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Additive actions

Let K be an algebraically closed field of characteristic zero and
G, = (K, +).

The vector group G] :=G, x ... x G, = (K", +).
—_——
n times
Definition
An additive action on a variety X is an effective action
GJ x X — X with an open orbit.




Hirzebruch's question (1954)

Problem 26. Describe all analytic compactifications of C2.

Problem 27. Describe all analytic compactifications of C” with the
second Betti number 1.



Equivariant version

B. Hassett and Yu. Tschinkel’99: the systematic study of
algebraic compactifications C" < X such that the action of the
group G2 = (C",+) of C" by parallel translations extends to
Gl x X = X.

Motivation: distribution of rational points, Manin's conjecture
(Chambert-Loir-Tschinkel'02,'12)



“Additive analogue” of toric geometry

G = (K%, x) and G, = (K, +)

Definition
A toric variety is an irreducible variety X with an effective action
T x X — X of an algebraic torus T = G/, with an open orbit.

Additive actions: replace an algebraic torus G, by a vector group G

Main differences:

e such an action is no longer unique on X;

e the number of orbits is no longer finite;

e orbits of a unipotent group on affine varieties are closed =
= invariant open affine covering on X no longer exists.



Two additive actions G2 x P2 — P?

Example 1
(81, 32) g [Zo 4 22] = [Zo 1+ a1z0 2o + 3220]

oo orbits: {zg # 0} and a line of fixed points zp = 0

Example 2
a
(a1,@2)  [20: 21 : 2] = [zo cz1+aizg iz +arz + (32 + 5)20}

3 orbits: {z9 #0}, {20 =0, zz #0}, {[0:0:1]}




Local algebras

Let A be a finite-dimensional commutative associative algebra with
unity over K.

Definition

An algebra A is local if A contains a unique maximal ideal m. J

In this case A=K @& m, all elements in m are nilpotent, and
all elements in A* := A\ m are invertible.

We have ADm>Om2>D...om? Dmdtl = 0.

Moreover, any A is a direct sum A; @ ... @ As of local algebras.

Example
A:K[va]/(x4ax2yax3*y2) J




Knop-Lange Theorem

Theorem (Knop-Lange'84)
There is a bijection between

(a) commutative algebras A with unity and dim A = n+ 1;
(b) effective actions G x P" — P" with an open orbit, where G
connected commutative linear algebraic group.




Knop-Lange Theorem

Theorem (Knop-Lange'84)
There is a bijection between

(a) commutative algebras A with unity and dim A = n+ 1;
(b) effective actions G x P" — P" with an open orbit, where G
connected commutative linear algebraic group.

(a) — (b)
e denote A* the group of invertible elements in A;
e A* s a connected commutative linear algebraic group that is

open in A;
o G =DP(A*):=A*/K* connected commutative linear algebraic
group;

e G acts on P(A) = P" with an open orbit isomorphic to P(A*).



Knop-Lange Theorem

Theorem (Knop-Lange'84)
There is a bijection between

(a) commutative algebras A with unity and dim A = n + 1;
(b) effective actions G x P" — P" with an open orbit, where G
connected commutative linear algebraic group.

(b) — (a) page 1/2

e dimG = n;

e G C Aut(P") = PGLp1+1(K);

e denote 7: GL,1(K) — PGL,,1(K), let H := 7 }(G);

e dimH = dim G +dimKerm|, = n+1;

e His connected since 7(H) = G and Ker 7|, are connected;
e H is commutative since the commutator subgroup

[H, H] C Ker7r|H = K* consists of matrices with det = 1;



Knop-Lange Theorem

Theorem (Knop-Lange'84)
There is a bijection between

(a) commutative algebras A with unity and dim A = n + 1;
(b) effective actions G x P" — P" with an open orbit, where G
connected commutative linear algebraic group.

(b) — (a) page 2/2

e so H C GLp41(K) is connected commutative, dim H = n+ 1;

e denote A C Mat,;+1(K) subalgebra generated by H C GL,41(K);
e Ais commutative and with unity;

e the action H x K"t! — K"*! has an open orbit since

G x P" — P has;

e dimA = n+1 since the action A* x K1 — K"t1 s effective,
has an open orbit and A* is commutative.



Corollary 1

Bijection between G-orbits on P and nonzero principal ideals in
the algebra A.

