Additive actions on projective spaces and other varieties

Yulia Zaitseva

HSE University, Moscow

23.12.2024

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Additive actions

Let \mathbb{K} be an algebraically closed field of characteristic zero and $\mathbb{G}_a = (\mathbb{K}, +).$

The vector group
$$\mathbb{G}_a^n := \underbrace{\mathbb{G}_a \times \ldots \times \mathbb{G}_a}_{n \text{ times}} = (\mathbb{K}^n, +).$$

Definition

An additive action on a variety X is an effective action $\mathbb{G}_a^n \times X \to X$ with an open orbit.

Hirzebruch's question (1954)

Problem 26. Describe all analytic compactifications of \mathbb{C}^2 .

Problem 27. Describe all analytic compactifications of \mathbb{C}^n with the second Betti number 1.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

B. Hassett and Yu. Tschinkel'99: the systematic study of algebraic compactifications $\mathbb{C}^n \hookrightarrow X$ such that the action of the group $\mathbb{G}_a^n = (\mathbb{C}^n, +)$ of \mathbb{C}^n by parallel translations extends to $\mathbb{G}_a^n \times X \to X$.

Motivation: distribution of rational points, Manin's conjecture (Chambert-Loir-Tschinkel'02,'12)

"Additive analogue" of toric geometry

$$\mathbb{G}_m = (\mathbb{K}^{ imes}, imes)$$
 and $\mathbb{G}_a = (\mathbb{K}, +)$

Definition

A toric variety is an irreducible variety X with an effective action $T \times X \to X$ of an algebraic torus $T = \mathbb{G}_m^n$ with an open orbit.

Additive actions: replace an algebraic torus \mathbb{G}_m^n by a vector group \mathbb{G}_a^n

Main differences:

- such an action is no longer unique on X;
- the number of orbits is no longer finite;
- orbits of a unipotent group on affine varieties are closed \Rightarrow
- \Rightarrow invariant open affine covering on X no longer exists.

Two additive actions $\mathbb{G}^2_a \times \mathbb{P}^2 \to \mathbb{P}^2$

Example 1

$$(a_1, a_2) \cdot [z_0 : z_1 : z_2] = [z_0 : z_1 + a_1 z_0 : z_2 + a_2 z_0]$$

 ∞ orbits: $\{z_0 \neq 0\}$ and a line of fixed points $z_0 = 0$

Example 2

$$(a_1, a_2) \cdot [z_0 : z_1 : z_2] = \left[z_0 : z_1 + a_1 z_0 : z_2 + a_1 z_1 + \left(a_2 + \frac{a_1^2}{2} \right) z_0 \right]$$

3 orbits: $\{z_0 \neq 0\}, \{z_0 = 0, z_1 \neq 0\}, \{[0:0:1]\}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Local algebras

Let A be a finite-dimensional commutative associative algebra with unity over \mathbb{K} .

Definition

An algebra A is local if A contains a unique maximal ideal \mathfrak{m} .

In this case $A = \mathbb{K} \oplus \mathfrak{m}$, all elements in \mathfrak{m} are nilpotent, and all elements in $A^{\times} := A \setminus \mathfrak{m}$ are invertible.

We have $A \supset \mathfrak{m} \supset \mathfrak{m}^2 \supset \ldots \supset \mathfrak{m}^d \supset \mathfrak{m}^{d+1} = 0.$

Moreover, any A is a direct sum $A_1 \oplus \ldots \oplus A_s$ of local algebras.

Example

$$A = \mathbb{K}[x, y] / (x^4, x^2y, x^3 - y^2)$$

Theorem (Knop-Lange'84)

There is a bijection between

- (a) commutative algebras A with unity and dim A = n + 1;
- (b) effective actions $G \times \mathbb{P}^n \to \mathbb{P}^n$ with an open orbit, where G connected commutative linear algebraic group.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Theorem (Knop-Lange'84)

There is a bijection between

- (a) commutative algebras A with unity and dim A = n + 1;
- (b) effective actions $G \times \mathbb{P}^n \to \mathbb{P}^n$ with an open orbit, where G connected commutative linear algebraic group.

