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Let A ⊂ N be an infinite set, A = {a1 < a2 < . . . }. We say that A
is syndetic if supk(ak+1 − ak) < ∞. Also, we consider that a finite
subset of N is not syndetic.

For example, the set A of composite numbers is syndetic since for
any k one of the numbers ak + 1, ak + 2 is even, and it is an element
of A. Hence, supk(ak+1 − ak) ≤ 2.
Similarly, let A be the complement to the set of square free numbers
in N. Then A contains all positive integers divisible by 4, and for any
k at least one of the numbers ak + 1, ak + 2, ak + 3, ak + 4 is an
element of A. Hence, supk(ak+1 − ak) ≤ 4.
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Now we will talk about large gaps between consecutive elements of
subsets. However, sometimes we do not know if a set A is finite or
infinite, and it is better to talk about large intervals not containing
elements from A. For x > 0, define the number ρ(x ;A) as the size of
the largest interval (α, β) ⊂ (0, x) without elements of A. Clearly,
ρ(x ;A) is a nondecreasing function of x .

Let |A| = ∞. Any interval without elements of A is contained either
in (0, a1) or in (ak , ak+1) for some k . Thus, if A is syndetic then for
any x > 0 we have ρ(x ;A) ≤ max(maxk(ak+1 − ak), a1) < ∞.
If |A| = ∞ and A is not syndetic then ak+1 − ak can be arbitrarily
large. Since ρ(x ;A) ≥ ak+1 − ak for x ≥ ak+1 we see that
limx→∞ ρ(x ;A) = ∞. If A is finite and a is the maximal element of
A then for x > a we have ρ(x ;A) ≥ x − a. Again,
limx→∞ ρ(x ;A) = ∞.
Therefore, A is syndetic if and only if limx→∞ ρ(x ;A) = ∞.
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Let P be the set of the primes. It is well-known that P is not a
syndetic set.

E. Westzynthius (1930) proved that ρ(x ;P)/ log x → ∞ as x → ∞.
Lower estimates for ρ(x ;P) were found by P. Erdős, R.A. Rankin and
other mathematicians. K. Ford, B. Green, SK, J. Maynard, T.Tao
(2018) proved that for large x

ρ(x ;P) ≫ log x(log log x)(log log log x)−1(log log log log x).

Heuristically, ρ(x ;P) ≍ (log x)2. Best known upper estimate is much
larger ρ(x ;P) ≤ x0.525 for x ≥ x0 (R.C. Baker, G. Harman, J. Pintz,
2001).
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We say that a set of k consecutive integers is an integer segment of
size k . Thus, a set A is syndetic if there is k such that any integer
segment of size k contains an element of A.

M. Beigldőck, V. Bergelson, N. Hondman, and D. Strauss (2018)
defined a wider class of piecewise syndetic sets. We say that a set
A ⊂ N is a piecewise syndetic if there is k ∈ N such that there are
arbitrary long integer segments such that any k consecutive integers
in it contains an element of A.
We have seen that the function ρ(x ;A) indicates whether A is a
syndetic set. In some sense, the rate of tending this function to
infinity as x → ∞ shows how far the set A differs from syndetic sets.
We define a similar function related to piecewise syndetic sets.
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Now define the function ρ(x , y ;A), where x > 0, y ≥ 0, as the size
of the largest interval (α, β) ⊂ (y , x + y) without elements of A. Let

ρ∗(x ;A) = inf
y≥0

ρ(x , y ;A).

Clearly, ρ∗(x ;A) ≤ ρ(x ;A) and ρ∗(x ;A) is a nondecreasing function
of x .

It is easy to see that a set A ⊂ N is not a piecewise syndetic set if
and only if

lim
x→∞

ρ∗(x ;A) = ∞.

It turns out that sometimes the technique of the proof of lower
estimates for ρ(x ;A) gives actually more, namely, the same lower
estimate for ρ∗(x ;A). This gives not only a stronger result, but also a
better understanding of contemporary methods to study ρ(x ;A). We
discuss briefly the case A = P .
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Let z ≥ 2. We denote by P(z) the product of primes up to z and by
Y (z) the maximal number Y such that there exist Y consecutive
integers each of them is divisible by some prime not exceeding z . In
the above mentioned paper by K. Ford, B. Green, SK, J. Maynard,
T.Tao (2018) it was proved that

Y (z) ≫ z(log z)(log log z)−1(log log log z). (1)

The inequality

ρ(x ;P) ≫ log x(log log x)(log log log x)−1(log log log log x).

can be deduced from (1) and standard arguments. The same
arguments give a stronger inequality

