Синтез текстур с использованием диффузионных моделей

Text-to-Image

- Подаем на вход промпт
- Возвращаем тензор $H \times W \times 3$

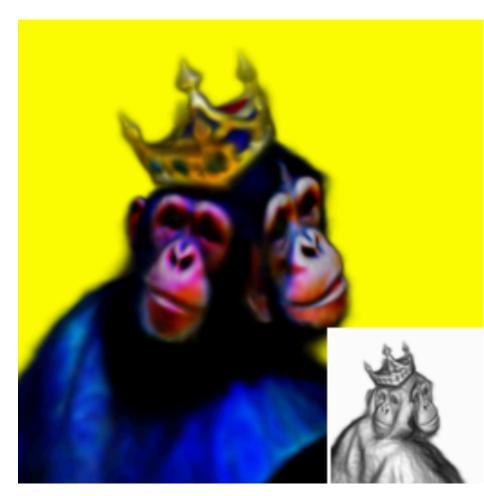
Text-to-3D

- Подаем на вход промпт
- Учим объемное 3D представление
 - Поле плотности $\sigma: \mathbb{R}^3 \to \mathbb{R}_+$
 - Светимость $C: \mathbb{R}^3 \times S^2 \to \mathbb{R}^3$
- Неявные представления / оплаты



Минусы

- Сложная непредсказуемая геометрия
- Высокий реализм, но статические сцены
 - Статическая геометрия
 - Статическое освещение
- Отрыв от инструментов 3Д графики



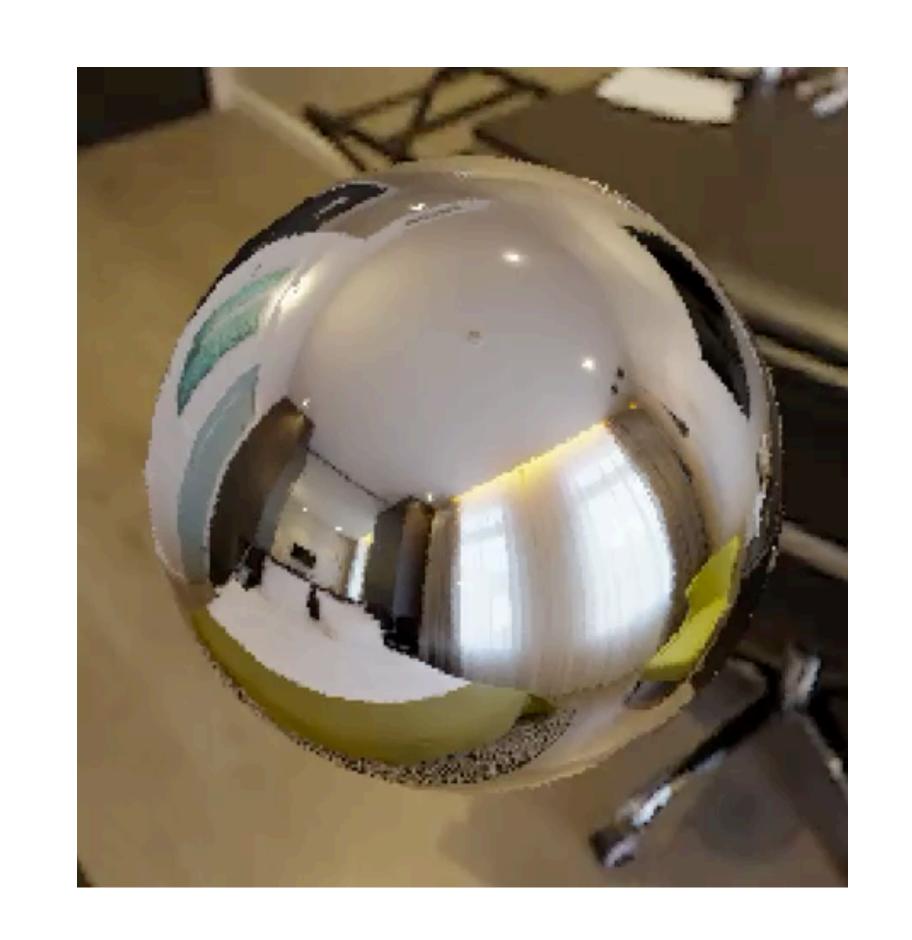
Синтез текстур

Как передать цвет?

- Просто
 - RGB в каждой точке $C: [0,1]^2 \to [0,1]^3$
- Предельно сложно
 - Зависимость от точки обзора и времени

$$C: [0,1]^2 \times S^2 \times T \rightarrow [0,1]^3$$

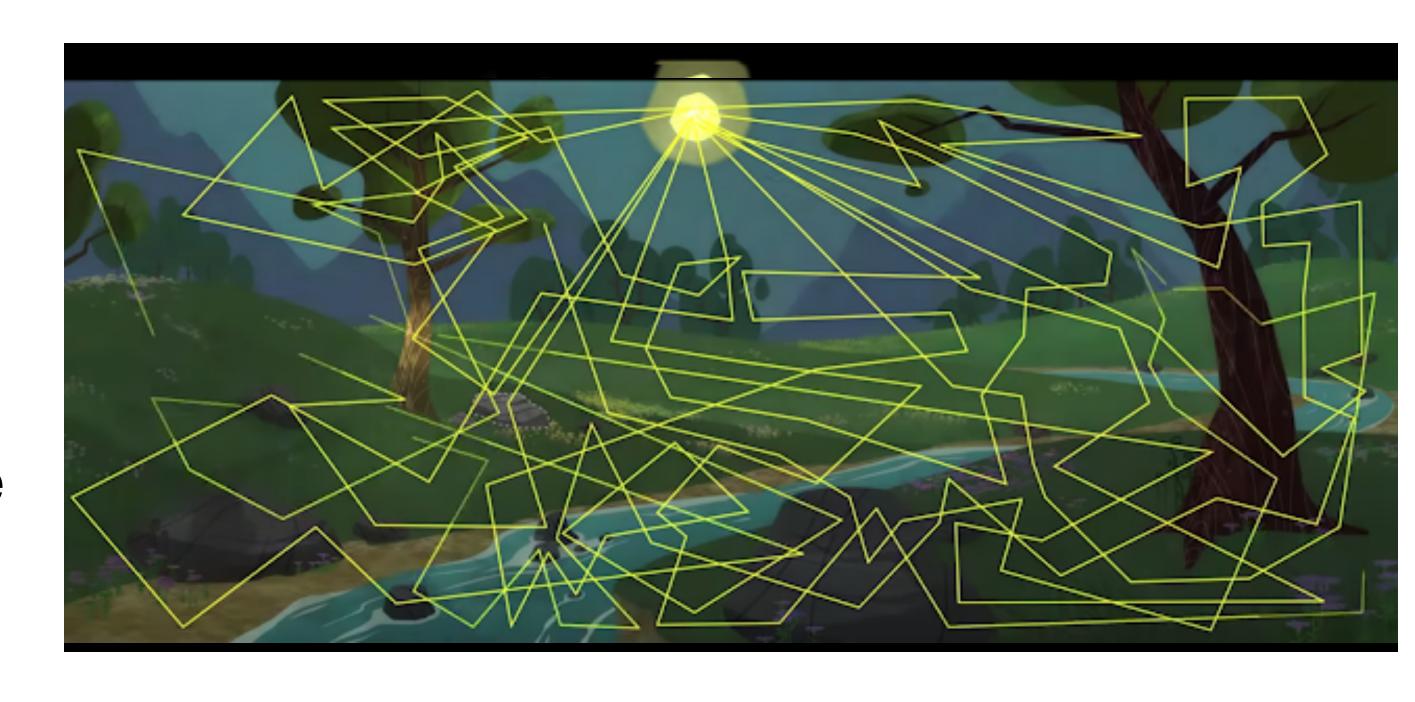
• Есть ли более эффективные представления?



