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Schubert Calculus



Schubert calculus is a classical field in algebraic ge-
ometry beginning from the 19th century.

I Hermann Schubert’s book with many deep
ideas.



Counting problems in Algebraic Geometry

Q: How many geometric objects satisfy given
geometric conditions?

Objects: curves, surfaces, ...
Conditions: passing through given points, curves, ...

tangent to given curves, surfaces, ...
having given shape: genus, degree

The only requirement is that the conditions are
chosen so that the answer is finite (usually general).



Example 0

Q: How many lines pass through 2 general
(distinct) points?

1



Example 1

How many lines pass through 4 general lines in P3?

2



Example 2

How many lines lie on a general cubic surface in P3?

27



Example 3

How many lines lie on a general quintic

hypersurface in P4? 2875
More generally:

1. How many lines lie on a general hypersurface of
degree 2n � 3 in Pn?

2. How many k-planes lie on a general hypersurface
of degree d in Pn? If k , d , n 2 N satisfy d � 3
and

�d+k
k

�
= (k + 1)(n� k), then the answer is

finite.



How to solve the counting problems?

1. Find suitable parameter spaces: Grassmannians
(linear subspaces), projective bundles (conics),
moduli spaces of stable maps (higher degree).

2. Using intersection theory on these parameter spaces,
express the locus of geometric objects satisfy-
ing given geometric conditions as a certain 0-
dimensional charactersitic class on the parame-
ter space.

3. Compute the degree of the charactersitic class:
I Localization in equivariant cohomology.



Hilbert’s fifteenth problem

Question: Construct the rigorous foundation of
Schubert’s enumerative calculus.

I As the question would be understood today we
can split it into algebraic combinatorics and
enumerative geometry.

I Using the modern language of algebraic
geometry, the question can be translated into
Gromov-Witten invariants related to physics
(string theory, mirror symmetry)

I The computation of Gromov-Witten invariants
leads to the desired counting numbers.



Schubert calculus on
Grassmannians



Schubert calculus on Grassmannians

Consider the Grassmannian

G (k , n) = {W ⇢ Cn | dim(W ) = k}.

Let � = (�1,�2, . . . ,�k) 2 Pk ,n be a partition, i.e. a
sequence of integers such that

n � k � �1 � �2 � · · · � �k � 0.

The set

X� = {W 2 G (k , n) | dim(W \ Cn�k+i��i ) � i , 8i}

is called a Schubert variety.



Schubert calculus on Grassmannians

The Poincaré class

�� := [X�] 2 H2|�|(G (k , n),Z)

is called a Schubert class.
The set

{�� | � 2 Pn,k}
forms a linear basis for H?(G (k , n),Z)



Example 1
How many lines are there in P3 meeting 4 general
lines?
I The parameter space for lines in P3 is the

Grassmannian G (2, 4).
I Given a line L ⇢ P3, the class of lines meeting

L is the Schubert class

�(1,0) = c1(S_).

I The number of lines meeting 4 general lines in
P3 is equal to the degree of the class �4

(1,0) on
G (2, 4), that is

Z

G (2,4)
c1(S_)4 =

Z

G (2,4)
�4
(1,0) = 2.



Intersection numbers on Grassmannians
Suppose that �(S) is represented by a symmetric
polynomial P(x1, . . . , xk) of degree not greater than
k(n � k) in k variables x1, . . . , xk which are the
Chern roots of the tautological subbundle S on
G (k , n). Then the intersection number

Z

G (k ,n)
�(S) = (�1)k(n�k)c(k , n)

k!
,

where c(k , n) is the coe�cient of the monomial
xn�1
1 · · · xn�1

k in the polynomial

P(x1, . . . , xk)
Y

i 6=j

(xi � xj).



Localization in equi. cohomology

Theorem (Atiyah-Bott-Berline-Vergne)
Suppose that X is a compact manifold endowed
with a torus action and the fixed point locus XT is
finite. For ↵ 2 H⇤(X ), we have

Z

X
↵ =

X

p2XT

↵|p
ep

,

where ep is the T -equivariant Euler class of the
tangent bundle at the fixed point p, and ↵|p is the
restriction of ↵ to the point p.



