ON GORENSTEIN GRAPHS Joon Nam Jourg
Tran Nam Trung (Institute of Mathematics, CAST, Vietnam)
Online seminar Floxibility and Computational Methods (HSE university, Moskow, Russia and institute of Mathematics, VAST, Hanoi, Vietnam)
Trum 21/12/2024 To 24/12/2024
Outline:
1. Simplicial complexes
2. Cohun - Macaulay / Gorenstein property 3. Edge ideals
4. Gorenstein graphs vs girth
5. Othe classes Of Gorenstein graphs
6. Construct new Gorenstein graphs from the old ones
L. Simplicial complexes:

$$V = \{1, 2, ..., n\}; n \ge 1$$

$$\Delta \text{ is a simplicial complex on } V:$$

$$\sigma \in \Delta, T \subseteq \sigma \Rightarrow T \in \Delta$$

$$F \in \Delta : \dim(F) = |F| - 1$$

$$\dim(\Delta) = \max \{\dim(F) \mid F \in \Delta\}$$

$$K = \alpha \text{ field}$$

$$R = K(x_1, ..., x_n];$$

$$T \subseteq [n]: \quad X_T = \prod x_i.$$

$$i \in T$$

$$I_{\Delta} = (X_T \mid T \in \Delta) = \text{ the Stanley-Reisner ideal of } \Delta$$

$$K[\Delta] = R/I_{\Delta}: \text{ the Stanley-Reisner ring of } \Delta$$

Roblem. Understanding algebraic properties of K[\Delta] interms of Δ .