Немножко о том как формируется изображение

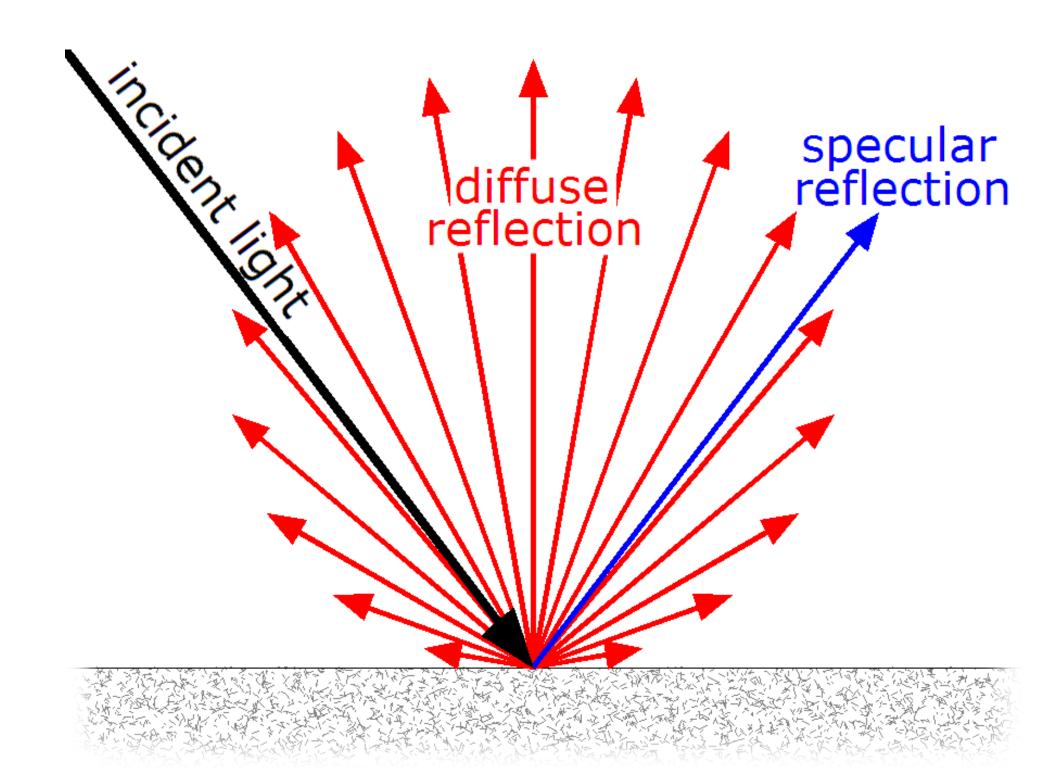
Physically Based Rendering (PBR)

- Идея: симуляция распространения света
- Выпускаем множество лучей
- Лучи отражаются о поверхности сцены
- Регистрируем те лучи, которые в конце концов дошли до сенсора камеры



Взаимодействие света

- Диффузное рассеяние
 - Направления отражения равновероятны
- Зеркальное отражение
 - Угол отражения равен углу преломления
- В общем случае: BRDF
 - Bidirectional Reflectance Distribution Function
 - Функция $f_r(\omega_i, \omega_r) : [0,1]^2 \times [0,1]^2 \to \mathbb{R}$



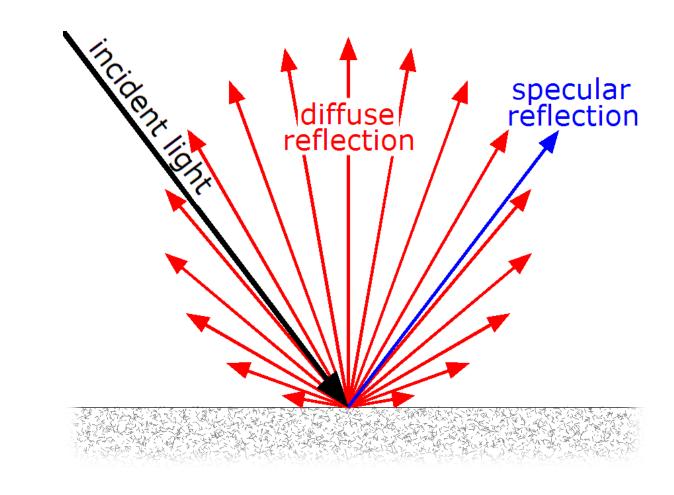
Как это всё работает на практике?

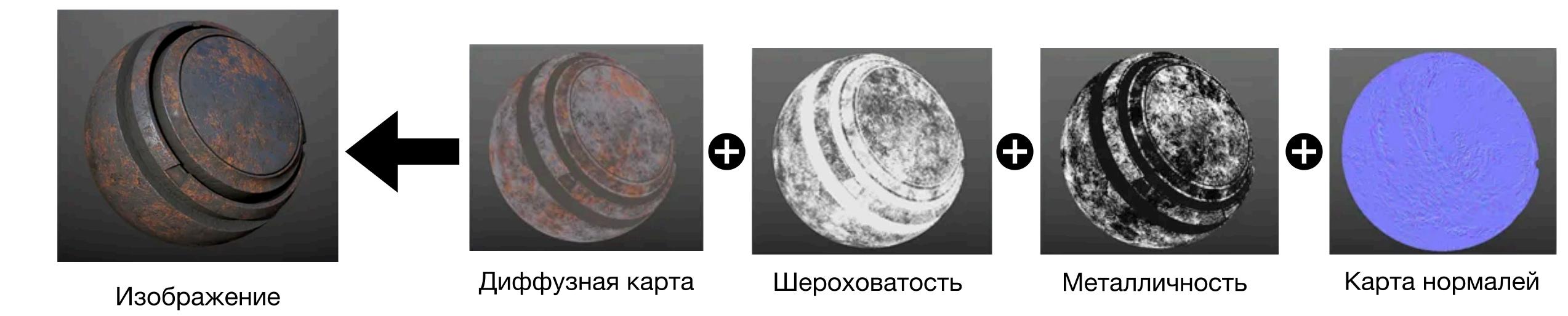
- Запускать симуляцию долго и дорого, используют приближения (например, растеризация)
- Напрямую представлять BRDF функцию очень сложно, в индустрии распространен стандарт от студии Disney

PBR текстуры

Материалы, состоящие из

- диффузной карты (обычный цвет) $k_{\mathcal{C}}$
- металличности k_m
- шероховатости k_r
- карты нормалей k_n





Vs.