(a) \rightarrow (b)

- denote A^{\times} the group of invertible elements in A;
- A^{\times} is a connected commutative linear algebraic group that is open in A;
- $G = \mathbb{P}(A^{\times}) := A^{\times} / \mathbb{K}^{\times}$ connected commutative linear algebraic group;
- G acts on $\mathbb{P}(A) = \mathbb{P}^n$ with an open orbit isomorphic to $\mathbb{P}(A^{\times})$.

Theorem (Knop-Lange'84)

There is a bijection between

- (a) commutative algebras A with unity and dim A = n + 1;
- (b) effective actions $G \times \mathbb{P}^n \to \mathbb{P}^n$ with an open orbit, where G connected commutative linear algebraic group.

(b) ightarrow (a) page 1/2

- dim G = n;
- $G \subseteq \operatorname{Aut}(\mathbb{P}^n) = \operatorname{PGL}_{n+1}(\mathbb{K});$
- denote $\pi: \operatorname{GL}_{n+1}(\mathbb{K}) \to \operatorname{PGL}_{n+1}(\mathbb{K})$, let $H := \pi^{-1}(G)$,
- dim H = dim G + dim Ker $\pi|_{H} = n + 1$;
- *H* is connected since $\pi(H) = G$ and Ker $\pi|_{H}$ are connected;
- *H* is commutative since the commutator subgroup $[H, H] \subseteq \operatorname{Ker} \pi|_{H} = \mathbb{K}^{\times}$ consists of matrices with det = 1;

Theorem (Knop-Lange'84)

There is a bijection between

- (a) commutative algebras A with unity and dim A = n + 1;
- (b) effective actions $G \times \mathbb{P}^n \to \mathbb{P}^n$ with an open orbit, where G connected commutative linear algebraic group.

(b) ightarrow (a) page 2/2

- so $H \subseteq \operatorname{GL}_{n+1}(\mathbb{K})$ is connected commutative, dim H = n + 1;
- denote $A \subseteq \operatorname{Mat}_{n+1}(\mathbb{K})$ subalgebra generated by $H \subseteq \operatorname{GL}_{n+1}(\mathbb{K})$;
- A is commutative and with unity;
- the action $H imes \mathbb{K}^{n+1} o \mathbb{K}^{n+1}$ has an open orbit since
- $G imes \mathbb{P}^n o \mathbb{P}^n$ has;
- dim A = n + 1 since the action $A^{\times} \times \mathbb{K}^{n+1} \to \mathbb{K}^{n+1}$ is effective, has an open orbit and A^{\times} is commutative.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Corollary 1

Bijection between G-orbits on \mathbb{P}^n and nonzero principal ideals in the algebra A.

Proof: G-orbits on $\mathbb{P}^n \leftrightarrow$ association classes of nonzero elements in the algebra $A \leftrightarrow$ generators of principal ideals.

Corollary 2

There is a unique action $\mathbb{G}_a^n \times \mathbb{P}^n \to \mathbb{P}^n$ with finitely many orbits. It corresponds to $A = \mathbb{K}[x] / (x^{n+1})$.

Example 1

$$A = \mathbb{K}^{n+1} \text{ with the coordinatewise multiplication}
\Rightarrow the group $A^{\times} = (\mathbb{K}^{\times})^{n+1}, A^{\times} / \mathbb{K}^{\times} \cong \mathbb{G}_m^n$
 $\Rightarrow \text{ compute } (1, t_1, \dots, t_n)(z_0, \dots, z_n) \in A$
 $\Rightarrow \text{ action } (t_1, \dots, t_n) \cdot [z_0 : z_1 : \dots : z_n] = [z_0 : t_1 z_1 : \dots t_n z_n].$
 $2^{n+1} - 1 \text{ orbits}$$$

