive group $\mathbb{G}_a(\mathbb{K})$ of \mathbb{K} .
- All the \mathbb{G}_a -actions on an affine variety X over \mathbb{K} generate the special automorphism group SAut(X).
- A point $x \in X$ is *flexible* if $T_x X$ is generated by the tangent vectors to the orbits of \mathbb{G}_a -actions.

Theorem (Arzhantsev-Flenner-Kaliman-Kutzschebauch-Zaidenberg 2010)

Let X be an affine algebraic variety of dimension \geq 2 and $X_{\rm reg}$ be its smooth locus. Then the following conditions are equivalent:

- 1. all points in $X_{\rm reg}$ are flexible (and X is called flexible);
- 2. the group SAut(X) acts transitively on X_{reg} ;
- 3. the group SAut(X) acts infinitely transitively on X_{reg} .

Theorem (Arzhantsev-Flenner-Kaliman-Kutzschebauch-Zaidenberg 2010)

Let X be an affine algebraic variety of dimension \geq 2 and U be an open SAut(X)-invariant subset in X. Then the following conditions are equivalent:

- 1. all points in U are flexible (and X is called generically flexible);
- 2. the group SAut(X) acts transitively on U;
- 3. the group SAut(X) acts infinitely transitively on U.

Let $Y \subset \mathbb{P}^n$ and a hyperplane section $H \subset Y$ be given by an equation, say, $x_0 = 0$. The projection $\pi \colon \mathbb{A}^{n+1} \setminus \{0\} \to \mathbb{P}^n$ induces the affine cone $X = \pi^{-1}(Y) \cup \{0\}$. Let $Y \subset \mathbb{P}^n$ and a hyperplane section $H \subset Y$ be given by an equation, say, $x_0 = 0$. The projection $\pi \colon \mathbb{A}^{n+1} \setminus \{0\} \to \mathbb{P}^n$ induces the affine cone $X = \pi^{-1}(Y) \cup \{0\}$.

Assume that $U := Y \setminus H$ is a cylinder, i.e., $U \cong \mathbb{A}^1 \times Z = X \cap \{x_0 \neq 0\}$ for some affine variety Z with Pic Z = 0.

Then $\pi^{-1}(U)$ is a cylinder, hence it possesses a \mathbb{G}_a -action G. On the other hand, we have $\pi^{-1}(U) = X \cap \{x_0 \neq 0\}$, so x_0 is a G-invariant, and we can extend G to X. (see Kishimoto–Prokhorov–Zaidenberg'13) Let $Y \subset \mathbb{P}^n$ and a hyperplane section $H \subset Y$ be given by an equation, say, $x_0 = 0$. The projection $\pi \colon \mathbb{A}^{n+1} \setminus \{0\} \to \mathbb{P}^n$ induces the affine cone $X = \pi^{-1}(Y) \cup \{0\}$.

Assume that $U := Y \setminus H$ is a cylinder, i.e., $U \cong \mathbb{A}^1 \times Z = X \cap \{x_0 \neq 0\}$ for some affine variety Z with Pic Z = 0.

Then $\pi^{-1}(U)$ is a cylinder, hence it possesses a \mathbb{G}_a -action G. On the other hand, we have $\pi^{-1}(U) = X \cap \{x_0 \neq 0\}$, so x_0 is a G-invariant, and we can extend G to X. (see Kishimoto–Prokhorov–Zaidenberg'13)

Important: G-orbits on X are projected into fibers of U on Y.

In sequel we denote by Y a normal projective variety, by H a very ample divisor on Y, and by

$$X = \mathsf{AffCone}_{\mathsf{H}} Y = \mathsf{Spec} igoplus_{k \in \mathbb{Z}_{\geq 0}} \mathsf{H}^{\mathsf{o}}(Y, \mathsf{kH})$$

the affine cone over Y polarized by H.

Definition

A cylinder U in Y is an open subset isomorphic to $Z \times \mathbb{A}^1$ for an affine Z. An open subset $U \subset Y$ is *H*-polar if $Y \setminus U = \operatorname{supp} D$ for some effective \mathbb{Q} -divisor $D \sim H$. In sequel we denote by Y a normal projective variety, by H a very ample divisor on Y, and by

$$X = \mathsf{AffCone}_{\mathsf{H}} Y = \mathsf{Spec} igoplus_{k \in \mathbb{Z}_{\geq 0}} \mathsf{H}^{\mathsf{o}}(Y, \mathsf{kH})$$

the affine cone over Y polarized by H.