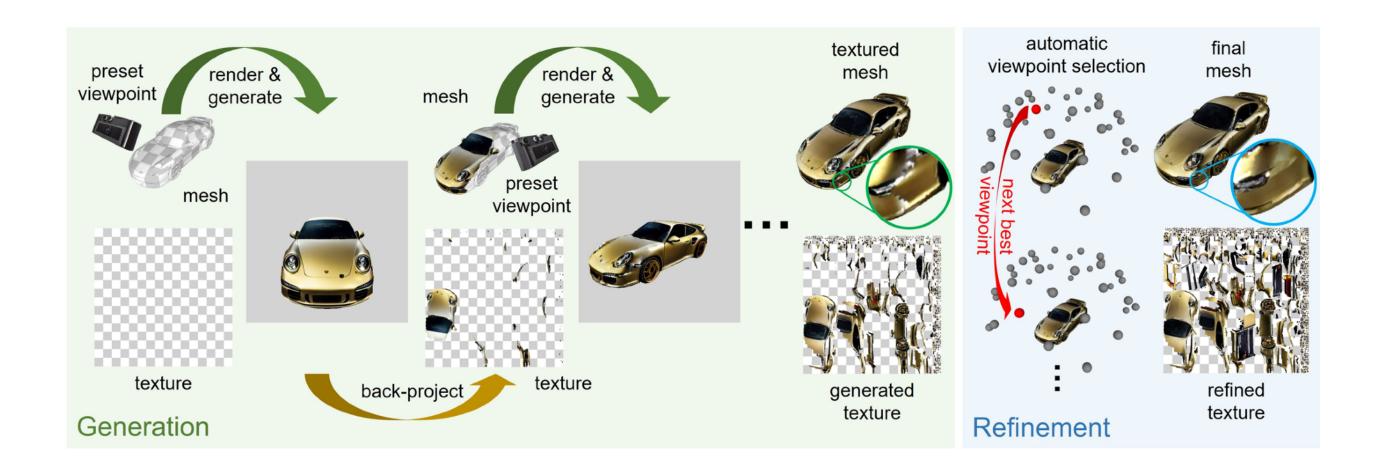
Просто цвет

Не просто цвет

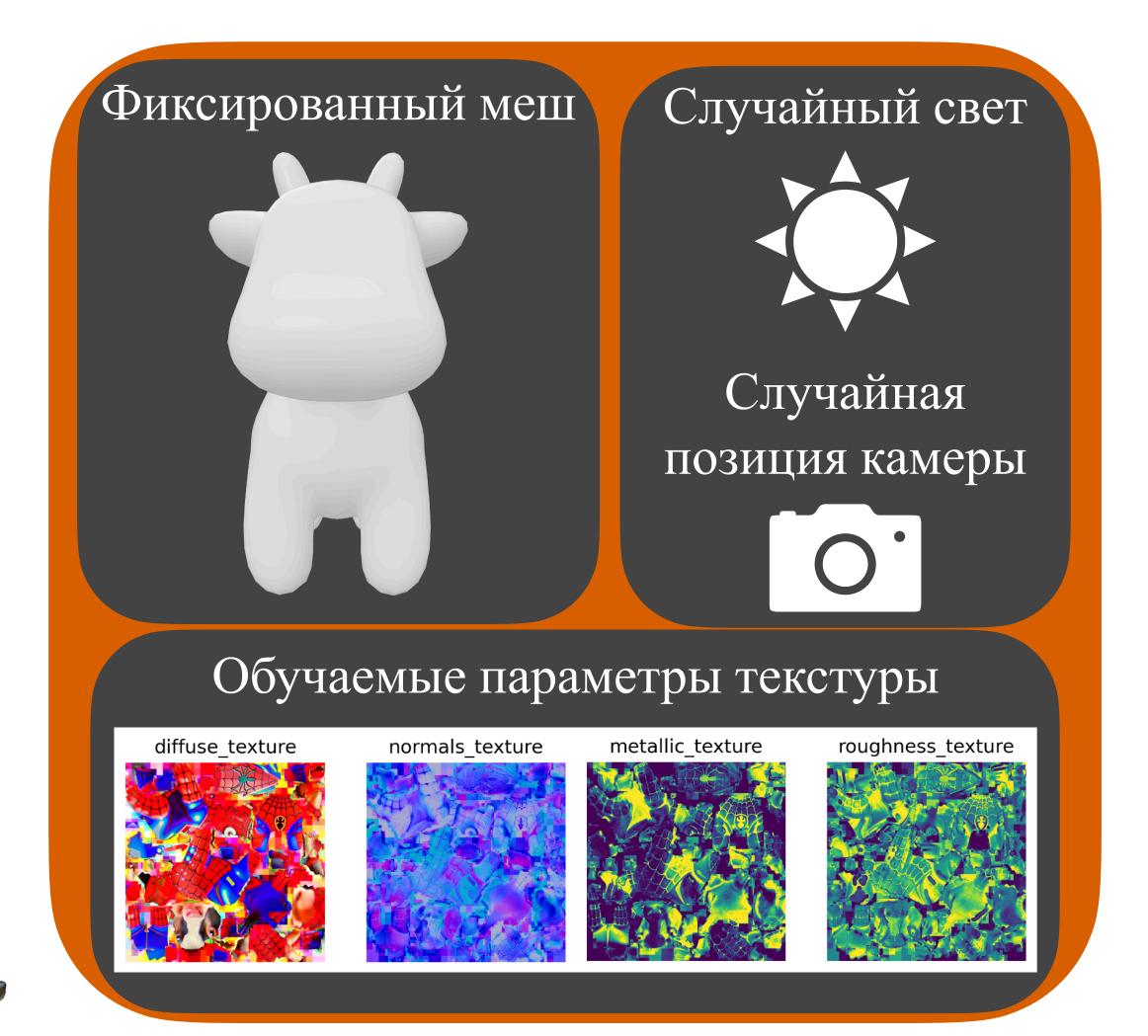
Генеративные модели

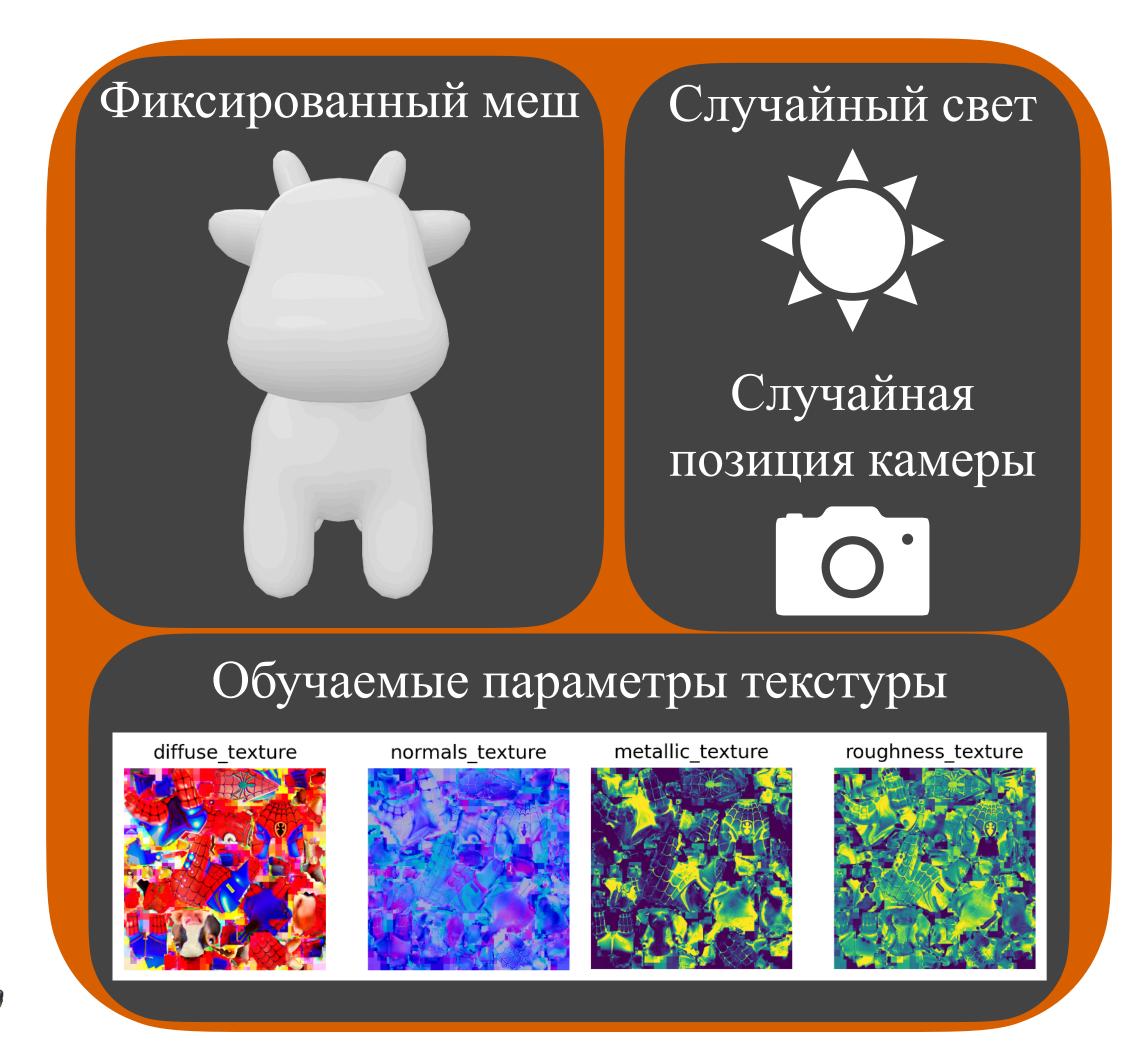
Так как одеть 3D-модель?

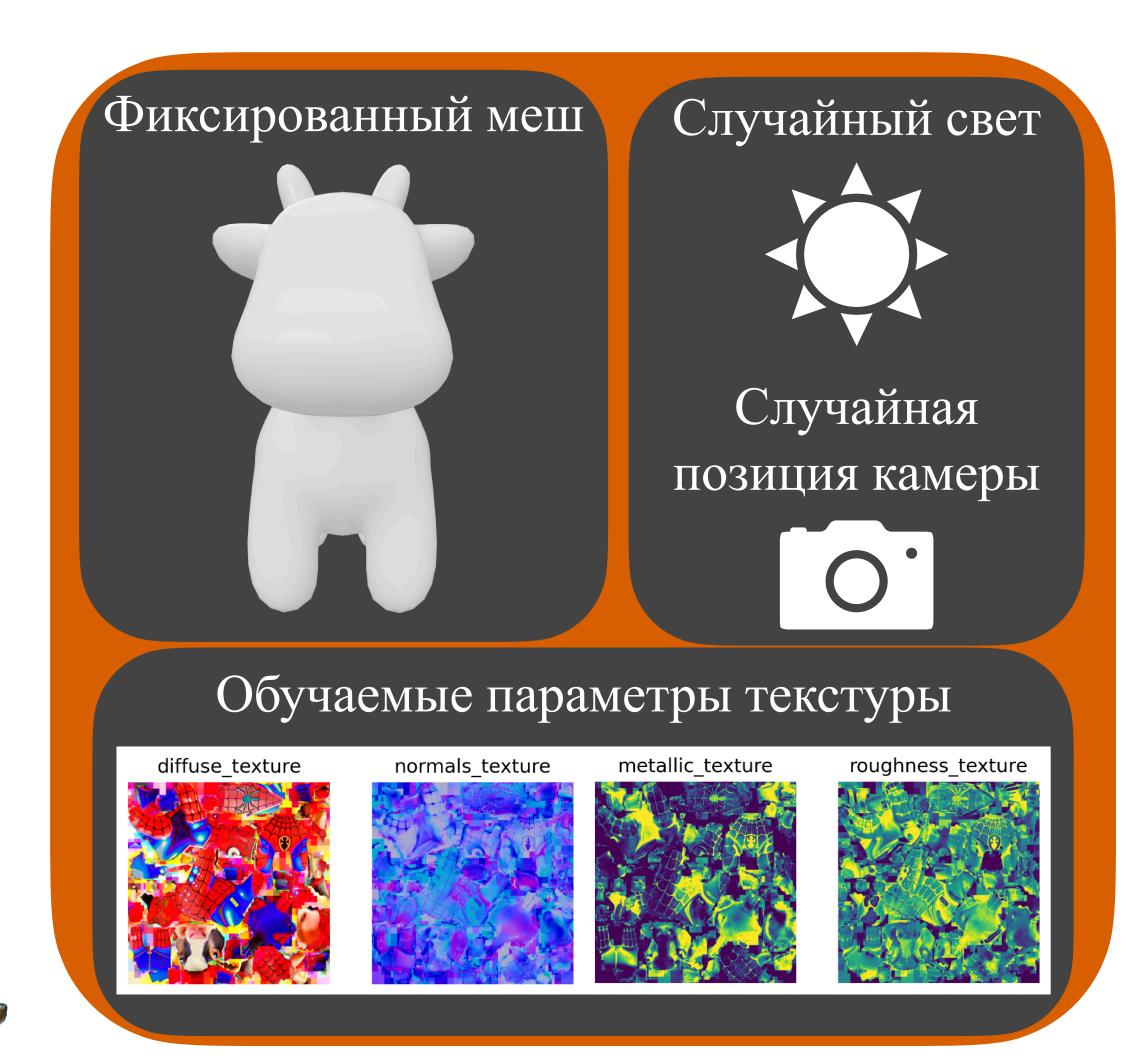
- Предобученные модели знают как выглядит окружающий мир
- He PBR-подходы: сгенерировать ракурс, а потом спроецировать цвета

