Root subgroups on spherical varieties

Roman Avdeev

HSE University, Moscow

23 December 2024

Roman Avdeev Root subgroups on spherical varieties

[AA] I. Arzhantsev, R. Avdeev, *Root subgroups on affine spherical varieties*, Selecta Math. (N.S.) **28** (2022), no. 3, Article 60; arXiv:2012.02088

[AZ1] R. Avdeev, V. Zhgoon, *On the existence of B-root subgroups on affine spherical varieties*, Dokl. Math. **105** (2022), no. 2, 51–55; arXiv:2112.14268

[AZ2] R. Avdeev, V. Zhgoon, *Root subgroups on horospherical varieties*, arXiv:2312.03377v2 (2024)

 \mathbb{K} the base field, $\overline{\mathbb{K}} = \mathbb{K}$, char $\mathbb{K} = 0$ $\mathbb{G}_a := (\mathbb{K}, +)$ is the additive group of the field \mathbb{K} X an irreducible algebraic variety

Definition

 $\mathbb{G}_a \times X \to X$ a nontrivial action \Rightarrow the image of \mathbb{G}_a in Aut X is called a \mathbb{G}_a -subgroup on X.

\mathbb{G}_a -subgroups and LNDs

X an irreducible affine variety

 $\mathbb{K}[X]$ is the algebra of regular functions on X

Definition

A derivation $\partial \colon \mathbb{K}[X] \to \mathbb{K}[X]$ is called locally nilpotent (for short: LND) if $\forall f \in \mathbb{K}[X] \exists k > 0 : \partial^k(f) = 0$.

 ∂ an LND on $\mathbb{K}[X] \rightsquigarrow$ the \mathbb{G}_a -action on $\mathbb{K}[X]$ given by $s \mapsto \exp(s\partial) \rightsquigarrow$ \mathbb{G}_a -subgroup φ_∂ on X

Fact

The map $\partial \mapsto \varphi_{\partial}$ induces a bijection {nonzero LNDs on $\mathbb{K}[X]$ }/proportionality \leftrightarrow { \mathbb{G}_{a} -subgroups in Aut X}.

Example. $X = \mathbb{A}^2$, $H: (s, (x, y)) \mapsto (x + s, y) \leftrightarrow \partial = \partial/\partial x$

Root subgroups

Let X be not necessarily affine; $H \subseteq \operatorname{Aut} X$ a \mathbb{G}_a -subgroup

 $F\subseteq\operatorname{\mathsf{Aut}} X$ an algebraic subgroup; $\mathfrak{X}(F)$ the character group of F

Definition

H is called an F-root subgroup if F normalizes H.

 ${\sf F}$ naturally acts on ${
m Lie}\,{\sf H}\simeq {\mathbb K}^1$ via a character $\chi\in {\mathfrak X}({\sf F})$

Definition

 χ is called the weight of the F-root subgroup H.

Proposition [AA]

Suppose F is connected and acts on X with an open orbit O_F ; $HO_F \neq O_F \Rightarrow \exists ! F$ -stable prime divisor $D \subseteq X$ such that $HD \neq D$. («H moves D»)

X is affine \Rightarrow H corresponds to an LND ∂ on $\mathbb{K}[X]$ H is normalized by $F \Leftrightarrow \partial$ is normalized by F (with the same weight!)

伺 ト イヨ ト イヨト

Affine toric varieties

 ${\mathcal T}$ an algebraic torus; $\mathfrak{X}({\mathcal T})$ its character lattice

Definition

A T-variety X is called toric if X is normal, irreducible, and possesses an open T-orbit.

Given a sublattice $M \subset \mathfrak{X}(\mathcal{T})$, consider the dual lattice $N := \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Z})$ and put $N_{\mathbb{Q}} := N \otimes_{\mathbb{Z}} \mathbb{Q}$.

Fact

There is a bijection {affine toric *T*-varieties} / *T*-equiv. isom. \leftrightarrow { (M, \mathcal{E}) }, where $M \subseteq \mathfrak{X}(T)$ is a sublattice and \mathcal{E} is a strictly convex finitely generated cone in $N_{\mathbb{Q}}$.