Definition

A cylinder U in Y is an open subset isomorphic to $Z \times \mathbb{A}^1$ for an affine Z. An open subset $U \subset Y$ is *H*-polar if $Y \setminus U = \operatorname{supp} D$ for some effective \mathbb{Q} -divisor $D \sim H$.

A principal cylinder in an affine variety X corresponds to a \mathbb{G}_a -action on X. An H-polar cylinder in a projective variety Y corresponds to a \mathbb{G}_a -action on AffCone_H Y.

In sequel we denote by Y a normal projective variety, by H a very ample divisor on Y, and by

$$X = \mathsf{AffCone}_{\mathsf{H}} Y = \mathsf{Spec} igoplus_{k \in \mathbb{Z}_{\geq 0}} \mathsf{H}^{\mathsf{o}}(Y, \mathsf{kH})$$

the affine cone over Y polarized by H.

Definition

A cylinder U in Y is an open subset isomorphic to $Z \times \mathbb{A}^1$ for an affine Z. An open subset $U \subset Y$ is *H*-polar if $Y \setminus U = \operatorname{supp} D$ for some effective \mathbb{Q} -divisor $D \sim H$.

A principal cylinder in an affine variety X corresponds to a \mathbb{G}_a -action on X. An H-polar cylinder in a projective variety Y corresponds to a \mathbb{G}_a -action on AffCone_H Y. (see the survey Cheltsov–Park–Prokhorov–Zaidenberg)

Let $\mathcal{U} = \{U\}$ be a set of *H*-polar cylinders on *Y*.

Definition

A subset Z of Y is U-invariant if for any $U \in U$ the intersection $U \cap Z$ is SAut(U)-invariant.

For any SAut(X)-orbit $S \subset X$ its image $\pi(S) \subset Y$ is \mathcal{U} -invariant. In particular, each fiber F of a cylinder $U \in \mathcal{U}$ either is contained in $\pi(S)$ or does not intersect it.

Let $\mathcal{U} = \{U\}$ be a set of *H*-polar cylinders on *Y*.

Definition

A subset Z of Y is U-invariant if for any $U \in U$ the intersection $U \cap Z$ is SAut(U)-invariant.

For any SAut(X)-orbit $S \subset X$ its image $\pi(S) \subset Y$ is \mathcal{U} -invariant. In particular, each fiber F of a cylinder $U \in \mathcal{U}$ either is contained in $\pi(S)$ or does not intersect it.

Definition

 $\mathcal U$ is transversal if $\bigcup_{U\in\mathcal U} U$ does not admit nontrivial $\mathcal U\text{-invariant}$ subsets;

In this case $\pi(S)$, where S is a general G-orbit on X, contains $\sup \mathcal{U} := \bigcup_{U \in \mathcal{U}} U$.

Definition

A subset $Z \subset Y$ is *H*-complete if $(\text{supp } D) \cap Z \neq \emptyset$ for any \mathbb{Q} -divisor $D \sim H$. A \mathcal{U} is called *H*-complete if $\text{supp } \mathcal{U}$ is.

If $\pi(S) \subset Y$ is open, then $\operatorname{codim}_X S$ equals either 0 or 1. If $\pi(S)$ is *H*-complete, then $S \subset X$ is open.

Definition

A subset $Z \subset Y$ is *H*-complete if $(\text{supp } D) \cap Z \neq \emptyset$ for any \mathbb{Q} -divisor $D \sim H$. A \mathcal{U} is called *H*-complete if $\text{supp } \mathcal{U}$ is.

If $\pi(S) \subset Y$ is open, then $\operatorname{codim}_X S$ equals either 0 or 1. If $\pi(S)$ is *H*-complete, then $S \subset X$ is open.

Theorem (P.'20)

Let \mathcal{U} be a transversal collection of H-polar open affine subsets of Y. Then there exists an SAut(X)-orbit S on $X = AffCone_H Y$ whose image contains $\bigcup_{U \in \mathcal{U}} U$. If, moreover, \mathcal{U} is H-complete, then S is open in X. Let $p_1, p_2, p_3 \in \mathbb{P}^2$ be non-collinear. Then lines $L_{ij} := \overline{p_i p_j}$ induce three cylinders: $U_1 = \mathbb{P}^2 \setminus (L_{12} \cup L_{13})$ etc. Fibers of U_1 are curves in the pencil $\langle L_{12}, L_{13} \rangle$ minus the base point. Cylinders U_i are lifted isomorphically to the blowup of \mathbb{P}^2 at p_1, p_2, p_3 and correspond to the complete linear systems $|L - E_i|$.