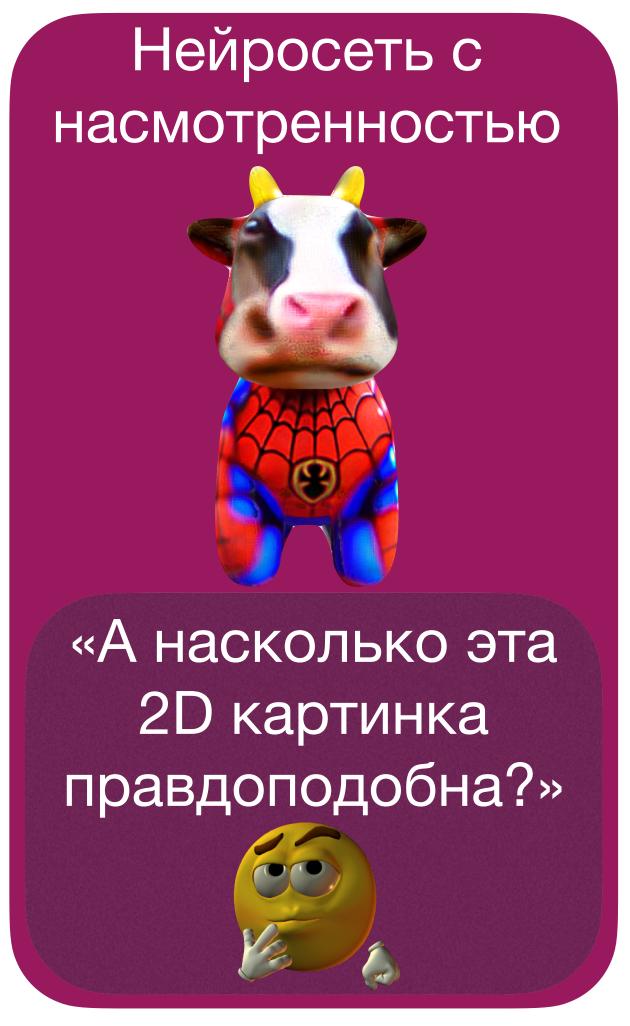


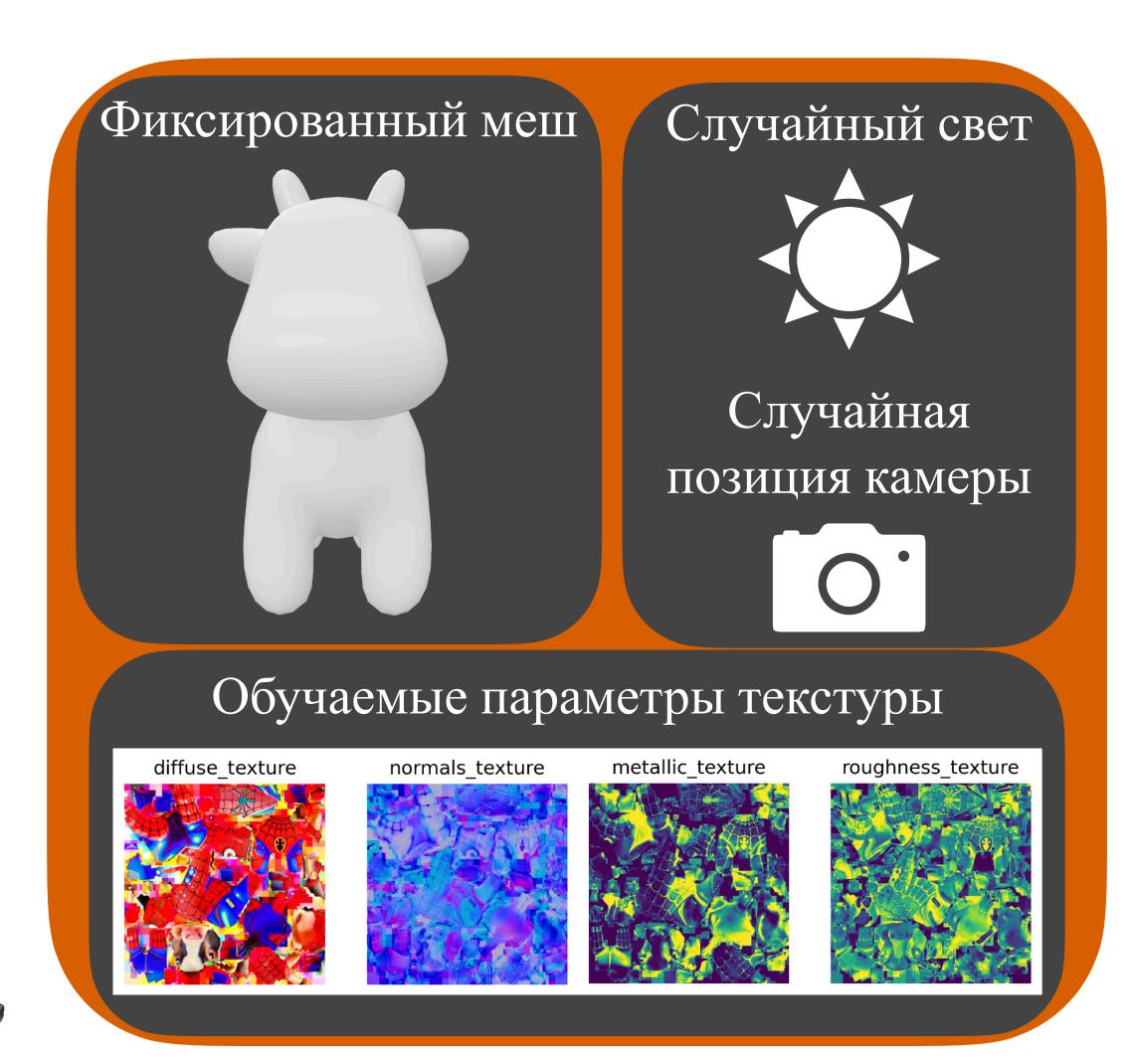
• Наш путь: PBR-подходы на основе Score Distillation Sampling

