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Preliminaries and setup Fano manifolds

Fano manifolds

Ground field is C.

Definition

A Fano manifold is a smooth projective algebraic variety X such that∧n TX is ample (n = dimX ).

In other words: ∃ closed embedding X ↪→ PN and a global tensor field
σ ∈ H0(X , (

∧n TX )⊗m) such that

{x ∈ X | σ(x) = 0} = X ∩ H, H ⊂ PN is a general hyperplane.

Fano manifolds are of importance in algebraic geometry (Minimal Model
Program, etc).

Picard group PicX ' H2(X ,Z) ' Zρ, ρ = ρX , Picard number.

Restriction: ρ = 1 (unipolar Fano manifolds)
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Preliminaries and setup Fano manifolds

Flag manifolds

Example

Generalized flag manifold (= homogeneous rational projective variety)
X = G/P is Fano.

Here G is a semisimple Lie group, P is a parabolic subgroup.

ρX = dimP/[P,P] = maximal length of (P = P1 ⊂ P2 ⊂ · · · ⊂ Pρ ⊂ G )

X unipolar ⇐⇒ P maximal parabolic
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Preliminaries and setup Fano manifolds

Grassmannians

Unipolar flag manifolds: examples

1 Grassmannians:

G = SLn, P =

k

k ∗ ∗
0 ∗ , X = Grk(Cn) = {U ⊂ Cn | dimU = k}

2 Symplectic (isotropic) Grassmannians:

G = Spn = Sp(Cn, ω) (n even, ω a symplectic form)

P =

k

k ∗ ∗ ∗
0 ∗ ∗
0 0 ∗ k

k

, X = IGrk(Cn) = {U ⊂ Cn | dimU = k, ω|U = 0}
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Preliminaries and setup Minimal rational curves

Rational curves

Assume: X Fano, ρX = 1.

Degree of an algebraic curve C ⊂ X
(w.r.t. the ample generator of PicX ' Z):

degC =
1

mX
|C ∩ H|, X ⊂ PN , H ⊂ PN is a general hyperplane,

mX ∈ N.

Rational curves: C ' P1.

X is covered by rational curves. Countably many families of such curves:

P µ //

π P1-bundle
��

X

K quasiprojective, irreducible

, C = µ(π−1(c)), c ∈ K.
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Preliminaries and setup Minimal rational curves

Minimal rational curves:

Rational curves play an important role in the geometry of Fano manifolds
(goes back to S. Mori).

Families of minimal rational curves:

1 µ(P) ⊃ X 0, a dense open subset of X (= dominating family);

2 degC = min over all families K with (1).

Analogy (Yum-Tong Siu et al):

Geodesic curves in Riemannian
geometry

Minimal rational curves in the
geometry of Fano manifolds

∃ geodesic curve through any
point in any direction

Not true in general
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Preliminaries and setup Varieties of minimal rational tangents

VMRT

x ∈ X 0  Kx = π(µ−1(x))
parameterizes minimal rational curves through x .

Tangent map (proper, birational)

τx : Kx
// P(TX ,x)

c � // P(TC ,x), C = µ(π−1(c))

Variety of minimal rational tangents (VMRT) Cx = Im τx ⊂ P(TX ,x),
embedded projective variety.

Particular case: X ⊂ PN , ∀x ∈ X 0 ∃ line C ⊂ X , C 3 x .

Then: minimal rational curves = lines in X =⇒ τx : Kx
∼−→ Cx .

Holds for X = G/P (unipolar flag manifold); lines in X form a single
family K.
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Preliminaries and setup Varieties of minimal rational tangents

Example: VMRT of Grassmannians

Example 1

X = Grk(Cn) ↪→ P(
∧k Cn) (Plücker embedding)

x = U = 〈v1, . . . , vk〉 7→ 〈v1 ∧ · · · ∧ vk〉

Lines:
C = {U | U ′ ⊂ U ⊂ U ′′}; U ′,U ′′ fixed, dimU ′ = k − 1, dimU ′′ = k + 1.

VMRT: Cx = P(U∗)× P(Cn/U) �
� Segre // P(U∗ ⊗ Cn/U) = P(TX ,x) .

Example 2

X = IGrk(Cn) ↪→ P(
∧k Cn)

Lines: as in Example 1 with ω(U ′,U ′′) = 0. This equation cuts out
Cx ⊂ P(U∗)× P(Cn/U) and P(TX ,x) ⊂ P(U∗ ⊗ Cn/U).
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Preliminaries and setup Varieties of minimal rational tangents

Fano manifolds via VMRT

Principle (J.-M. Hwang, N. Mok, 90’s)

Geometry of a unipolar Fano manifold X with many symmetries is
controlled by projective geometry of its VMRT Cx ⊂ Pn−1 (n = dimX) at
a general point x ∈ X.

Program

Recognize X by Cx .

Theorem (S. Mori, 1979; K. Cho and Y. Miyaoka, 1998)

Cx = Pn−1 =⇒ X = Pn

Further developments (J.-M. Hwang, N. Mok, and collaborators):
implementing the program for unipolar flag manifolds.
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Main result

Main theorem

Main Theorem (J.-M. Hwang, N. Mok, J. Hong, Q. Li, D.T.)