Example 2

The local algebra $A = \mathbb{K}[x_1, \dots, x_n] / (x_i x_j, i \leq j)$ \Rightarrow the group $A^{\times} / \mathbb{K}^{\times} = (1 + \mathfrak{m}, \times) \cong (\mathfrak{m}, +) \cong \mathbb{G}_a^n$ via exp \Rightarrow compute $\exp(a_1 x_1 + \ldots + a_n x_n)(z_0 + z_1 x_1 + \ldots + z_n x_n) =$ $z_0 + (z_1 + a_1 z_0)x_1 + \ldots + (z_n + a_n z_0)x_n \in A$

 \Rightarrow action

 $(a_1, \ldots, a_n) \cdot [z_0 : z_1 : \ldots : z_n] = [z_0 : z_1 + a_1 z_0 : \ldots : z_n + a_n z_0].$ Open orbit $\{z_0 \neq 0\}$ and the hyperplane of fixed points $\{z_0 = 0\}$ Any connected commutative linear algebraic group $G \cong \mathbb{G}_m^r \times \mathbb{G}_a^s$ for some $r, s \in \mathbb{Z}_{\geq 0}$. The rank of $G : r = \operatorname{rk} G$.

Remark

In Knop-Lange theorem, A contains exactly rk G + 1 maximal ideals.

Proof: If $A = \mathbb{K} \oplus \mathfrak{m}$ is local, its group of invertible elements equals $A^{\times} = \mathbb{K}^{\times} \oplus \mathfrak{m} = \mathbb{K}^{\times} \times (1 + \mathfrak{m})$, where $(1 + \mathfrak{m}, \times) \cong (\mathfrak{m}, +) \cong \mathbb{G}_a^n$ via exponential map and $\mathbb{K}^{\times} \cong \mathbb{G}_m$. Any commutative algebra A is a sum of local algebras \Rightarrow rk A^{\times} = the number of local summands = the number of maximal ideals.

By construction, $A^{\times} = H$ and $\operatorname{rk} H = \operatorname{rk} G + 1$.

Hassett-Tschinkel correspondences

Theorem (Knop-Lange'84, Hassett-Tschinkel'1999)

There is a bijection between

(a) local commutative algebras A with unity and dim A = n + 1;

(b) additive actions $\mathbb{G}_a^n \times \mathbb{P}^n \to \mathbb{P}^n$.

Theorem (Hassett-Tschinkel'99)

There is a bijection between (a) pairs (A, U), where A is a local commutative algebra with unity, dim A = m, $U \subseteq \mathfrak{m}$ is a subspace generating A, dim U = n; (b) faithful cyclic representations $\mathbb{G}_a^n \to \operatorname{GL}_m(\mathbb{K})$.

m = n + 1

Hassett-Tschinkel correspondence

(a) \rightarrow (b) The representation of $(\exp U, \times) \cong (U, +) = \mathbb{G}_a^n$ on A by multiplication with cyclic vector $1 \in A$.

(b) \rightarrow (a)

$$\rho \colon \mathbb{G}_a^n \to \mathsf{GL}_m(\mathbb{K}),$$

$$d\rho \colon \mathfrak{g} = \langle x_1, \dots, x_n \rangle \to \mathfrak{gl}_m(\mathbb{K}),$$

$$\psi \colon \mathbb{K}[x_1, \dots, x_n] \to \mathsf{Mat}_m(\mathbb{K})$$
Let $A := \psi(\mathbb{K}[x_1, \dots, x_n]) \cong \mathbb{K}[x_1, \dots, x_n]/I, \ U := \psi(\langle x_1, \dots, x_n \rangle).$
Here $I = \mathsf{Ker}(\psi) = \{g \in \mathbb{K}[x_1, \dots, x_n] \mid \psi(g)e = 0\},$
where $e \in \mathbb{K}^n$ is a cyclic vector. So, $A \cong \mathbb{K}^m$.