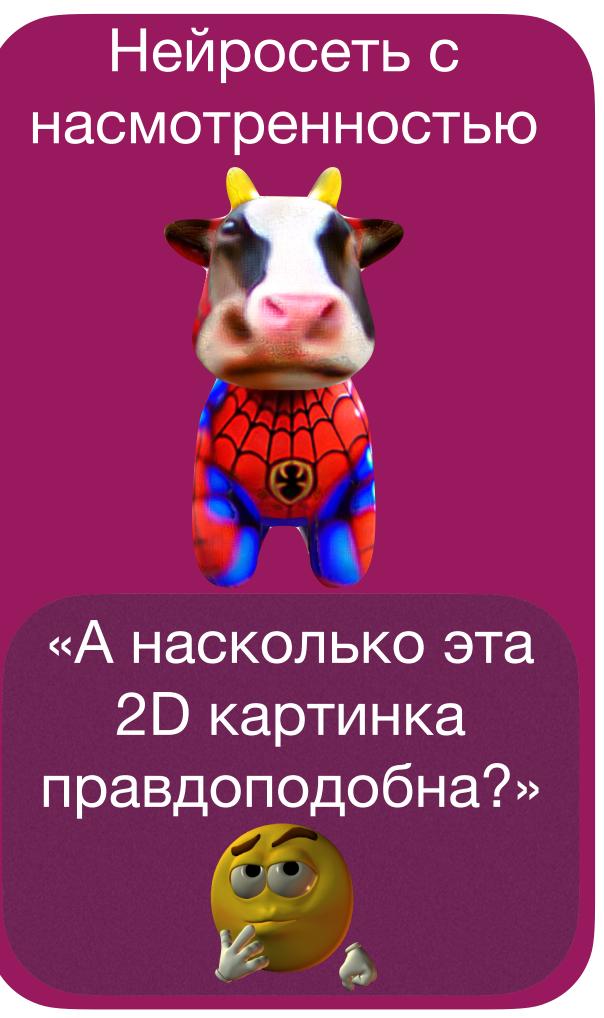


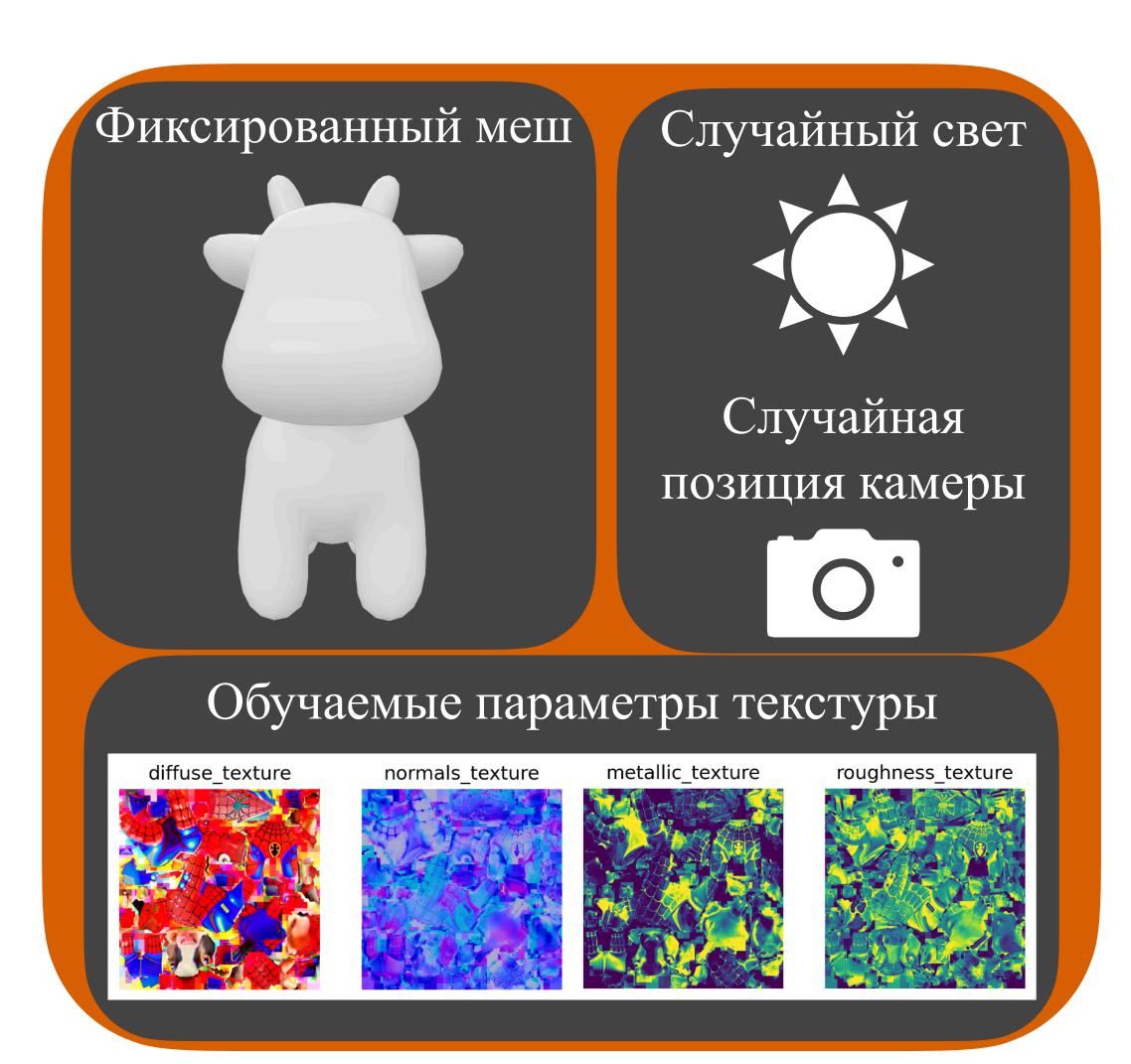


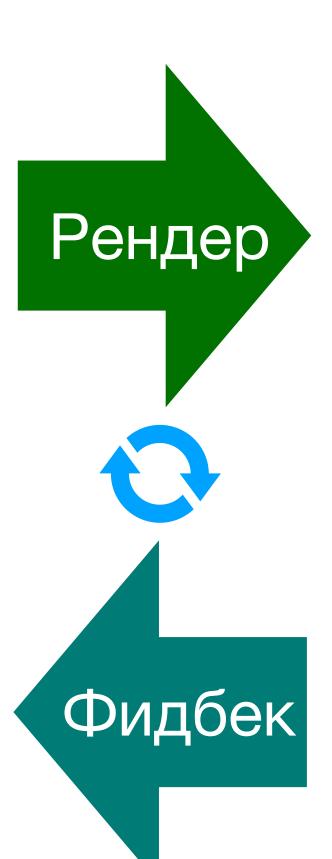


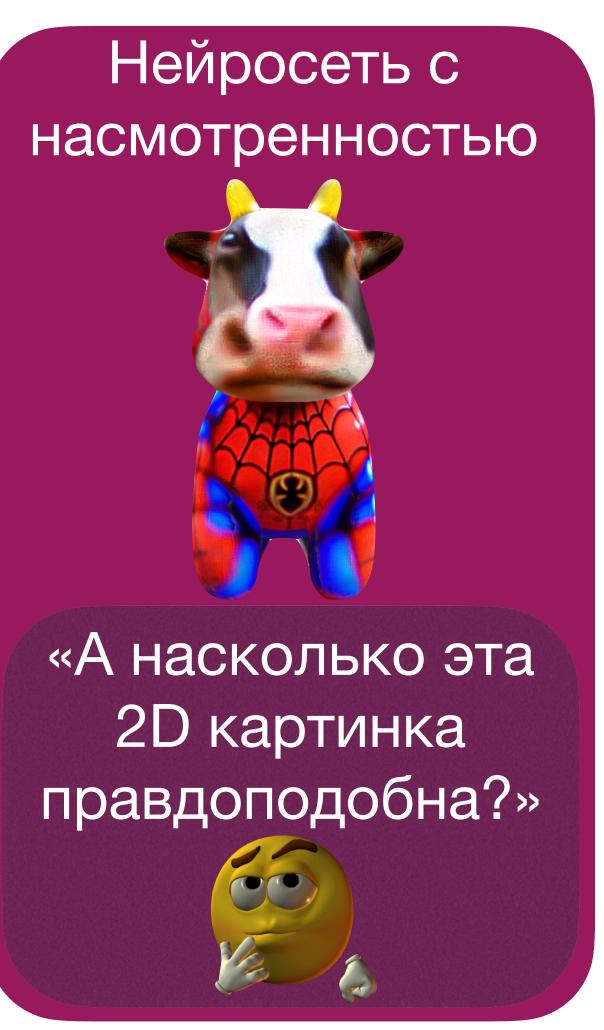










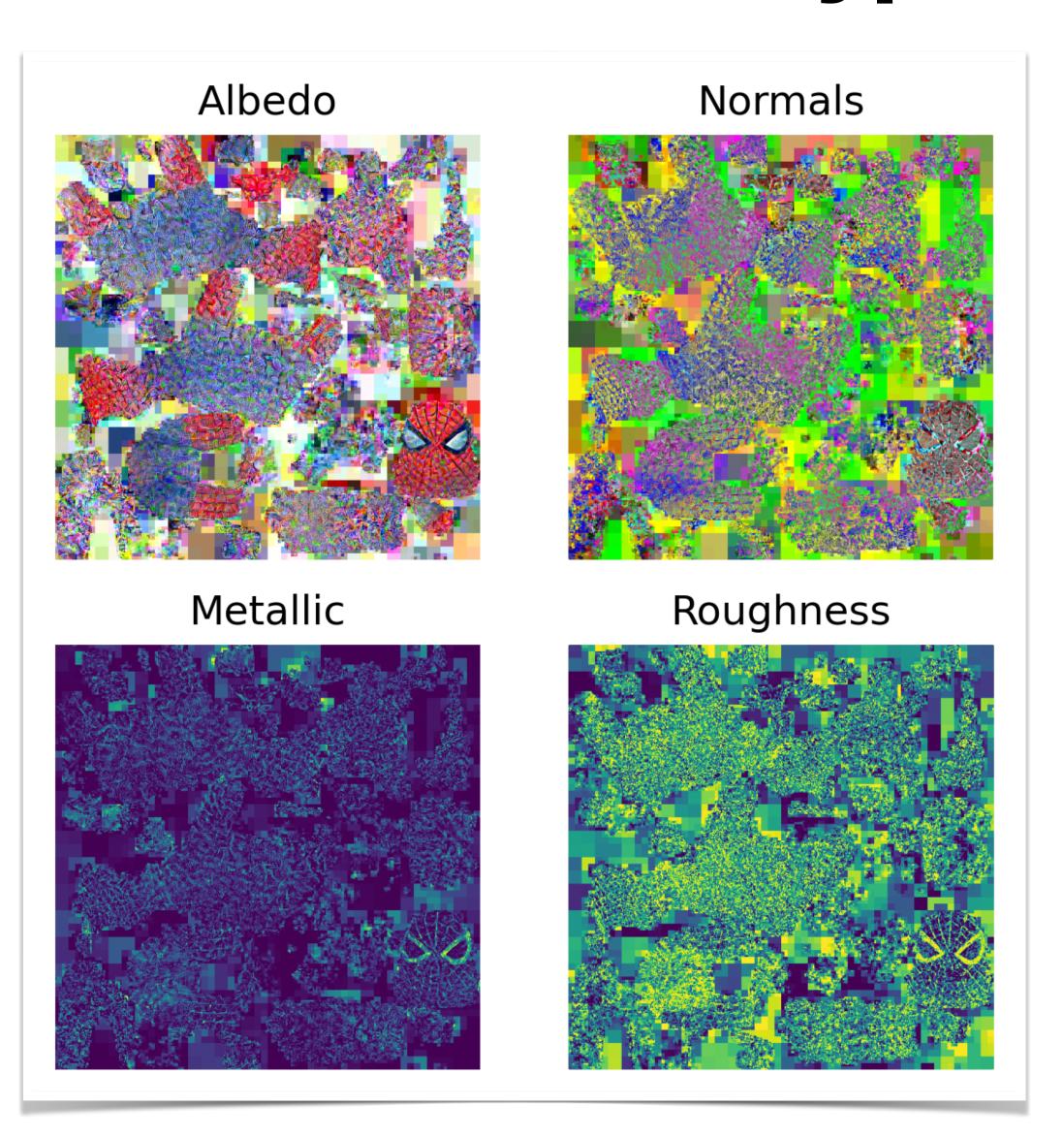


Что под капотом?

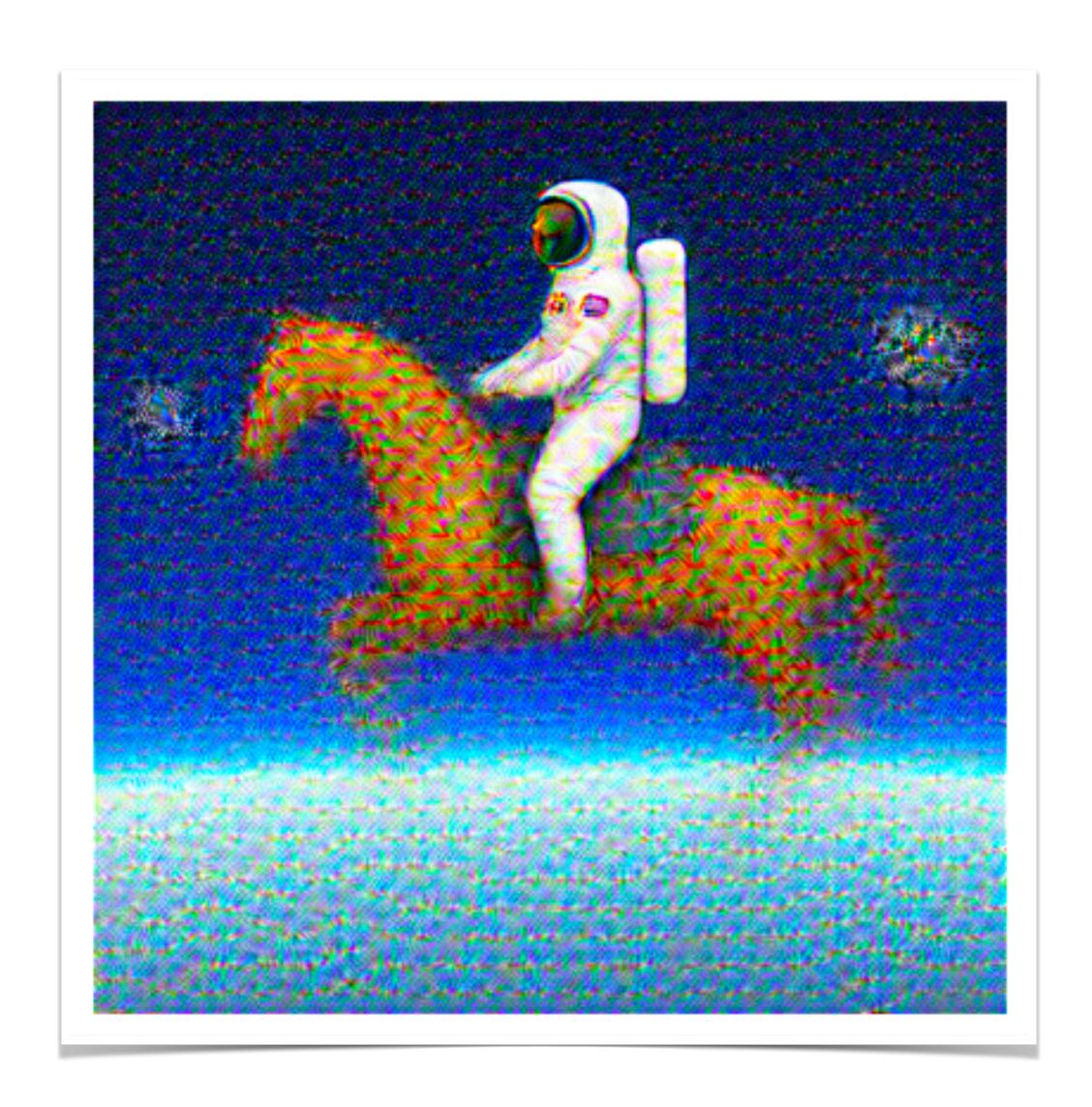
- Нарисовали картинку $x_0 = g(\theta, z)$ и зашумили $x_t = \alpha_t x_0 + \sigma_t \varepsilon$