Construction of affine toric varieties: $(M, \mathcal{E}) \rightsquigarrow X = X(M, \mathcal{E}) := \operatorname{Spec} \mathbb{K}[\Gamma]$ where $\Gamma = \mathcal{E}^{\vee} \cap M$ and $\mathbb{K}[\Gamma] = \bigoplus_{\lambda \in \Gamma} \mathbb{K} f_{\lambda}; f_{\lambda} f_{\mu} := f_{\lambda+\mu} \forall \lambda, \mu \in \Gamma$

Demazure roots of a cone

Given a cone $\mathcal{E} \subset N_{\mathbb{Q}}$ as above, consider the set $\mathcal{E}^1 := \{ \rho \in \mathbb{N} : \rho \text{ is primitive in } \mathbb{N}, \ \mathbb{Q}_{\geq 0}\rho \text{ is a ray of } \mathcal{E} \}$ $\rho \in \mathcal{E}^1 \Rightarrow$ $\mathfrak{R}_{\rho}(\mathcal{E}) := \{ e \in \mathbb{M} \mid \langle \rho, e \rangle = -1, \ \langle \rho', e \rangle \geq 0 \quad \forall \rho' \in \mathcal{E}^1 \setminus \{\rho\} \}$ $\mathfrak{R}(\mathcal{E}) := \bigsqcup_{\rho \in \mathcal{E}^1} \mathfrak{R}_{\rho}(\mathcal{E})$

Definition

Elements of the set $\mathfrak{R}(\mathcal{E})$ are called Demazure roots of the cone \mathcal{E} .

Demazure roots: an example

御 と く ヨ と く ヨ と …

2

Root subgroups on affine toric varieties

Let X be an affine toric T-variety corresponding to a pair (M, \mathcal{E}) . $e \in \mathfrak{R}_{\rho}(\mathcal{E}) \iff \partial_e \colon \mathbb{K}[X] \to \mathbb{K}[X]$ $\partial_e(f_{\lambda}) := \langle \rho, \lambda \rangle f_{\lambda+e} \leftarrow \text{ a } T\text{-normalized LND}$ $\rightsquigarrow H_e \leftarrow \text{ a } T\text{-root subgroup on } X$

Theorem

1) Every *T*-root subgroup on *X* is uniquely determined by its weight.

2) The set of weights of all T-root subgroups on X is $\mathfrak{R}(\mathcal{E})$. 3) For every T-stable prime divisor D in X, there exists a T-root subgroup on X that moves D.

Definition

A fan in $N_{\mathbb{Q}}$ is a finite collection \mathfrak{F} of strictly convex finitely generated cones in $N_{\mathbb{Q}}$ satisfying the following properties: (1) if $\mathcal{E} \in \mathfrak{F}$, then every face of \mathcal{E} is in \mathfrak{F} ; (2) if $\mathcal{E}_1, \mathcal{E}_2 \in \mathfrak{F}$, then $\mathcal{E}_1 \cap \mathcal{E}_2$ is a face of both $\mathcal{E}_1, \mathcal{E}_2$.

Fact

There is a bijection {toric *T*-varieties} / *T*-equiv. isom. $\leftrightarrow \{(M, \mathfrak{F})\}$, where $M \subseteq \mathfrak{X}(T)$ is a sublattice and \mathfrak{F} is a fan in $N_{\mathbb{Q}}$.

Remark. If X is an affine toric \mathcal{T} -variety corresponding to a cone $\mathcal{E} \subset N_{\mathbb{Q}}$, then the corresponding fan \mathfrak{F} consists of all faces of \mathcal{E} .

伺 ト イヨ ト イヨト

Given a sublattice $M \subset \mathfrak{X}(T)$ and a fan $\mathfrak{F} \subset N_{\mathbb{Q}}$, consider the set $\mathfrak{F}^1 := \{ \rho \in \mathbb{N} : \rho \text{ is primitive in } \mathbb{N}, \ \mathbb{Q}_{\geq 0}\rho \in \mathfrak{F} \}$

Definition

An element $e \in M$ is called a Demazure root of the fan \mathfrak{F} if the following conditions are satisfied: (DR1) there is $\rho \in \mathfrak{F}^1$ such that $\langle \rho, e \rangle = -1$; (DR2) $\langle \rho', e \rangle \ge 0$ for all $\rho' \in \mathfrak{F} \setminus \{\rho\}$; (DR3) if a cone $\mathcal{K} \in \mathfrak{F}$ satisfies $\langle \mathcal{K}, e \rangle = 0$, then the cone generated by \mathcal{K} and ρ belongs to \mathfrak{F} .

Remark. Condition (DR3) holds automatically if the fan \mathfrak{F} is convex.

Let X be a toric T-variety corresponding to a pair (M, \mathfrak{F}) .

Theorem (Demazure'1970)

1) Every T-root subgroup on X is uniquely determined by its weight.

2) The set of weights of T-root subgroups on X is $\mathfrak{R}(\mathfrak{F})$.

3) If X is complete, then the group $(\operatorname{Aut} X)^0$ is generated by T and

all T-root subgroups on X.