Suppose Y = G/P is a unipolar flag manifold, y ∈ Y .

If X is a unipolar Fano manifold such that, for (some) x ∈ X 0,

Cx ∼ //
� _

Cy� _
P(TX ,x)

∼ // P(TY ,y ),

then X ' Y .

Remark

Cy is locally rigid.
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Outline of the proof

Scheme of the proof

Proof combines ideas and techniques from: algebraic geometry, differential
geometry, Lie algebras and algebraic groups, spherical varieties.

Scheme of the proof:

VMRT differential-geometric structure on X

 G ′ y X ⊃ X 0 = G ′/P ′, codim(X \ X 0) ≥ 2

=⇒ G ′ = G , P ′ = P, X = Y

May assume G = (AutY )◦, P = P(αk), αk is a simple root of G .

Two cases:

1 αk long; example: Y = Grk(Cn);

2 αk short; example: Y = IGrk(Cn), 1 < k < n/2.
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Outline of the proof VMRT of unipolar flag manifolds

Step 1: VMRT of Y

Lie algebra grading:

g = LieG =

p = LieP︷ ︸︸ ︷
g−d ⊕ · · · ⊕ g−1︸ ︷︷ ︸

pnil

⊕g0⊕ g1 ⊕ · · · ⊕ gd︸ ︷︷ ︸
p+

nil ' TY ,y

1 Long root case: Cy = the unique closed orbit of G0 y P(g1).

2 Short root case: Cy = C0 t C1 ⊂ P(g1 ⊕ g2), C0 = the open P-orbit,
C1 = Cy ∩ P(g1) = the closed P-orbit.
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Outline of the proof VMRT of unipolar flag manifolds

VMRT of Y : examples

Examples ( VMRT of Grassmannians )

1 Y = Grk(Cn), g = sln =

k

k 0 −1
1 0

,

Cy =
0 0

rk = 1 0
= P(Ck)∗ × P(Cn/Ck).

2 Y = IGrk(Cn, ω) (1 < k < n/2), g = spn =

k

k 0 −1 −2
1 0 −1
2 1 0 k

k

,

Cy = {(U ′,U ′′) | ω(U ′,U ′′) = 0},
C0 = {U” non-isotropic}, C1 = {U” isotropic}.
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Outline of the proof Symbol algebra

Step 2: symbol algebra

Ĉx ⊂ TX ,x  Wx = 〈Ĉx〉 ⊂ TX ,x  W ⊂ TX 0

W =W1 ⊂ W2 ⊂ · · · ⊂ Wk ⊂ · · · ⊂ Wd =
⇑

ρX = 1

TX 0

Wk−1 + [Wk−1,W] · OX

[Wk ,W l ] ⊂ Wk+l

Definition

Symbol algebra gx =W1
x ⊕W2

x /W1
x ⊕ · · · ⊕Wd

x /Wd−1
x

Properties:

1 Generators: ξ ∈ Wx .
2 Defining relations: [ξ, η] = 0 whenever 〈ξ, η〉 is tangent to Ĉx .
3 gx depends on Cx ' Cy only.
4 gx ' p+

nil in the long root case.
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Outline of the proof Lie algebras associated with projective varieties

Digression: Lie algebras from projective varieties

General construction:

Let Z ⊂ Pn−1 = P(V ) be a non-degenerate irreducible projective variety.

Then: L ⊂ P(V ), a line tangent to Z at some z ∈ Z reg

=⇒ L = P(T ), T = 〈ξ, η〉, a 2-plane tangent to Ẑ , 〈ξ〉 = z .

Definition

Associated Lie algebra:

L = L(Z ) =

Lie
(
V
∣∣∣ [ξ, η] = 0, ∀T = 〈ξ, η〉 s.t. L = P(T ) tangent to Z at z ∈ Z reg

)
= L1 ⊕ L2 ⊕ L3 ⊕ · · ·

V
∧2 V /〈ξ ∧ η, ∀T as above〉
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Outline of the proof Lie algebras associated with projective varieties

Associated Lie algebras

Questions:

1 What is the structure of L?

2 Is it always true that dimL <∞?

Observation: Z ⊂ P(V ) big enough

=⇒
∧2 V =

∑∧2 T over all T tangent to Ẑ

=⇒ L = L1 is Abelian.

In particular, L is Abelian for smooth Z in the cases:

dimZ > n−1
2 (Hwang–Mok);

Z is a complete intersection (Hwang).
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Outline of the proof Lie algebras associated with projective varieties

Associated Lie algebras for flag varieties

Case of flag varieties: Z = S/Q, S semisimple, Q ⊂ S parabolic.
V = V (λ), simple S-module of lowest weight λ.
V 3 vλ, lowest weight vector, Z = S〈vλ〉.