Proof: G-orbits on P" < association classes of nonzero elements in
the algebra A <> generators of principal ideals.

Corollary 2

There is a unique action GJ x P" — P" with finitely many orbits. It
corresponds to A = K[x] / (x"*1).




Example 1

A = K"t with the coordinatewise multiplication

= the group A* = (K*)™1, AX/K* =G,

= compute (1,t1,...,ts)(20,...,20) € A

= action (t1,...,ty) [20:21: ... z5) =[20 : t1z1 : ... tnzp).
271 _ 1 orbits

Example 2
The local algebra A = K[xi, ..., xn] / (xixj, i <)
= the group A*/K* = (1+m, x) = (m,+) = G via exp
= compute exp(aixy + ...+ anxp)(20 + z1x1 + . .. Zpxp) =
zo + (21 + 3120)X1 + ...+ (Zn + a,,zo)x,, cA
= action
(a1,.-.an) " [20:z1: ... zn)| =20 : 21 + 3120 : ... : Zn + An20]-
Open orbit {zy # 0} and the hyperplane of fixed points {2z = 0}




Rank and local summands

Any connected commutative linear algebraic group G = G}, x G3
for some r,s € Z>g. The rank of G: r =rk G.

Remark
In Knop-Lange theorem, A contains exactly rk G +1 maximal ideals.J

Proof: If A=K & mis local, its group of invertible elements equals
A =K* @ m=K* x (14 m), where (1 +m, x) = (m,+) =G
via exponential map and K* = G,,.

Any commutative algebra A is a sum of local algebras =

rk A* = the number of local summands = the number of maximal
ideals.

By construction, A = H and rk H =rk G + 1.



Hassett-Tschinkel correspondences

Theorem (Knop-Lange'84, Hassett-Tschinkel'1999)

There is a bijection between
(a) local commutative algebras A with unity and dimA =n+ 1,
(b) additive actions G x P" — P".

Theorem (Hassett-Tschinkel’99)

There is a bijection between

(a) pairs (A, U), where

Ais a local commutative algebra with unity, dim A =m,
U C mis a subspace generating A, dim U = n;

(b) faithful cyclic representations G — GL,(K).

m=n+1



Hassett-Tschinkel correspondence

(a) — (b)
The representation of (exp U, x) = (U,+) = G7 on A by
multiplication with cyclic vector 1 € A.

(b) = (a)
p: G — GL,(K),
dp: g= <X17 s 7Xn> - g[m(K)v
U: K[xi, ..., xp] = Matpy,(K)

Let A:= (K[x1,...,xn]) ZK[x1,...,xa]/l, U:=9((x1,...,%n)).
Here | = Ker(¢)) = {g € K[x1,...,xn] | ¥(g)e = 0},
where e € K" is a cyclic vector. So, A= K™,



Two algebras and two actions

There are two 3-dimensional local algebras, so we have two additive
actions G2 x P? — P2

Example 1

Algebra A = K([x, y]/(x* xy,y?) = (1, x,y)
= compute exp(aix + a2y)(20 + z1x + 2y) € A
= action (a1,a) [20: 271 : 2] =[20: 21 + a120 : 2 + a2 z0]

Example 2

Algebra A = K[x]/(x®) = (1, x, x?)

= compute exp(arx + axx?)(z0 + z1x + zx%) € A

= action ,

(ar, @) [20:21 ] =|20:21+a120 1 22 + @121 + <32 + %I)Zo}




Classifications of local algebras

dim A [1]2]3|4]|5]6[>7
#isom. classes of loc. alg.‘1‘1‘2‘4‘9‘25‘ 00

For dim A = 7, take

An = Klx1, X2, x3,xa] | (4533 —253, x4 —x3 —a(xG—x3 ), xiXj, i # j)

For any a € K 3 a finite number of algebras of this form = A,




Case of Gorenstein algebra

Definition

A local algebra A is Gorenstein if its socle
Soc(A) :={ac A|lam =0}

has dimension one, i.e. Soc(A) = m9 and dimm¢9 = 1.

Theorem

An additive action G x P" — P" has a unique fixed point <
A is Gorenstein




Additive actions on projective hypersurfaces

Hassett-Tschinkel correspondence for m = n + 2.