Example

$$X=\mathbb{P}^2$$
, $T=(\mathbb{K}^{ imes})^2$, $(t_1,t_2)\cdot [x_0:x_1:x_2]=[x_0:t_1x_1:t_2x_2]$

The corresponding root subgroups in PGL₃:

A generalization

G a connected reductive algebraic group (e.g. SL_n) $B \subseteq G$ a Borel subgroup (e.g. all upper-triangular matrices in SL_n) $T \subseteq B$ a maximal torus (e.g. all diagonal matrices in SL_n) $U := \operatorname{Rad}_u(B)$, a maximal unipotent subgroup in B (e.g. all upper-triangular matrices in SL_n with ones on the diagonal) U^- the maximal unipotent subgroup in G opposite to U (e.g. all lower-triangular matrices in SL_n with ones on the diagonal)

 $\Lambda^+ \subseteq \mathfrak{X}(B)$ the set of dominant weights $\Lambda^+ \leftrightarrow \{\text{finite-dimensional simple } G\text{-modules}\}$

Remark: in the toric case we have G = B = T, $U = \{e\}$, $\Lambda^+ = \mathfrak{X}(T)$

伺下 イヨト イヨト

Definition

A G-variety X is called spherical if X is normal, irreducible, and possesses an open B-orbit.

Examples:

(1) toric varieties (G = B = T);

(2) (generalized) flag varieties G/P (P is a parabolic subgroup);

(3) horospherical varieties (the stabilizer in G of a point in general position contains a maximal unipotent subgroup of G);

(4) symmetric spaces.

[AA]: a proper generalization of root subgroups from the toric case to spherical varieties is given by *B*-root subgroups

Global problem Describe all *B*-root subgroups on a given spherical *G*-variety.

One more motivation for *B*-root subgroups

Let X be a complete spherical G-variety, Aut X its automorphism group, and $A = (Aut X)^0$ its connected component of the identity.

Fact

The group A is linear algebraic.

Now suppose that G acts on X effectively. Then $G \subset A$ and there is a G-module decomposition

$$\mathsf{Lie}\, A = \mathsf{Lie}\, G \oplus W \oplus \bigoplus_{i \in I} V_i, \,\,\mathsf{where}\,\,$$

• W is a G-module with trivial action, which corresponds to a torus centralizing G;

• V_i is a simple *G*-module whose highest weight vector v_i corresponds to a *B*-root subgroup in *A*.

Let X be a spherical G-variety. $\mathbb{K}(X)$ is the field of rational functions on X

Weight lattice

 $\begin{array}{l} M := \{ \text{weights of } B \text{-semiinvariant functions in } \mathbb{K}(X) \} \subseteq \mathfrak{X}(T) \\ \lambda \in M \quad \rightsquigarrow \quad f_{\lambda} \in \mathbb{K}(X)_{\lambda}^{(B)} \text{; may assume } f_{\lambda}f_{\mu} = f_{\lambda+\mu} \quad \forall \lambda, \mu \in M \end{array}$

 \mathcal{D}^{B} is the set of *B*-stable prime divisors in *X* \mathcal{D}^{G} is the set of *G*-stable prime divisors in *X* $\mathcal{D} = \mathcal{D}^{B} \setminus \mathcal{D}^{G}$ is the set of colors of *X*

There is a natural map $\varkappa : \mathcal{D}^B \to N = \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Z}), \quad \langle \varkappa(D), \lambda \rangle := \operatorname{ord}_D(f_{\lambda}).$

$X \leftrightarrow ext{colored fan}$

Basic properties of *B*-root subgroups

Let H be a B-root subgroup in X and let $\chi(H) \in \mathfrak{X}(T)$ be its weight.

Fact [AA], [AZ2]

 $\chi(H) \in \Lambda^+.$

 $H \rightsquigarrow$ a vector field ξ on X; all vector fields obtained in this way are called \mathbb{G}_a -integrable

Definition

H is called vertical if H preserves the open B-orbit in X. H is called horizontal otherwise.

Remark

In the toric case all T-root subgroups are horizontal.

Reduction to $X_{\mathcal{D}}$

In what follows we assume that X is horospherical. Put $X_D = X \setminus \bigcup_{D \in D} D$.

Fact [AA], [AZ1]

Every *B*-root subgroup on *X* preserves the set $X_{\mathcal{D}}$.

The problem of describing all B-root subgroups on X is divided into the following three:

(1) describe all *B*-root subgroups on $X_{\mathcal{D}}$;

(2) determine those *B*-root subgroups on X_D for which the corresponding vector fields extend to the whole *X*;

(3) determine which vector fields in (2) are \mathbb{G}_a -integrable (and hence correspond to *B*-root subgroups on the whole *X*).