We study cylinders on (weak) del Pezzo surfaces, which are blowups of $\mathbb{P}^2,$ simultaneously.

We fix a smooth projective surface X and consider the category \mathcal{B}_X of iterative blowups

$$\phi_{\mathsf{Y}} \colon \mathsf{Y} \stackrel{\sigma_1}{\to} \mathsf{Y}_1 \stackrel{\sigma_2}{\to} \dots \stackrel{\sigma_n}{\to} \mathsf{Y}_n = \mathsf{X},$$

where each σ_i is a contraction of a (-1)-curve into a smooth point.

Definition

The bubble Picard group of X is the direct limit

$$\operatorname{Pic} \mathcal{B}_{\chi} = \varinjlim_{Y \in \mathcal{B}_{\chi}} \operatorname{Pic} Y$$
(1)

under injective maps σ^* : Pic Y \rightarrow Pic Y' for Y' $\xrightarrow{\sigma}$ Y \rightarrow X. Since maps σ^* preserve intersection forms, Pic \mathcal{B}_X is also endowed with the intersection form.

BUBBLE CYCLES

Definition (Bubble space)

The bubble space is $X^{bb} = \bigsqcup_{\mathcal{B}_X} Y / \{p_1 \sim p_2\}$, where $p_1 \sim p_2$ if there exist neighbourhoods $p_i \in U_i \subset Y_i$ such that $\sigma_{Y_1}^{-1} \circ \sigma_{Y_1} : U_1 \cong U_2$.

A point q is infinitely near p (denoted $q \succ p$) if $q \neq p$ and $\sigma(q) = p$ for some morphism σ in \mathcal{B}_X .

Definition

A bubble cycle on X is a finite formal sum

$$\eta = \sum_{p \in X^{bb}} \eta(p) p \in \mathcal{Z}(Y^{bb}) = \bigoplus_{p \in X^{bb}} \mathbb{Z}p.$$

We have a correspondence $\eta \to {Bl_{\eta}X \to X}$ by blowing up points in supp $\eta := {p \mid \eta(p) \neq 0}$.

(cf. I.Dolgachev "Classical Algebraic Geometry: a Modern View")

BUBBLE LINEAR SYSTEMS

Bubble cycles can be viewed as elements of $\operatorname{Pic} \mathcal{B}_X$ by sending $p \in Y \subset X^{bb}$ to the class of the corresponding exceptional curve $[E_p] \in \operatorname{Pic} \operatorname{Bl}_p Y$. This defines an injective map $\mathcal{Z}(X^{bb}) \hookrightarrow \operatorname{Pic} \mathcal{B}_X$ and the factorization

$$\operatorname{Pic} \mathcal{B}_X = \operatorname{Pic} Y \oplus \mathcal{Z}(Y^{bb})$$

for any $Y \in \mathcal{B}_X$.

Definition

A bubble class (D, η) on $Y \in \mathcal{B}_X$ is a pair of a divisor class $D \in \operatorname{Pic} Y$ and a bubble cycle η on $Y^{bb} \subset X^{bb}$. We let $D + \eta \in \operatorname{Pic} \mathcal{B}_X$ be the corresponding divisor class.

Definition

A bubble linear system corresponding to the bubble class $(D, -\eta)$ on $Y \in \mathcal{B}_X$, where η is effective, is the linear system $|D - \eta|$ with the base scheme η , cf. notation of [CAG, Section 7.3.2]. That is, $|D - \eta|$ consists of divisors $D' \in |D|$ that (up to taking a strict transform) have multiplicity at least $\eta(p)$ at p for each $p \in \text{supp } \eta$.

Definition

A del Pezzo surface Y of degree d distinct from $\mathbb{P}^1 \times \mathbb{P}^1$ is obtained from \mathbb{P}^2 by blowing up k := 9 - d points $p_1, \ldots, p_k \in \mathbb{P}^2$ in general position:

- No three points on a line;
- No 5 points on a conic;
- No 8 points on a cuspidal cubic, one of them is a node.