ρ∗(x ;P) ≫ (log x)(log log x)(log log log x)−1(log log log log x). (2)
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Take a large positive integer x , and let z be the maximal positive
integer satisfying the inequality x ≥ 2P(z). It follows from the
well-known estimate logP(z) ≍ z that

z ≫ log x . (3)

Let Y = Y (z). Then there exists an integer u such that any of the
numbers u + 1, . . . , u + Y has a prime factor less than or equal to z .
Next we take an arbitrary y ≥ 0 and a number v such
v ≡ u(modP(z)) and v + Y ∈ (x + y − P(z), x + y ]. then all
numbers v + j , j = 1, . . . ,Y . are composite numbers from (y , y + x ].
Since y ≥ 0 is an arbitrary integer, we conclude that

ρ∗(x ;P) ≥ Y (z).

Due to (1) and (3) we get the required inequality (2).
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There is a similar situation for the set S of positive integers
representable as a sum of two squares and for the set Q of squarefree
positive integers. Richards (1982) established that ρ(x ;S) ≫ log x
for x ≥ 2. His arguments show that actually ρ∗(x ;S) ≫ log x . The
order log x remain unbeaten.

Elementary arguments give the lower bounds

ρ(x ;Q) ≥ ρ∗(x ;Q) ≫ log x/ log log x (x ≥ 3).

We know that the upper estimate for ρ(x ;P) has a power type order,
and it is much larger than known lower estimates and even the
heuristic estimate. The same situation takes place for S and Q as
well.
Moreover, we do not know how to estimate from above the function
ρ∗(x ;A) better than ρ(x ;A) for A = P and A = S. In these cases
the distinction between current lower and upper bounds for ρ∗(xA) is
terrible.
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However, for A = Q our understanding of the behavior of ρ∗(xA) is
much better. The main result of the talk is the following theorem.

Theorem

We have
ρ∗(x ;Q) ≍ log x/ log log x (x ≥ 3).

Actually we can get the same order for ρ∗(x ;A) if A behaves like Q.
In particular, for any positive integer k ≥ 2 this holds for the set A of
the k-th powers free positive integers.
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Sometimes it happens that we can estimate nontrivially the function
ρ(x ;A) but can not do so for ρ∗(x ;A), or vice versa.

Let k ∈ N, k ≥ 2 and Qk be the set of positive integers representable
as

∑k
j=1 a

k
j , aj ∈ Z+. In particular, Q2 = Q. We know that

ρ(x ;Q) ≫ log x for x ≥ 2. The proof is based on local restrictions for
the set Q: the elements of Q must avoid a series of congruences
modulo small numbers. For k ≥ 3 there are not many local
restrictions for the set Qk , and the question whether Qk is a syndetic
is highly nontrivial. For k = 3 and k = 4 the negative answer was
given by L. Chidelli (2020). However, we do not know whether the
sets Qk are piecewise syndetic.
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Now we consider the set T of the values of the totient function φ. It
is very likely that for large x the number ρ(x ; T ) is much larger than
ρ∗(x ; T ). Consider the counting function

π(x ;A) = |{n ∈ A : n ≤ x}|.

Since for most x the number φ(n) is divisible by all small primes, we
can deduce that π(x ; T ) = o(x) as x → ∞. iThis implies that
ρ(x ; T ) → ∞ as x → ∞. Hence, T is not a syndetic set.

K. Ford (1998) determined the exact order of π(x ; T ).
The magnitude ρ∗(x ; T ) is evaluated for large x under a very
plausible conjecture.
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Conjecture

(Dickson’s conjecture) Let s be a positive integer and let F1, . . . ,Fs

be s linear polynomials with integral coefficients and positive linear
coefficient such that their product has no fixed prime divisor. Then
there exist infinitely many positive integers l such that
F1(l), . . . ,Fs(l) are all primes.

Assuming the validity of Dickson’s conjecture, J. – M. Deshouillers,
P. Eyyumni, and C. Gun (2021) actually proved that ρ∗(x ; T ) = 4 for
sufficiently large x .
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Let me observe that assuming the validity of Dickson’s conjecture
and using the results of H. L. Montgomery and R. C. Vaughan one
can prove that ρ(x ;P) = xo(1) as x → ∞. Probably, the last
estimate can be sharpen to ρ(x ;P) = (log x)O(1).

However, we do not know whether there are infinitely many positive
integers x such that ρ∗(x ;P) < ρ(x ;P) or whether there are
infinitely many positive integers x such that ρ∗(x ;P) = ρ(x ;P). We
can prove that there are infinitely many positive integers x such that
ρ∗(x ;Q) < ρ(x ;Q).

THANK YOU!
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