Extended Dynkin diagram:
mi mj

α1

λ

αi αj αl︸ ︷︷ ︸
Dynkin diagram of S

Multiplicities of edges at λ: mi = −〈λ, α∨i 〉, so that λ = −
∑

i miωi .

Kac–Moody algebra:

g = Lie
(
ei , fi , hi | i = 0, 1, . . . , l , {ei , fi , hi} are sl2-triples + other relations

)
=
⊕
k∈Z

gk , deg e0 = 1, deg f0 = −1,

deg h0 = deg hi = deg ei = deg fi = 0, i = 1, . . . , l .
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Outline of the proof Lie algebras associated with projective varieties

Associated Lie algebras for flag varieties

g0 is reductive, [g0, g0] = s = LieS , g1 ' V (λ).

Put: n = g1 ⊕ g2 ⊕ · · · , u0 = Lie(e1, . . . , el) ⊂ s

=⇒ u = u0 ⊕ n = Lie
(
e0, e1, . . . , el | (ad ei )

1+mij ej = 0, ∀i 6= j
)
,

mij =


0, αi not linked to αj ,

multiplicity of edge αi —αj , αi short,

1, otherwise.

(α0 = λ).

Theorem

L� n, Ker = ideal
(
(ad e0)2eα = 0, α > 0

)
= 0 if dim g <∞ ( symbol algebra ) and in some other cases.

Theorem (A. Zavadskii, 2023)∑
i>0 mi > 3 =⇒ dimL =∞.
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Outline of the proof Fine symbol algebra

Fine symbol algebra

Recall:

gx depends on Cx ' Cy only;

gx ' p+
nil in the long root case.

Short root case: gx sometimes too coarse =⇒ modify the definition.

Definition

Fine symbol algebra gx = U1
x ⊕ U2

x /U1
x ⊕ · · · , where:

U1 ⊂ U2 =W1 ⊂ U3 ⊂ U4 =W2 ⊂ · · ·

U1
x = 〈Ĉ1〉 ( recall the structure of VMRT), U2k+1 =Wk + [Wk ,U ] · OX .

Properties of the fine symbol algebra:

gx may depend on X , not only on Cx ;

gx ' p+
nil or its degeneration: finitely many possibilities.
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Outline of the proof Universal prolongation

Step 3: universal prolongation

Problem

Given a positively graded finite-dimensional nilpotent Lie algebra
h+ = h1 ⊕ · · · ⊕ hd , embed it into a Z-graded Lie algebra
h = h+⊕h0⊕h−1⊕h−2⊕· · · such that zh(h+) ⊂ h+ and h0 is prescribed.

Definition

We call such an h a prolongation of (h+, h0).

Definition-Proposition

Among all prolongations h there exists the biggest one, called the universal
prolongation of (h+, h0). (May happen dim h =∞!)

Criterion

A prolongation h is universal iff H1(h+, h)deg<0 = 0.
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Outline of the proof Universal prolongation

Universal prolongation of the symbol algebra

Our situation:

gx (coarse or fine) ↪→ universal prolongation

g′ = gx ⊕

p′︷ ︸︸ ︷
g′0 ⊕ g′−1 ⊕ g′−2 ⊕ · · · ,

g′0 = Lie Aut(gx , Ĉx).

Proposition

dim g′ <∞
Long root case: g′ = g, p′ = p.

Short root case: (g′, p′) = (g, p) or its degeneration.

Any case: dimG ′/P ′ = dimG/P = dimX.
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Outline of the proof Cartan connection

Step 4: Cartan connection

Definition

A Cartan connection of type (g′, p′) on X 0 is a principal P ′-bundle
P → X 0 together with a g′-valued 1-form γ : TP → g′ such that:

γ is P ′-equivariant;

γ : TP,p
∼→ g′, ∀p ∈ P;

γ : TPx

∼→ p′ is the Maurer–Cartan form, ∀x ∈ X 0.

Proposition

∃ Cartan connection of type (g′, p′) on a dense open subset X 0 ⊂ X;

curvature K = dγ + 1
2γ ∧ γ = 0.

Proof: inductive construction starting from a principal G ′0-bundle

P0 → X 0 associated with Ĉ → X 0, based on N. Tanaka’s method.
Obstructions are sections of a vector bundle with fiber H2(gx , g

′)deg<0.
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Outline of the proof Transitive group action

Step 5: Transitive group action

Proposition

∃ action G ′ y X with a dense open orbit X 0 ' G ′/P ′,
codim(X \ X 0) ≥ 2.

Proof is based on flatness of the Cartan connection and Cartan–Fubini
type extension theorem (J.-M. Hwang, N. Mok, 2001).

Case 1: G ′ = G , P ′ = P =⇒ X 0 = Y =⇒ X = X 0.

Case 2: G ′ non-reductive (only short root case) =⇒ G ′ = G ′uni o G ′red,
Borel subgroup B ⊂ G ′red acts on X 0 with a dense open orbit,
i.e., X 0 is a spherical G ′red-variety.

Theory of spherical varieties =⇒ X 0 admits no G ′red-equivariant
compactifications with small boundary.

This excludes Case 2 and completes the proof.
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