- С помощью диффузионной модели по x_t оцениваем, как выглядела исходная картинка
- lacksquare По оценке \hat{x}_0^t определяем градиент как

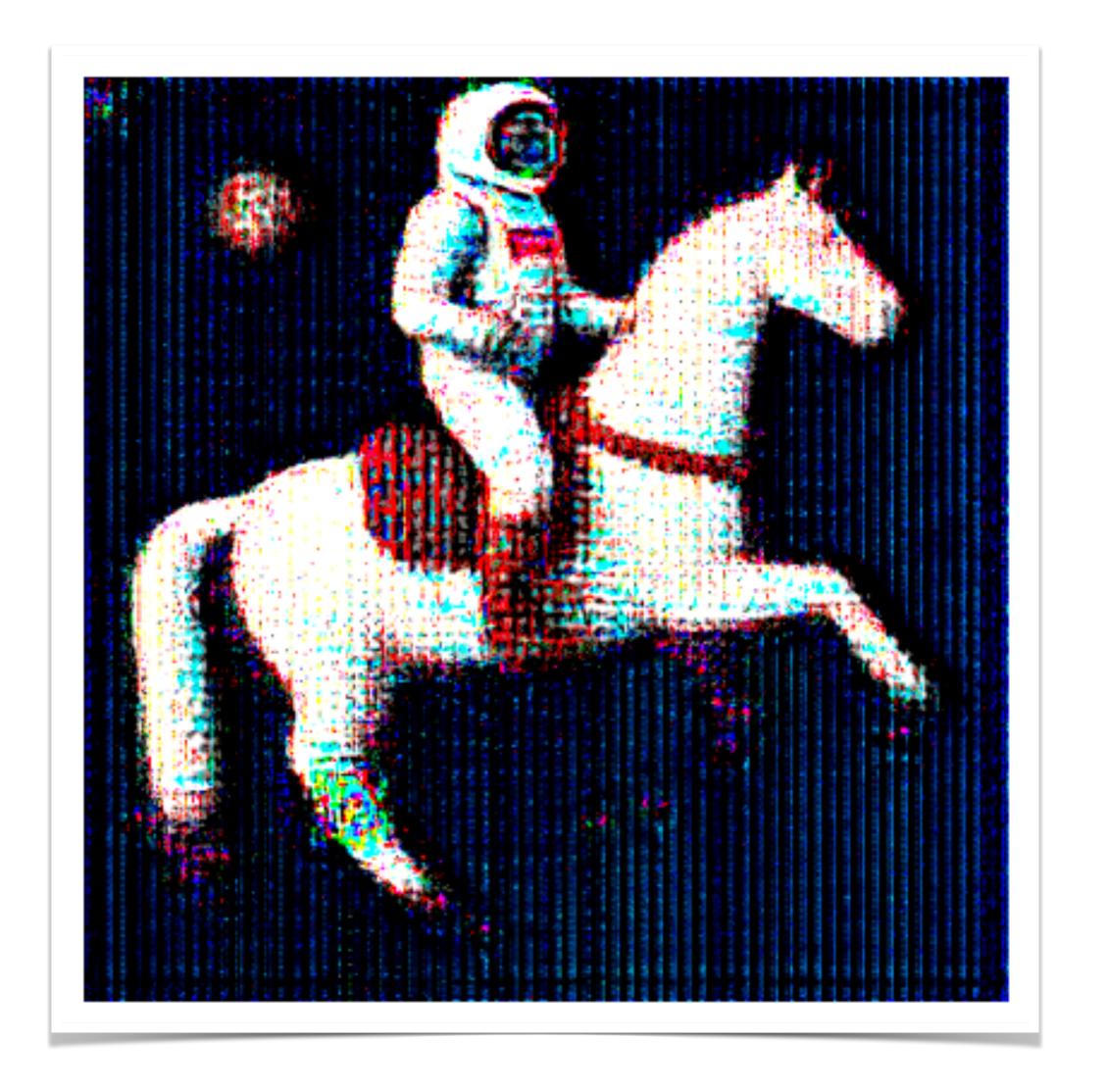
$$abla_{ heta ext{LSDS}}(heta) = \mathbb{E}_{t, oldsymbol{\epsilon}, c} \left[rac{\omega(t)}{\gamma(t)} (oldsymbol{x}_0 - \hat{oldsymbol{x}}_0^t) rac{\partial oldsymbol{g}(heta, c)}{\partial heta}
ight]$$