Remark: all vector fields in (3) are automatically \mathbb{G}_a -integrable if X is affine or complete.

Let P be the stabilizer in G of the set X_D . $P = L \swarrow P_u$ is a Levi decomposition of P.

Local structure theorem (Knop'1994)

1) There exists a closed *L*-stable subvariety $Z \subseteq X_{\mathcal{D}}$ such that the map $P_u \times Z \to X_{\mathcal{D}}$, $(p, z) \mapsto pz$, is a *P*-equivariant isomorphism, where the action of *P* on $P_u \times Z$ is given by the formula $lu(p, z) = (lupl^{-1}, lz)$ for all $l \in L$, $u, p \in P_u$, $z \in Z$. 2) The derived subgroup of *L* acts trivially on *Z*. (Then *Z* is automatically a toric *T*-variety.)

Important: in the horospherical case there is a canonical way to choose Z:

Z = the set of fixed points w.r.t. the action of U^-

Using the local structure theorem, we obtained in [AZ1, AZ2] a complete description of *B*-root subgroups on X_D . For affine *X*, we also obtained in [AZ1] several sufficient conditions for extending *B*-root subgroups from X_D to the whole *X*. As a result, we proved in [AZ1] the following result.

Theorem

Suppose that X is affine and not necessarily horospherical. Then every G-stable prime divisor in X can be connected with the open G-orbit in X via a proper B-root subgroup.

Standard *B*-root subgroups: the affine case [AA]

Suppose that X is affine (and horospherical). Then there is a strictly convex finitely generated cone $\mathcal{E} \subset N_{\mathbb{Q}}$ such that

$$\mathbb{K}[X] = \bigoplus_{\lambda \in \mathcal{E}^{\vee} \cap M} \mathbb{K}[X]_{\lambda}$$

where $\mathbb{K}[X]_{\lambda}$ is a simple *G*-module with highest weight λ . Moreover, this decomposition is a grading.

Fact: the weight of every horizontal *B*-root subgroup on *X* belongs to $\mathfrak{R}(\mathcal{E}) \cap \Lambda^+$.

Given $\mu \in \mathfrak{R}(\mathcal{E}) \cap \Lambda^+$, let $\rho \in \mathcal{E}^1$ be such that $\langle \rho, \mu \rangle = -1$. For every $\lambda \in \mathcal{E}^{\vee} \cap M$ and $g \in \mathbb{K}[X]_{\lambda}$ we define $\partial_{\mu}(g) = \langle \rho, \lambda \rangle gf_{\lambda}$. This is a generalization of the LND's in the affine toric case!

Proposition

The map ∂_{μ} is a *B*-normalized LND on $\mathbb{K}[X]$.

The LND ∂_{μ} and the corresponding *B*-root subgroup H_{μ} are called standard. H_{μ} is automatically horizontal.

Proposition

For affine X, a B-root subgroup on X is standard if and only if it preserves the canonical section $Z \subset X_D$.

For arbitrary X, by definition, a B-root subgroup is called standard if it preserves Z.

Let \mathfrak{F} be the colored fan of X.

Theorem

For a weight $\mu \in \mathfrak{X}(T)$, the following conditions are equivalent: (1) there exists a standard *B*-root subgroup on *X* of weight μ ; (2) $\mu \in \mathfrak{R}(\mathfrak{F}) \cap \Lambda^+$. If the fan \mathfrak{F} is convex (for example, for affine or complete *X*), then these conditions are equivalent to one more: (3) there exists a horizontal *B*-root subgroup on *X* of weight μ .

The case $G = SL_2 \times torus$ [AZ2]

Suppose $G = SL_2 \times S$ where S is a torus.

For every spherical G-variety X we obtained a complete description of all vertical B-root subgroups on X.

Now assume that X is complete. Then we know all standard B-root subgroups and all vertical B-root subgroups \Rightarrow for the group $A = (\operatorname{Aut} X)^0$ in the G-module decomposition

$$\operatorname{Lie} A = \operatorname{Lie} G \oplus W \oplus \bigoplus_{i \in I} V_i$$

we know all the V_i . The part W can be also easily found.

We computed the commutation relations between all the summands \Rightarrow we recover the Lie algebra structure on Lie $A \Rightarrow$ we recover the group A itself.

Final result: for $G = SL_2 \times S$ we obtained a description of the group A for complete horospherical G-varieties similarly to Demazure's result for complete toric varieties.