Two algebras and two actions

There are two 3-dimensional local algebras, so we have two additive actions $\mathbb{G}_a^2 \times \mathbb{P}^2 \to \mathbb{P}^2$:

Example 1

Algebra
$$A = \mathbb{K}[x, y]/(x^2, xy, y^2) = \langle 1, x, y \rangle$$

 \Rightarrow compute $\exp(a_1x + a_2y)(z_0 + z_1x + z_2y) \in A$
 \Rightarrow action $(a_1, a_2) \cdot [z_0 : z_1 : z_2] = [z_0 : z_1 + a_1z_0 : z_2 + a_2z_0]$

Example 2

Algebra
$$A = \mathbb{K}[x]/(x^3) = \langle 1, x, x^2 \rangle$$

 \Rightarrow compute $\exp(a_1x + a_2x^2)(z_0 + z_1x + z_2x^2) \in A$
 \Rightarrow action
 $(a_1, a_2) \cdot [z_0 : z_1 : z_2] = \left[z_0 : z_1 + a_1z_0 : z_2 + a_1z_1 + \left(a_2 + \frac{a_1^2}{2}\right)z_0\right]$

Classifications of local algebras

For dim A = 7, take

 $A_{\alpha} = \mathbb{K}[x_1, x_2, x_3, x_4] / (x_1^2 + x_3^2 - 2x_2^2, x_4^2 - x_2^2 - \alpha(x_3^2 - x_2^2), x_i x_j, i \neq j)$

For any $\alpha \in \mathbb{K} \exists$ a finite number of algebras of this form $\cong A_{\alpha}$.

Case of Gorenstein algebra

Definition

A local algebra A is Gorenstein if its socle

$$\operatorname{Soc}(A) := \{a \in A \mid a\mathfrak{m} = 0\}$$

has dimension one, i.e. $Soc(A) = \mathfrak{m}^d$ and $\dim \mathfrak{m}^d = 1$.

Theorem

An additive action $\mathbb{G}_a^n \times \mathbb{P}^n \to \mathbb{P}^n$ has a unique fixed point \Leftrightarrow A is Gorenstein

Additive actions on projective hypersurfaces

Hassett-Tschinkel correspondence for m = n + 2. Induced additive actions on hypersurfaces in $X \subseteq \mathbb{P}^{n+1} \leftrightarrow \Leftrightarrow$ pairs (A, U), where A is a local commutative algebra, dim A = n + 2, the hyperplane $U \subseteq \mathfrak{m}$ generates A.

$$X = \overline{p(\exp U)}$$
, where $p: A \to \mathbb{P}(A)$

Theorem (Sharoiko'09)

Any smooth quadric $Q \subseteq \mathbb{P}^n$ admits a unique additive action.

Arzhantsev-Sharoiko'11, Arzhantsev-Popovskiy'14: results on additive actions on degenerate quadrics. Bazhov'13: results on additive actions on cubics.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Non-degenerate projective hypersurface

Definition

A hypersurface $X = \{f(z_0, ..., z_n) = 0\} \subseteq \mathbb{P}^n$ is non-degenerate if f involves all variables after any linear transformation of variables in \mathbb{P}^n .

Theorem (Arzhantsev-Z.'22)

A pair (A, U) corresponds to a non-degenerate projective hypersurface \Leftrightarrow the algebra A is Gorenstein and $\mathfrak{m} = U \oplus Soc(A)$.

Theorem (Arzhantsev-Z.'22, Beldiev'23)

Let $X \subseteq \mathbb{P}^n$ be a hypersurface admitting an additive action. Then such an action is unique $\Leftrightarrow X$ is non-degenerate.

Multilinear forms

Theorem (Arzhantsev-Sharoiko'11)

Let $X \subseteq \mathbb{P}^{n+1}$ be a projective hypersurface admitting an induced additive action, and (A, U) be the corresponding pair. Then the degree of the hypersurface X equals the maximal d with $\mathfrak{m}^d \nsubseteq U$.