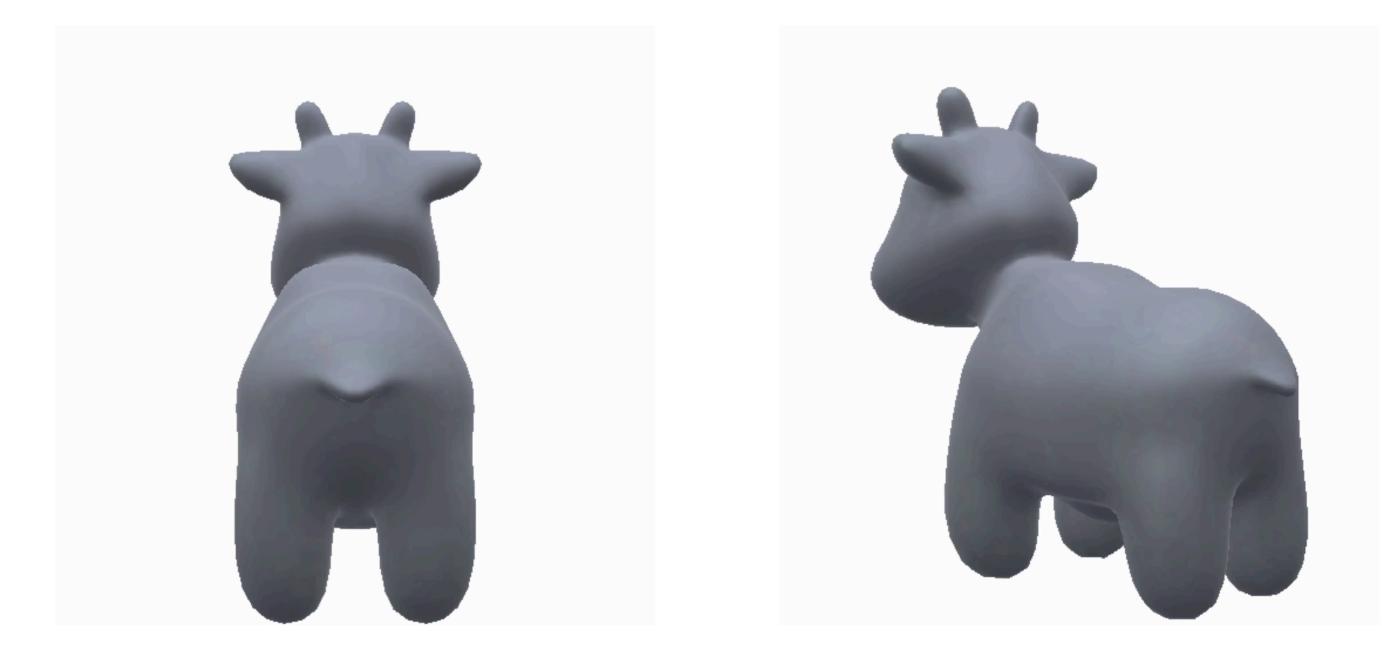
Опыт 1: латентные модели для текстур



SDS с латентными моделями для картинок







Решение через регуляризацию

- Мы представляем текстуры напрямую как несколько изображений
- Paint-It (CVPR2024) предлагает Deep Image Prior параметризацию