Induced additive actions on hypersurfaces in X C P! «
< pairs (A, U), where A is a local commutative algebra,
dim A = n+ 2, the hyperplane U C m generates A.

X = p(exp U), where p: A — P(A)

Theorem (Sharoiko'09)
Any smooth quadric @ C IP" admits a unique additive action. J

Arzhantsev-Sharoiko'11, Arzhantsev-Popovskiy'14: results on
additive actions on degenerate quadrics.
Bazhov'13: results on additive actions on cubics.



Non-degenerate projective hypersurface

Definition

A hypersurface X = {f(z,...,z,) =0} C P" is non-degenerate
if f involves all variables after any linear transformation of variables
in P".

v

Theorem (Arzhantsev-Z.'22)

A pair (A, U) corresponds to a non-degenerate projective
hypersurface < the algebra A is Gorenstein and m = U @ Soc(A).

v

Theorem (Arzhantsev-Z.'22, Beldiev'23)

Let X C P” be a hypersurface admitting an additive action. Then
such an action is unique < X is non-degenerate.




Multilinear forms

Theorem (Arzhantsev-Sharoiko’11)

Let X C P™! be a projective hypersurface admitting an induced
additive action, and (A, U) be the corresponding pair. Then the
degree of the hypersurface X equals the maximal d with m¢ ¢ U.

Arzhantsev-Popovsky'14: d-linear form F: Ax ... x A— K
is invariant if M/

1) F(1,...,1) =0;
2) for any u € U, z(l), .. ,z(d) € A, we have
F(uz(l),z(z),...,z(d))—i—...+F(z(1),z(2),...,uz(d)) =0.

Lemma (Arzhantsev-Z.'22)

Ker F={xecA|F(x,z®, ..., 2) =0 vz® .. 24 ecAlis
the maximal ideal of A contained in U, where f « F.

If f is non-degenerate, then Ker F = 0.



Additive actions on flag varieties

Theorem (Arzhantsev-Popovskiy’14)

Let X be a complete variety admitting an additive action. Assume
that the group Aut(X)? is a reductive linear algebraic group. Then
X is a flag variety G/P.

Theorem (Arzhantsev'11)

Let G be a simple group and P be a parabolic subgroup of G. Then
the flag variety G/P admits an additive action if and only if the
unipotent radical P, is commutative + few explicit exceptions.

Theorem (Fu-Hwang'14, Devyatov'15)

Let G/P be a flag variety admitting an additive action. If G/P is
not isomorphic to a projective space, then such an action is unique.




Additive actions on toric varieties

Definition
An additive action G x X — X is normalized if the image of G/
in Aut(X) is normalized by the acting torus.

Definition

A fan X is bilateral if there is a basis p1,..., pn of the lattice N

such that n rays of X are generated by the vectors py, ..., pn, and
the remaining rays lie in the negative orthant with respect to this
basis.

Theorem (Arzhantsev-Romaskevich’17)

Let X be a complete toric variety. TFAE:

(a) the variety X admits an additive action;

(b) the variety X admits a (unique) normalized additive action;
(c) the fan X of X is bilateral.




Euler-symmetric varieties

Theorem (Fu-Hwang'20, Shafarevich’23)

A projective toric variety X admits an additive action < X is
Euler-symmetric, i.e. for a general smooth point x € X there is a
Gm-action on X such that x is an isolated fixed point and the
induced G,-action on the tangent space T, X is by scalar
multiplication.




Further results

Theorem (Dzhunusov'21)

Any complete toric surface admits at most two additive actions

Theorem (Dzhunusov'22)

A criterion for a complete toric variety to admit a unique
(normalized) additive action.

Theorem (Shakhmatov'21)

There is a smooth toric 3-dimensional complete non-projective
variety admitting an additive action.

Theorem (Shafarevich'21)

A classification of additive actions on toric projective hypersurfaces.
v




General classifications

Classifications of varieties with an additive action:
Derenthal-Loughran’10: singular del Pezzo surfaces

Hassett-Tschinkel'99: smooth projective 3-folds of Picard number 1
(only P* and Q3)

Huang-Montero’20: smooth projective 3-folds of Picard
number > 2 (13 toric and 4 non-toric)

Fu-Montero’'19: n-dimensional smooth projective variety of Picard
number 1 with index > n—2
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