Arzhantsev-Popovsky'14: *d*-linear form $F: \underbrace{A \times \ldots \times A}_{d} \to \mathbb{K}$ is invariant if 1) $F(1, \ldots, 1) = 0$; 2) for any $u \in U, z^{(1)}, \ldots, z^{(d)} \in A$, we have $F(uz^{(1)}, z^{(2)}, \ldots, z^{(d)}) + \ldots + F(z^{(1)}, z^{(2)}, \ldots, uz^{(d)}) = 0.$

Lemma (Arzhantsev-Z.'22)

Ker
$$F = \{x \in A \mid F(x, z^{(2)}, \dots, z^{(d)}) = 0 \ \forall z^{(2)}, \dots, z^{(d)} \in A\}$$
 is the maximal ideal of A contained in U, where $f \leftrightarrow F$.

If f is non-degenerate, then Ker F = 0.

Additive actions on flag varieties

Theorem (Arzhantsev-Popovskiy'14)

Let X be a complete variety admitting an additive action. Assume that the group $Aut(X)^0$ is a reductive linear algebraic group. Then X is a flag variety G/P.

Theorem (Arzhantsev'11)

Let G be a simple group and P be a parabolic subgroup of G. Then the flag variety G/P admits an additive action if and only if the unipotent radical P_u is commutative + few explicit exceptions.

Theorem (Fu-Hwang'14, Devyatov'15)

Let G/P be a flag variety admitting an additive action. If G/P is not isomorphic to a projective space, then such an action is unique.

Additive actions on toric varieties

Definition

An additive action $\mathbb{G}_a^n \times X \to X$ is normalized if the image of \mathbb{G}_a^n in Aut(X) is normalized by the acting torus.

Definition

A fan Σ is **bilateral** if there is a basis p_1, \ldots, p_n of the lattice N such that n rays of Σ are generated by the vectors p_1, \ldots, p_n , and the remaining rays lie in the negative orthant with respect to this basis.

Theorem (Arzhantsev-Romaskevich'17)

Let X be a complete toric variety. TFAE:

- (a) the variety X admits an additive action;
- (b) the variety X admits a (unique) normalized additive action;

(c) the fan Σ of X is bilateral.

Theorem (Fu-Hwang'20, Shafarevich'23)

A projective toric variety X admits an additive action \Leftrightarrow X is Euler-symmetric, i.e. for a general smooth point $x \in X$ there is a \mathbb{G}_m -action on X such that x is an isolated fixed point and the induced \mathbb{G}_m -action on the tangent space $T_x X$ is by scalar multiplication.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Further results

Theorem (Dzhunusov'21)

Any complete toric surface admits at most two additive actions

Theorem (Dzhunusov'22)

A criterion for a complete toric variety to admit a unique (normalized) additive action.

Theorem (Shakhmatov'21)

There is a smooth toric 3-dimensional complete non-projective variety admitting an additive action.

Theorem (Shafarevich'21)

A classification of additive actions on toric projective hypersurfaces.

イロト 不得下 イヨト イヨト

naa

Classifications of varieties with an additive action:

Derenthal-Loughran'10: singular del Pezzo surfaces

Hassett-Tschinkel'99: smooth projective 3-folds of Picard number 1 (only \mathbb{P}^3 and Q_3)

Huang-Montero'20: smooth projective 3-folds of Picard number ≥ 2 (13 toric and 4 non-toric)

Fu-Montero'19: *n*-dimensional smooth projective variety of Picard number 1 with index $\ge n - 2$

[1] Arzhantsev. Flag varieties as equivariant compactifications of \mathbb{G}_a^n . Proc. Amer. Math. Soc. 139 (2011), 783-786

[2] Arzhantsev-Kotenkova. Equivariant embeddings of commutative linear algebraic groups of corank one. Doc. Math. 20 (2015), 1039-1053