Original

RGB, latent L_2 PSNR=16.67

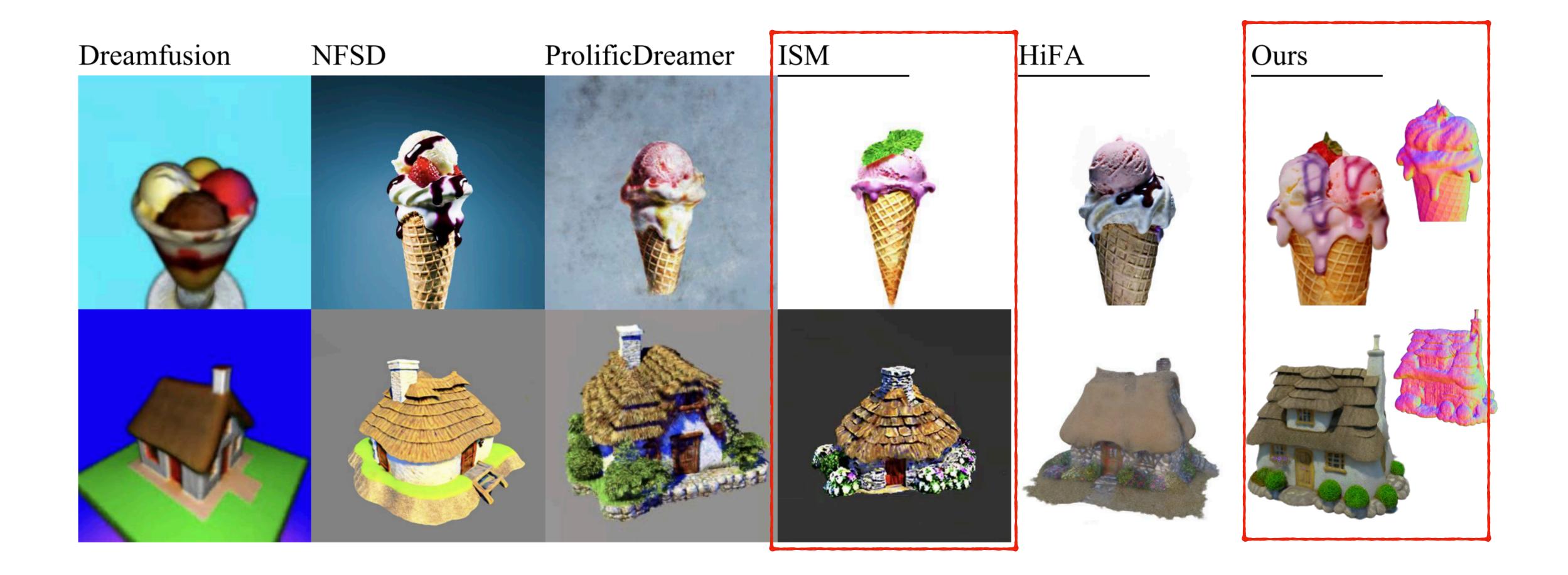
DIP, latent L_2 PSNR=22.53

RGB, rgb L_2 PSNR=59.58

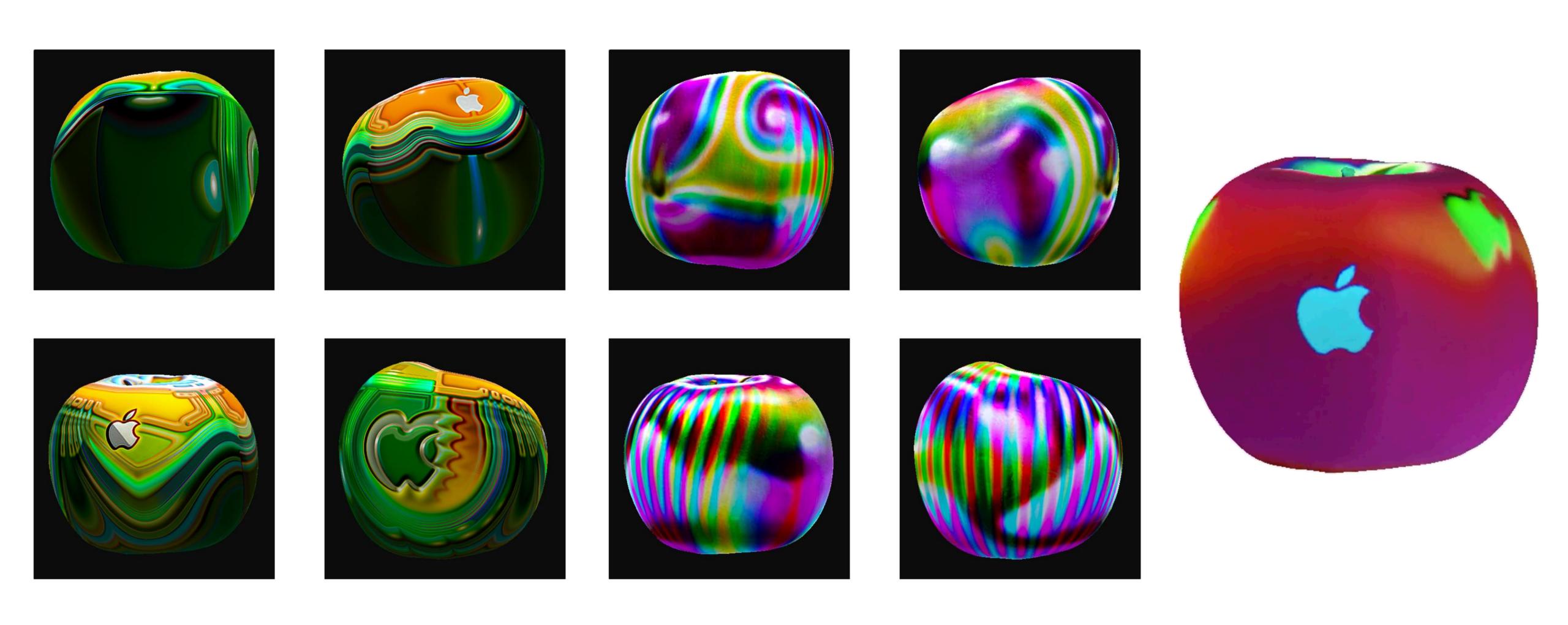
DIP, rgb L_2 PSNR=36.85

DIP-параметризация для каскадных моделей

Опыт 2: усложнения SDS

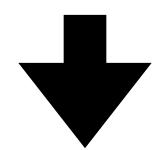


Опыт 3: о пользе torch.clamp()



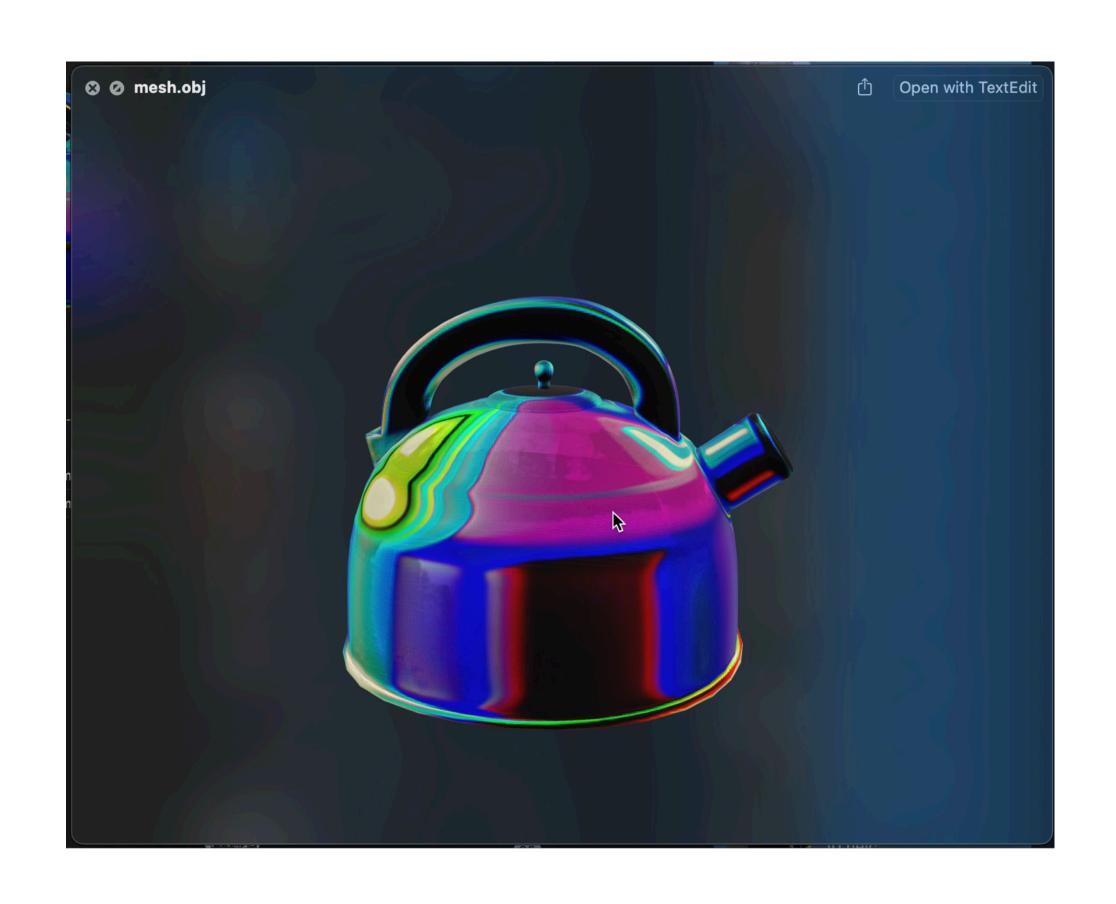
Перепараметризация SDS

$$\nabla_{\theta} \mathcal{L}_{\text{SDS}}(\theta) \approx \mathbb{E}_{t, \boldsymbol{\epsilon}, c} \left[\omega(t) (\underbrace{\boldsymbol{\epsilon}_{\phi}(\boldsymbol{x}_{t}, t, y) - \boldsymbol{\epsilon}}_{\text{SDS update direction}}) \frac{\partial \boldsymbol{g}(\theta, c)}{\partial \theta} \right]$$



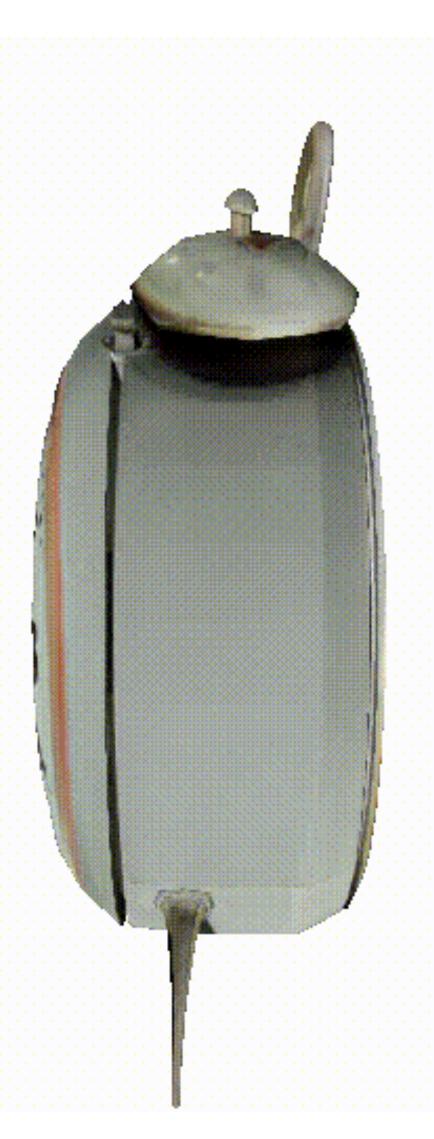
$$abla_{ heta \mathcal{L}_{ ext{SDS}}}(heta) = \mathbb{E}_{t, oldsymbol{\epsilon}, c} \left[rac{\omega(t)}{\gamma(t)} (oldsymbol{x}_0 - \hat{oldsymbol{x}}_0^t) rac{\partial oldsymbol{g}(heta, c)}{\partial heta}
ight]$$
Clamp it!

Перепараметризация SDS





Еще картинки



Мысли про будущее

- Аккуратнее изучить влияние освещения на результаты
- Уходить от SDS
 - Неестественные цвета
 - Нюансы освещения не удается достаточно надежно передать
 - С латентными моделями в нашей задаче он не дружит
- Более аккуратный контроль сигнала от диффузионок
 - Дообучение с учётом ракурса, карт глубин и освещения