Localization in equi. cohomology

Consider the natural action of T = (C⇤)n on Cn

given in coordinates by

(a1, . . . , an) · (x1, . . . , xn) = (a1x1, . . . , anxn).

This induces a torus action on G (k , n) with isolated
fixed points pI corresponding to coordinate k-planes
in Cn. Each fixed point pI is indexed by a subset
I ⇢ [n] of size k .



Localization in equi. cohomology

By the Atiyah-Bott-Berline-Vergne formula, we have

Z

G (k ,n)
�(S) =

X

pI

�T (S|pI )
epI

= (�1)k(n�k)
X

I✓[n],|I |=k

P(�I )Y

i2I ,j 62I

(�i � �j)
.



Identity on symmetric polynomials
Theorem (H., 2019)
Let P(x1, . . . , xk) be a symmetric polynomial of
degree not greater than k(n � k). Then the sum

X

I✓[n],|I |=k

P(�I )Y

i2I ,j 62I

(�i � �j)
=

c(k , n)

k!
,

where c(k , n) is the coe�cient of xn�1
1 . . . xn�1

k in
the polynomial

P(x1, . . . , xn)
Y

i 6=j

(xi � xj).



Geometry of Lagrangian
Grassmannians



Lagrangian Grassmannians
Let V be a complex vector space of dimension 2n
endowed with a symplectic form !. A subspace W
of V is said to be maximal isotropic if

!(x , y) = 0, 8x , y 2 W and dim(W ) = n.

The Lagrangian Grassmannian

LG (n) = {W ⇢ V | W is maximal isotropic}.

LG (n) is a smooth subvariety of the ordinary Grass-
mannian G (n, 2n). Its dimension is

dim(LG (n)) =
n(n + 1)

2
.



Intersection numbers on LG (n)

Consider the following intersection number
Z

LG (n)
�(S),

where �(S) is a characteristic class of the tautologi-
cal sub-bundle S on LG (n).
Suppose that �(S) is represented by a symmetric
polynomial P(x1, . . . , xn) of degree not greater than
n(n+1)

2 in n variables x1, . . . , xn which are the Chern
roots of the tautological sub-bundle S on LG (n).



Intersection numbers on LG (n)

Theorem (H.-Tu, 2021)
Then the intersection number

Z

LG (n)
�(S) = (�1)

n(n+1)
2

c(n)

n!
, (1)

where c(n) is the coe�cient of x2n�1
1 · · · x2n�1

n in
the polynomial

P(x1, . . . , xn)
Y

i 6=j

(xi � xj)
Y

i<j

(xi + xj).



Relation to the Grassmannian
Let G (n, 2n) be the Grassmannian parametrizing
n-dimensional subspaces of a 2n-dimensional
complex vector space. We denote by ��n the
Schubert class on G (n, 2n) with respect to the
partition

�n = (n � 1, n � 2, . . . , 1).

It is easy to see that ��n is represented by the
symmetric polynomial

(�1)
n(n�1)

2

Y

i<j

(xi + xj).



Relation to the Grassmannian

Let �(S) be a characteristic class on LG (n). Then
we have

Z

LG (n)
�(S) =

Z

G (n,2n)
�(S)��n,

where, by abuse of notation, the later class �(S) is
on G (n, 2n).



Degree formula for LG (n)

The degree of LG (n), considered as a subvariety of
a projective space thanks to the Plücker embedding,
is given by the following formula

deg(LG (n)) =
n(n+1)

2 !
nY

i=1

(2i � 1)!

Y

1i<jn

(2j � 2i).



Schubert calculus on LG (n)

For each positive integer n, we denote by Dn the set
of strict partitions ↵ = (↵1,↵2, . . . ,↵k) such that
n � ↵1 > ↵2 > · · · > ↵k > 0.
Fix an isotropic flag of subspaces Fi of V :

0 ⇢ F1 ⇢ F2 ⇢ · · · ⇢ Fn ⇢ V ,

where dim(Fi) = i for all i and Fn is isotropic.



