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Additive actions

Let K be an algebraically closed �eld of characteristic zero and

Ga = (K,+).

The vector group Gn
a := Ga × . . .×Ga︸ ︷︷ ︸

n times

= (Kn,+).

De�nition

An additive action on a variety X is an e�ective action

Gn
a × X → X with an open orbit.



Hirzebruch's question (1954)

Problem 26. Describe all analytic compacti�cations of C2.

Problem 27. Describe all analytic compacti�cations of Cn with the

second Betti number 1.



Equivariant version

B. Hassett and Yu. Tschinkel'99: the systematic study of

algebraic compacti�cations Cn ↪→ X such that the action of the

group Gn
a = (Cn,+) of Cn by parallel translations extends to

Gn
a × X → X .

Motivation: distribution of rational points, Manin's conjecture

(Chambert-Loir-Tschinkel'02,'12)



�Additive analogue� of toric geometry

Gm = (K×,×) and Ga = (K,+)

De�nition

A toric variety is an irreducible variety X with an e�ective action

T × X → X of an algebraic torus T = Gn
m with an open orbit.

Additive actions: replace an algebraic torus Gn
m by a vector group Gn

a

Main di�erences:

• such an action is no longer unique on X ;

• the number of orbits is no longer �nite;

• orbits of a unipotent group on a�ne varieties are closed ⇒
⇒ invariant open a�ne covering on X no longer exists.



Two additive actions G2
a × P2 → P2

Example 1

(a1, a2) · [z0 : z1 : z2] = [z0 : z1 + a1z0 : z2 + a2z0]

∞ orbits: {z0 ̸= 0} and a line of �xed points z0 = 0

Example 2

(a1, a2) · [z0 : z1 : z2] =
[
z0 : z1 + a1z0 : z2 + a1z1 +

(
a2 +

a21
2

)
z0
]

3 orbits: {z0 ̸= 0}, {z0 = 0, z1 ̸= 0}, {[0 : 0 : 1]}



Local algebras

Let A be a �nite-dimensional commutative associative algebra with

unity over K.

De�nition

An algebra A is local if A contains a unique maximal ideal m.

In this case A = K⊕m, all elements in m are nilpotent, and

all elements in A× := A \m are invertible.

We have A ⊃ m ⊃ m2 ⊃ . . . ⊃ md ⊃ md+1 = 0.

Moreover, any A is a direct sum A1 ⊕ . . .⊕ As of local algebras.

Example

A = K[x , y ]/(x4, x2y , x3 − y2)



Knop-Lange Theorem

Theorem (Knop-Lange'84)

There is a bijection between

(a) commutative algebras A with unity and dimA = n + 1;

(b) e�ective actions G × Pn → Pn with an open orbit, where G
connected commutative linear algebraic group.

(a) → (b)
• denote A× the group of invertible elements in A;
• A× is a connected commutative linear algebraic group that is

open in A;
• G = P(A×) := A×/K× connected commutative linear algebraic

group;

• G acts on P(A) = Pn with an open orbit isomorphic to P(A×).
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• denote A× the group of invertible elements in A;
• A× is a connected commutative linear algebraic group that is

open in A;
• G = P(A×) := A×/K× connected commutative linear algebraic

group;

• G acts on P(A) = Pn with an open orbit isomorphic to P(A×).



Knop-Lange Theorem

Theorem (Knop-Lange'84)

There is a bijection between

(a) commutative algebras A with unity and dimA = n + 1;

(b) e�ective actions G × Pn → Pn with an open orbit, where G
connected commutative linear algebraic group.

(b) → (a) page 1/2
• dimG = n;
• G ⊆ Aut(Pn) = PGLn+1(K);
• denote π : GLn+1(K) → PGLn+1(K), let H := π−1(G );
• dimH = dimG + dimKer π

∣∣
H
= n + 1;

• H is connected since π(H) = G and Ker π
∣∣
H
are connected;

• H is commutative since the commutator subgroup

[H,H] ⊆ Ker π
∣∣
H
= K× consists of matrices with det = 1;



Knop-Lange Theorem

Theorem (Knop-Lange'84)

There is a bijection between

(a) commutative algebras A with unity and dimA = n + 1;

(b) e�ective actions G × Pn → Pn with an open orbit, where G
connected commutative linear algebraic group.

(b) → (a) page 2/2
• so H ⊆ GLn+1(K) is connected commutative, dimH = n + 1;

• denote A ⊆ Matn+1(K) subalgebra generated by H ⊆ GLn+1(K);
• A is commutative and with unity;

• the action H ×Kn+1 → Kn+1 has an open orbit since

G × Pn → Pn has;

• dimA = n + 1 since the action A× ×Kn+1 → Kn+1 is e�ective,

has an open orbit and A× is commutative.



Corollary 1

Bijection between G -orbits on Pn and nonzero principal ideals in

the algebra A.