[3] Arzhantsev-Popovskiy. Additive actions on projective hypersurfaces. Proc. Math. Stat. 79, Springer, 2014, 17-33

[4] Arzhantsev-Romaskevich. Additive actions on toric varieties. Proc. Amer. Math. Soc. 145 (2017), 1865-1879

[5] Arzhantsev-Sharoyko. Hassett-Tschinkel correspondence: Modality and projective hypersurfaces. J. Algebra 348 (2011), 217-232

[6] Arzhantsev-Zaitseva. Equivariant completions of affine spaces. Russian Math. Surveys 77 (2022), 571-650

[7] Beldiev. Gorenstein algebras and uniqueness of additive actions. Results Math. 78 (2023), article 192

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

[8] Borovik-Gaifullin-Trushin. Commutative actions on smooth projective quadrics. Comm. Algebra 50 (2022), 5468-5476

[9] Chambert-Loir-Tschinkel. On the distribution of points of bounded height on equivariant compactifications of vector groups. Invent. Math. 148 (2002), 421-452

[10] Chambert-Loir-Tschinkel. Integral points of bounded height on partial equivariant compactifications of vector groups. Duke Math. J. 161 (2012), 2799-2836

[11] Cheong. Equivariant compactifications of a nilpotent group by G/P. Transform. Groups 22 (2017), 163-186

[12] Derenthal-Loughran. Singular del Pezzo surfaces that are equivariant compactifications. J. Math. Sci. 171 (2010), 714-724

[13] Derenthal-Loughran. Equivariant compactifications of two-dimensional algebraic groups. Proc. Edinb. Math. Soc. (2) 58 (2015), 149-168

[14] Devyatov. Unipotent commutative group actions on flag varieties and nilpotent multiplications. Transform. Groups 20 (2015), 21-64

Sac

[15] Dzhunusov. Additive actions on complete toric surfaces. Internat. J. Algebra Comput. 31 (2021), 19-35

[16] Dzhunusov. On uniqueness of additive actions on complete toric varieties. J. Algebra 609 (2022), 642-656

[17] Feigin. \mathbb{G}_a^M degeneration of flag varieties. Selecta Math. (N.S.) 18 (2012), 513-537

[18] Fu-Hwang. Uniqueness of equivariant compactifications of \mathbb{C}^n by a Fano manifold of Picard number 1. Math. Res. Lett. 21 (2014), 121-125

[19] Fu-Hwang. Euler-symmetric projective varieties. Algebr. Geom. 7 (2020), 377-389

[20] Fu-Montero. Equivariant compactifications of vector groups with high index. C.R. Math. 357 (2019), 455-461

[21] Hassett-Tschinkel. Geometry of equivariant compactifications of \mathbb{G}_a^n . Int. Math. Res. Not. IMRN (1999), 1211-1230

[22] Huang-Montero. Fano threefolds as equivariant compactifications of the vector group. Michigan Math. J. 69 (2020), 341-368

[23] Knop-Lange. Commutative algebraic groups and intersections of quadrics. Math. Ann. 267 (1984), 555-571

[24] Liu. Additive actions on hyperquadrics of corank two. Electron. Res. Arch. 30 (2022), 1-34

[25] Shafarevich. Additive actions on toric projective hypersurfaces. Results Math. 76 (2021), article 145

[26] Shafarevich. Euler-symmetric projective toric varieties and additive actions. Indag. Math. (N.S.) 34 (2023), 42-53

[27] Shakhmatov. Smooth non-projective equivariant completions of affine spaces. Math. Notes 109 (2021), no. 6, 884-895

[29] Shalika-Tschinkel. Height zeta functions of equivariant compactifications of unipotent groups. Comm. Pure Appl. Math. 69 (2016), 693-733

[30] Sharoiko. Hassett-Tschinkel correspondence and automorphisms of a quadric. Sb. Math. 200 (2009), no. 11, 1715-1729