$$\Delta \text{ is Cohen-Nacaulay complex if K(\Delta) is CM}$$

$$C(M \text{ for short})$$

$$\Delta \text{ is Govenstein complex if K(\Delta) is Govenstein}$$

2. Cohen-Nacaulay / Govenstein property

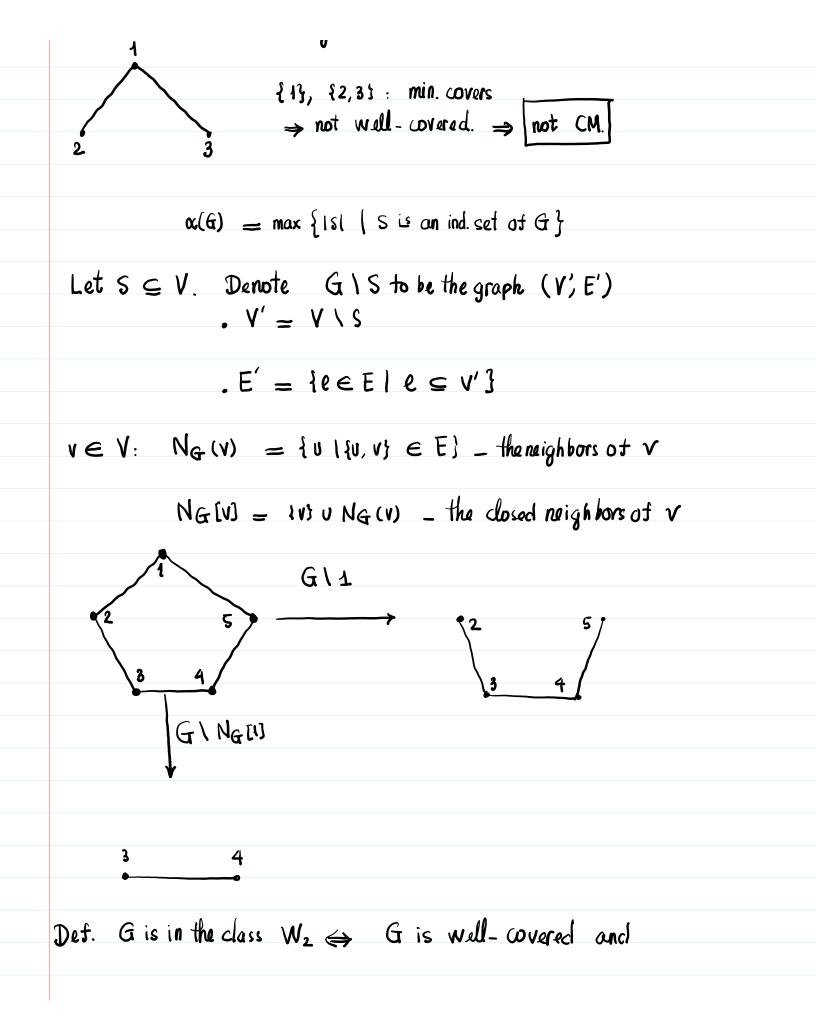
2. Colun-Macaulay / Gorenstein property

$$I \subseteq \mathbb{R}$$
 - a monomial ideal with dim $\mathbb{B}_{f} = d$.
Minimal fra revolution:
 $0 \leftarrow \overline{F}_{0} \leftarrow \overline{F}_{1} \leftarrow \overline{F}_{2} \leftarrow \cdots \leftarrow \overline{F}_{p} \leftarrow 0$
• I is $CM \Leftrightarrow n-p = d$.
• I is $Gorenstein \Leftrightarrow n-p = d$ and $rank(\overline{F}_{p}) = 1$
Reisner's criterion.
The link: $F \in \Delta$, $lk_{\Delta}(F) = \{G \mid G \cup F \in \Delta \& FnG - \phi\}$
Theorem. Δ is $CM \Leftrightarrow \widehat{H}_{i}(lk_{\Delta}(F); k) = \partial$
(Reiner) $\forall F \in \Delta$, $i < din(k_{\Delta}(F)$.
the
Remark. The CM property of Δ depends only on two logy of $|\Delta|$.
(geometric realization)
(Munitres - Stanley).
Example. Δ be a triangulation of $\mathbb{P}_{\mathbb{R}}^{n}$:

$$T_{A} = T_{2}$$

$$T_{A} = \begin{cases} K & \text{if } char(k) = 2, \\ 0 & o \text{ therwise} \end{cases}$$

$$A \text{ is CM} \iff char(k) \neq 2.$$
Stanlay's criterion.
The star: $st_{\alpha}(v) = \{F \in \Delta \mid x \in \Delta\}$
if $st_{\alpha}(v) = \Delta$, then Δ is a cone over v
 $\Rightarrow ft_{i}(\Delta; K) = 0 \forall i.$
 $core(V) = \{v \in V \mid st_{\alpha}(v) \neq \Delta\}$
 $core(\Delta) = \Delta \mid core(\Delta) = \{F \in \Delta \mid F \in core(V)\}$
 $f = (f_{-i}, f_{i}, f_{i}, ..., f_{d-i}) \text{ be the } f \text{ vector of } \Delta$
The Caller characteristic of Δ :
 $\tilde{\chi}(\Delta) = \sum_{i=-i}^{d-1} (-i)^{i} f_{i}(\Delta)$
 $\Delta \text{ is Eulor: } dim(F)$
 $\tilde{\chi}(lk_{\Delta}(F)) = (-i) \quad \forall F \in \Delta.$



Houng T: girth(G) > 4, then G is Gorenstein
$$\Leftrightarrow$$
 G is in W2
. Proof:
* G \in W2 \Rightarrow Δ (G) is Eulian.
* G \in W2 \Rightarrow Δ (G) satisfies Reisner's
criterion.
5. Other classes of Gorenstein graphs
. Planar graphs: (T)
G is Gorenstein \Leftrightarrow G \cong Gn with $n = 4G$)
or G is the following:
. Claw-free graphs: T
G is claw-tree graph if G has no induced subgraph
K1.3.
Thm(T): Let G be a claw-free graph. Then G is Gorenstein
 \Leftrightarrow G is one of K1. K2, and C⁶ with $n > 5$.

$$C_{6}^{2} : A \xrightarrow{2}_{6} G_{5}^{3} = A$$

$$(\text{Graduat graphs:} \xrightarrow{3}_{6} G_{5}^{3} = A$$

$$(\text{Graduat graphs:} \xrightarrow{3}_{6} \text{ and } S \subseteq \{1, ..., \lfloor N/2 \rfloor\}$$

$$\text{The circulart graph } C_{n}(S) :$$

$$1i,3i \in C_{n}(S) \iff \min\{\{(i-3i), n-1i-3i\} \in S.$$

$$a \text{ athe}$$

$$A. \text{ Nikeeresht} - \text{ N.P. Obsuch:} \quad if \ deg_{G}(v) \leq 4 \ \text{ for } v$$

$$G = C_{n}(1),..., cl) \quad \text{for some } d \leq n/2, \ \text{then } G \text{ is Gorenshin}$$

$$(a) \quad G \text{ is one of } tK_{2}, \ t\overline{G} \text{ or } tC_{ig}(1,5) \ \text{for some } t \ \text{cond not}$$

$$6. \ \text{Construct new Gorenstaio graphs from the old ones}$$

$$(\text{construction:} \quad G = a \quad \text{Gorenstain graph}$$

$$x \in G: \ deg_{G}(x) \geq 2$$