Proof: G -orbits on Pn ↔ association classes of nonzero elements in

the algebra A ↔ generators of principal ideals.

Corollary 2

There is a unique action Gn
a × Pn → Pn with �nitely many orbits. It

corresponds to A = K[x ] / (xn+1).



Example 1

A = Kn+1 with the coordinatewise multiplication

⇒ the group A× = (K×)n+1, A×/K× ∼= Gn
m

⇒ compute (1, t1, . . . , tn)(z0, . . . , zn) ∈ A
⇒ action (t1, . . . , tn) · [z0 : z1 : . . . : zn] = [z0 : t1z1 : . . . tnzn].
2n+1 − 1 orbits

Example 2

The local algebra A = K[x1, . . . , xn] / (xixj , i ⩽ j)
⇒ the group A×/K× = (1+m,×) ∼= (m,+) ∼= Gn

a via exp
⇒ compute exp(a1x1 + . . .+ anxn)(z0 + z1x1 + . . . znxn) =

z0 + (z1 + a1z0)x1 + . . .+ (zn + anz0)xn ∈ A
⇒ action

(a1, . . . , an) · [z0 : z1 : . . . : zn] = [z0 : z1 + a1z0 : . . . : zn + anz0].
Open orbit {z0 ̸= 0} and the hyperplane of �xed points {z0 = 0}



Rank and local summands

Any connected commutative linear algebraic group G ∼= Gr
m ×Gs

a

for some r , s ∈ Z⩾0. The rank of G : r = rkG .

Remark

In Knop-Lange theorem, A contains exactly rkG +1 maximal ideals.

Proof: If A = K⊕m is local, its group of invertible elements equals

A× = K× ⊕m = K× × (1+m), where (1+m,×) ∼= (m,+) ∼= Gn
a

via exponential map and K× ∼= Gm.

Any commutative algebra A is a sum of local algebras ⇒
rkA× = the number of local summands = the number of maximal

ideals.

By construction, A× = H and rkH = rkG + 1.



Hassett-Tschinkel correspondences

Theorem (Knop-Lange'84, Hassett-Tschinkel'1999)

There is a bijection between

(a) local commutative algebras A with unity and dimA = n + 1;

(b) additive actions Gn
a × Pn → Pn.

Theorem (Hassett-Tschinkel'99)

There is a bijection between

(a) pairs (A,U), where
A is a local commutative algebra with unity, dimA = m,

U ⊆ m is a subspace generating A, dimU = n;
(b) faithful cyclic representations Gn

a → GLm(K).

m = n + 1



Hassett-Tschinkel correspondence

(a) → (b)
The representation of (expU,×) ∼= (U,+) = Gn

a on A by

multiplication with cyclic vector 1 ∈ A.

(b) → (a)

ρ : Gn
a → GLm(K),

dρ : g = ⟨x1, . . . , xn⟩ → glm(K),

ψ : K[x1, . . . , xn] → Matm(K)

Let A := ψ(K[x1, . . . , xn]) ∼= K[x1, . . . , xn]/I , U := ψ(⟨x1, . . . , xn⟩).
Here I = Ker(ψ) = {g ∈ K[x1, . . . , xn] | ψ(g)e = 0},
where e ∈ Kn is a cyclic vector. So, A ∼= Km.



Two algebras and two actions

There are two 3-dimensional local algebras, so we have two additive

actions G2
a × P2 → P2:

Example 1

Algebra A = K[x , y ]/(x2, xy , y2) = ⟨1, x , y⟩
⇒ compute exp(a1x + a2y)(z0 + z1x + z2y) ∈ A
⇒ action (a1, a2) · [z0 : z1 : z2] = [z0 : z1 + a1z0 : z2 + a2z0]

Example 2

Algebra A = K[x ]/(x3) = ⟨1, x , x2⟩
⇒ compute exp(a1x + a2x

2)(z0 + z1x + z2x
2) ∈ A

⇒ action

(a1, a2) · [z0 : z1 : z2] =
[
z0 : z1 + a1z0 : z2 + a1z1 +

(
a2 +

a2
1

2

)
z0
]



Classi�cations of local algebras

dimA 1 2 3 4 5 6 ⩾ 7

#isom. classes of loc. alg. 1 1 2 4 9 25 ∞

For dimA = 7, take

Aα = K[x1, x2, x3, x4] / (x
2
1+x23−2x22 , x

2
4−x22−α(x23−x22 ), xixj , i ̸= j)

For any α ∈ K ∃ a �nite number of algebras of this form ∼= Aα.



Case of Gorenstein algebra

De�nition

A local algebra A is Gorenstein if its socle

Soc(A) := {a ∈ A | am = 0}

has dimension one, i.e. Soc(A) = md and dimmd = 1.