Schubert calculus on LG (n)

For each strict partition ↵ 2 Dn, define

X↵ = {W 2 LG (n) | dim(W \ Fn+1�↵i ) � i , 8i}

to be a Schubert variety in LG (n).
The Poincaré class

�↵ = [X↵] 2 H?(LG (n),Z)

does not depend on the choice of the flag, is called
a Schubert class on LG (n).



Schubert calculus on LG (n)

The set {�↵ | ↵ 2 Dn} forms a Z-basis for H?(LG (n),Z),
that is

H?(LG (n),Z) =
M

↵2Dn

Z�↵.

The ring structure

�↵ · �� =
X

�2Dn

N�
↵,���,

where N�
↵,� is the intersection number of three Schu-

bert vareties X↵,X� and X�0 with �0 is the comple-
ment of � in the set {1, 2, . . . , n}.



Quantum cohomology of
Lagrangian Grassmannians



Quantum cohomology of LG (n)

We denote by QH⇤(LG (n),Z) the (small) quantum
cohomology ring of LG (n). This is a deformation
of H⇤(LG (n),Z) which first appeared in the work of
string theorists.
The ring QH⇤(LG (n),Z) is an algebra over Z[q],
where q is a formal variable of degree n + 1.
By taking q = 0, we recover the classical cohomology
ring H⇤(LG (n),Z).



Quantum cohomology of LG (n)

The set {�↵ | ↵ 2 Dn} forms a Z[q]-basis for
QH?(LG (n),Z), that is

QH⇤(LG (n),Z) =
M

�2Dn

Z[q]��.

In QH⇤(LG (n),Z), the quantum product is given by
the following formula:

�↵ ? �� =
X

N�,d
↵,�q

d��,

where the sum runs over d 2 N and � 2 Dn with
|�|+ d(n + 1) = |↵|+ |�|.



Quantum cohomology of LG (n)

The quantum structure constant N�,d
↵,� is equal to the

three-point, genus 0 Gromov–Witten invariant, which
counts the number of rational curves of degree d
meeting three Schubert varieties X↵,X� and X�0 in
general position.

Problem
Find a formula for N�,d

↵,� .



Quantum cohomology of LG (n)

For each ↵ 2 Dn, we define the class

Q↵ 2 H⇤(G (n, 2n),Z)

as follows:

I Qi = �i for all i = 1, . . . , n.
I For i > j > 0, we define

Qi ,j = QiQj + 2
min{n�i ,j}X

k=1

(�1)kQi+kQj�k .



Quantum cohomology of LG (n)

I For any ↵ 2 Dn of length at least 3, we define

Q↵ = Pfa�an[Q↵i ,↵j ]1i<jr ,

where r is the least even integer which is greater
than or equal to the length of ↵. If the length
↵ is odd then we set ↵r = 0 and Q↵i ,0 = Q↵i .



Quantum cohomology of LG (n)
We denote by ��n the Schubert class on G (n, 2n) with
respect to the partition

�n = (n � 1, n � 2, . . . , 1).

Theorem (H.-Tu)

Let ↵, �, � 2 Dn such that |�| = |↵| + |�|. The
Schubert structure constant N�

↵,� can be expressed as
an intersection number on the ordinary Grassmannian
G (n, 2n), that is

N�
↵,� =

Z

G (n,2n)
Q↵Q�Q�0��n.



Quantum cohomology of LG (n)

Theorem (H.-Tu, 2021)

Let ↵, �, � 2 Dn such that |�| + n + 1 = |↵| + |�|.
Then the Gromov–Witten invariant

N�,1
↵,� =

1

2

Z

G (n+1,2n+2)
Q↵Q�Q�0��n+1,

where Q↵,Q� and Q�0 are determined as the classes
on G (n + 1, 2n + 2).



Thank you for your attention!
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