Equivalently, the only negative curves are (-1)-curves, namely:

- exceptional curves E_1, \ldots, E_k ;
- $L_{ij} \in [L E_i E_j]$, which is the strict transform of the line passing through p_i and p_j , for $i \neq j$;
- Strict transforms of conics passing through 5 points, e.g., $Q \in [2L E_1 \ldots E_5]$.

WEAK DEL PEZZO SURFACES

Definition

A weak del Pezzo surface Y of degree d distinct from $\mathbb{P}^1 \times \mathbb{P}^1$ is obtained from \mathbb{P}^2 by blowing up k := 9 - d points $p_1, \ldots, p_k \in \mathbb{P}^2$ in almost general position:

- Diagram of infinitely near points (Enriques diagram) is a union of chains;
- No four points on a line;
- No seven points on a conic.

Negative curves are (-1)- and (-2)-curves, the latter ones are:

- The strict transform of E_i if there is p_j infinitely near p_i , its class $|E_i E_j|$;
- The strict transform of a line passing through 3 points, its class $|L E_i E_j E_k|$;
- The strict transform of a conic passing through 6 points,
- The strict transform of a cuspidal curve passing through 8 points, one of them is a node.

Definition

We say that $Y, Y' \in \mathcal{B}_{\mathbb{P}^2}$ are equivalent if there is an isomorphism Pic $Y \cong$ Pic Y' respecting the intersection form that induces a bijection on classes of negative curves. The equivalence class of surfaces in $\mathcal{B}_{\mathbb{P}^2}$ is called the type of surfaces. We define the type of a blowup cycle η on \mathbb{P}^2 as one of $Bl_{\eta}\mathbb{P}^2$.

The type of a weak del Pezzo surface is determined by the same data:

- \blacksquare p_j infinitely near p_i ;
- a line passing through 3 points;
- a conic passing through 6 points,
- a cuspidal curve passing through 8 points, one of them is a node.

A cylinder $U \subset \operatorname{Bl}_{\eta} \mathbb{P}^2$ is described by the corresponding pencil of curves, which is a one-dimensional linear system $S \subset |(kL, -\eta')|$, and reducible fibers. The conditions on $(kL, -\eta')$ are:

•
$$\mathsf{o} \leq \eta' \leq \eta$$
,

■ dim
$$|kL - \eta'| \ge 1$$
,

■ a general element of $|kL - \eta'|$ is irreducible and contains \mathbb{A}^1 outside of the base locus.

So, U can be expressed in terms of the combinatorial type of η' and similar data for components of reducible fibers and their intersections.

Example

Consider a cubic del Pezzo surface Y, which is the blowup of \mathbb{P}^2 at points p_1, \ldots, p_6 , and choose a point $p \in \mathbb{P}^2$ such that p, p_1, \ldots, p_5 lie on a conic. Consider a conic $Q \in |2L - p_1 - \ldots - p_5|$ and a line $T \in |L - p - p_6|$ tangent to Q.

The cylinder *U* is the isomorphic preimage of $\mathbb{P}^2 \setminus T \cup Q$. Fibration is given by the pencil $\langle Q, 2T \rangle$, the corresponding bubble class is (2L, -p).

16

THE CUSPIDAL CURVE CONSTRUCTION

Example

Consider a del Pezzo surface Y of degree 5, which is the blowup of \mathbb{P}^2 at points p_1, \ldots, p_4 . Choose another point $p \in Y$ and consider a cuspidal curve C, a conic Q and lines L_1, \ldots, L_4 as follows.

$$\begin{split} & C \in (3L, -2p - p_1 - \ldots - p_4), \\ & Q \in (2L, -p - p_1 - \ldots - p_4), \\ & L_i \in (L, -p - p_i). \end{split}$$

Then $U = Y \setminus (C \cup Q \cup L_1 \cup \ldots \cup L_4)$ is a cylinder corresponding to the pencil $(2C, Q + L_1 + \ldots + L_4)$ and the bubble class $(6L, -2p - p_1 - \ldots - p_4)$ on \mathbb{P}^2 , which is $(6L - 2E_1 - \ldots - 2E_4, -2p)$ on Y.

On $\operatorname{Bl}_p Y$ we can take the contraction to $\sigma' : \operatorname{Bl}_p Y \to \mathbb{P}^2$ of $\{E'_1, \ldots, E'_5\} := \{Q', L'_1, \ldots, L'_4\}$. Then $C \in |L'|$, $E_p \in |2L - p'_1 - \ldots - p'_5|$, and $\sigma'(C)$ is a tangent line to the conic $\sigma'(E_p)$.