Theorem

An additive action Gn
a × Pn → Pn has a unique �xed point ⇔

A is Gorenstein .



Additive actions on projective hypersurfaces

Hassett-Tschinkel correspondence for m = n + 2.

Induced additive actions on hypersurfaces in X ⊆ Pn+1 ↔
↔ pairs (A,U), where A is a local commutative algebra,

dimA = n + 2, the hyperplane U ⊆ m generates A.

X = p(expU), where p : A → P(A)

Theorem (Sharoiko'09)

Any smooth quadric Q ⊆ Pn admits a unique additive action.

Arzhantsev-Sharoiko'11, Arzhantsev-Popovskiy'14: results on

additive actions on degenerate quadrics.

Bazhov'13: results on additive actions on cubics.



Non-degenerate projective hypersurface

De�nition

A hypersurface X = {f (z0, . . . , zn) = 0} ⊆ Pn is non-degenerate
if f involves all variables after any linear transformation of variables

in Pn.

Theorem (Arzhantsev-Z.'22)

A pair (A,U) corresponds to a non-degenerate projective

hypersurface ⇔ the algebra A is Gorenstein and m = U ⊕ Soc(A).

Theorem (Arzhantsev-Z.'22, Beldiev'23)

Let X ⊆ Pn be a hypersurface admitting an additive action. Then

such an action is unique ⇔ X is non-degenerate.



Multilinear forms

Theorem (Arzhantsev-Sharoiko'11)

Let X ⊆ Pn+1 be a projective hypersurface admitting an induced

additive action, and (A,U) be the corresponding pair. Then the

degree of the hypersurface X equals the maximal d with md ⊈ U.

Arzhantsev-Popovsky'14: d-linear form F : A× . . .× A︸ ︷︷ ︸
d

→ K
is invariant if
1) F (1, . . . , 1) = 0;

2) for any u ∈ U, z(1), . . . , z(d) ∈ A, we have
F (uz(1), z(2), . . . , z(d)) + . . .+ F (z(1), z(2), . . . , uz(d)) = 0.

Lemma (Arzhantsev-Z.'22)

Ker F = {x ∈ A | F (x , z(2), . . . , z(d)) = 0 ∀z(2), . . . , z(d) ∈ A} is

the maximal ideal of A contained in U, where f ↔ F .

If f is non-degenerate, then Ker F = 0.



Additive actions on �ag varieties

Theorem (Arzhantsev-Popovskiy'14)

Let X be a complete variety admitting an additive action. Assume

that the group Aut(X )0 is a reductive linear algebraic group. Then

X is a �ag variety G/P .

Theorem (Arzhantsev'11)

Let G be a simple group and P be a parabolic subgroup of G . Then

the �ag variety G/P admits an additive action if and only if the

unipotent radical Pu is commutative + few explicit exceptions.

Theorem (Fu-Hwang'14, Devyatov'15)

Let G/P be a �ag variety admitting an additive action. If G/P is

not isomorphic to a projective space, then such an action is unique.



Additive actions on toric varieties

De�nition

An additive action Gn
a × X → X is normalized if the image of Gn

a

in Aut(X ) is normalized by the acting torus.

De�nition

A fan Σ is bilateral if there is a basis p1, . . . , pn of the lattice N
such that n rays of Σ are generated by the vectors p1, . . . , pn, and
the remaining rays lie in the negative orthant with respect to this

basis.

Theorem (Arzhantsev-Romaskevich'17)

Let X be a complete toric variety. TFAE:

(a) the variety X admits an additive action;

(b) the variety X admits a (unique) normalized additive action;

(c) the fan Σ of X is bilateral.



Euler-symmetric varieties

Theorem (Fu-Hwang'20, Shafarevich'23)

A projective toric variety X admits an additive action ⇔ X is

Euler-symmetric, i.e. for a general smooth point x ∈ X there is a

Gm-action on X such that x is an isolated �xed point and the

induced Gm-action on the tangent space TxX is by scalar

multiplication.



Further results

Theorem (Dzhunusov'21)

Any complete toric surface admits at most two additive actions

Theorem (Dzhunusov'22)

A criterion for a complete toric variety to admit a unique

(normalized) additive action.

Theorem (Shakhmatov'21)

There is a smooth toric 3-dimensional complete non-projective

variety admitting an additive action.

Theorem (Shafarevich'21)

A classi�cation of additive actions on toric projective hypersurfaces.



General classi�cations

Classi�cations of varieties with an additive action:

Derenthal-Loughran'10: singular del Pezzo surfaces

Hassett-Tschinkel'99: smooth projective 3-folds of Picard number 1

(only P3 and Q3)

Huang-Montero'20: smooth projective 3-folds of Picard

number ⩾ 2 (13 toric and 4 non-toric)

Fu-Montero'19: n-dimensional smooth projective variety of Picard

number 1 with index ⩾ n − 2
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