## **Inverse Bridge Matching Distillation**

# Nikita Gushchin<sup>14</sup> David Li<sup>15\*</sup> Daniil Selikhanovych<sup>123\*</sup> Evgeny Burnaev<sup>14</sup> Dmitry Baranchuk<sup>2</sup> Alexander Korotin<sup>14</sup>

Skolkovo Institute of Science and Technology

<sup>2</sup> Yandex Research <sup>3</sup> HSE University

Artificial Intelligence Research Institute

Moscow Institute of Physics and Technology Equal contribution





International Conference On Machine Learning

## Paired image-to-image translation problem

**Paired image-to-image translation problem:** given a paired dataset of corrupted/clean images — or of two distinct domains — the task is to construct a model that learns to transform inputs into aligned target images.



**The question:** Diffusion models are known for their superior image generation quality. Can we adapt them to solve image-to-image translation tasks?

## Recap on diffusion models

**General idea of diffusion models:** Define a forward SDE that gradually transforms data into noise. Then, learn the reverse process by estimating the score function using score matching.



**The original question remains:** Diffusion models are known for their superior image generation quality. Can we adapt them to image-to-image translation tasks?

## What exactly do we want to achieve?

Motivation for diffusion bridge models: Build a diffusion process that directly transforms the input distribution  $p(x_T)$  into the target distribution  $p(x_0)$ .



Generation process using the constructed diffusion:

$$dx_t = f_{\text{Bridge}}(x_t, t)dt + g(t)d\bar{w}_t, x_T \sim p(x_T).$$

Unlike standard diffusion which starts from noise, here we start from structured input.

## Diffusion bridge

Let Q be a forward diffusion process (the "Prior") over [0, T] in  $\mathbb{R}^{D}$ :

Prior Q:  $dx_t = f(x_t, t)dt + g(t)dw_t$ ,

Where  $f(x_t, t) : \mathbb{R}^D \times [0, T] \to \mathbb{R}^D$  is a drift function and  $g(t) : [0, T] \to \mathbb{R}^D$  is a noise schedule.

Diffusion bridge is the conditional stochastic process  $Q_{|x_0,x_T}$ , where the trajectory is fixed at given  $x_0$  and  $x_T$ . It can be derived using the Doob h-transform [2, 3].

Example. For  $f(x_t, t) = 0$  and  $g(t) = \sigma$  diffusion bridge is the interpolation combined with noising and denoising:

Diffusion Bridge  $Q_{|x_0,x_T|}$ 

 $x_0$ 





## Bridge Matching: General Approach to Build Diffusion Bridge Models

1. Build a mixture of diffusion bridges using paired data coupling  $p(x_0, x_T)$  and a diffusion bridge  $Q_{|x_0, x_T}$ :

$$= p(x_0, x_T)$$

2. Learn a diffusion that approximates this mixture by solving the Bridge Matching [1, 4, 5, 6] problem — a generalization of Flow Matching.

$$dx_t = \{f(x_t, t) - g^2(t)v^*(x_t, t)\}dt + g(t)d\bar{w}_t, x_T \sim p(x_T)\}$$

where the drift  $v^*(x_t, t)$  is learned via solving Bridge Matching problem:

$$\min_{\phi} \mathbb{E}_{x_0,t,x_t} \left[ \| v_{\phi}(x_t,t) - \nabla_{x_t} \log q(x_t|x_0) \|_{\bullet}^2 \right],$$
 Known analytically for simple Q, such as linear SDEs.  
  $(x_0,x_T) \sim p(x_0,x_T), \ t \sim U([0,T]), \ x_t \sim q(x_t|x_0,x_T).$ 

## Diffusion bridge models

The diffusion bridge model is provided by the reverse-time SDE:

 $dx_t = \{f(x_t, t) - g^2(t)v^*(x_t, t)\}dt + g(t)d\bar{w}_t, x_T \sim p(x_T)$ 

The drift  $v^*(x_t, t)$  is learned via solving Bridge Matching problem:

$$\min_{\phi} \mathbb{E}_{x_0,t,x_t} \left[ \| v_{\phi}(x_t,t) - \nabla_{x_t} \log q(x_t|x_0) \|^2 \right], \quad \text{Known analytically for simple} \\ (x_0,x_T) \sim p(x_0,x_T), \ t \sim U([0,T]), \ x_t \sim q(x_t|x_0,x_T). \quad \text{Known analytically for simple} \\ \end{bmatrix}$$

After learning one can simulate the reverse time SDE using numerical solvers (10-1000 steps) to transform input (corrupted) image to the clean image:



#### Generation process

## Conditional and unconditional diffusion bridge models [7].

There are two types of diffusion bridge models (DBMs) which differ only by introducing additional conditioning on the final point  $x_T$ .

#### **Unconditional DBMs:**

The goal is to learn SDE drift  $v(x_t, t)$  by optimizing:

$$\begin{split} \min_{\phi} \mathbb{E}_{x_0,t,x_t} \big[ \| v_{\phi}(x_t,t) - \nabla_{x_t} \log q(x_t|x_0) \|^2 \big], \\ (x_0,x_T) &\sim p(x_0,x_T), \ t \sim U([0,T]), \ x_t \sim q(x_t|x_0,x_T). \end{split}$$

Examples: <u>I2SB</u> [1], <u>Stochastic Interpolants</u> [8].

#### **Conditional DBMs:**

The goal is to learn SDE drift  $v(x_t, t, x_T)$  by optimizing:  $\min_{\phi} \mathbb{E}_{x_0, t, x_t, x_T} \left[ \| v_{\phi}(x_t, t, x_T) - \nabla_{x_t} \log q(x_t | x_0) \|^2 \right]$   $(x_0, x_T) \sim p(x_0, x_T), \text{ and } x_t \sim q(x_t | x_0, x_T).$ 

#### Examples: DDBM [2], GOUB [9], ResShift [10].

**Theoretical aspects:** Conditional DBMs can be represented as classical diffusion models with a modified forward process. This allows adaptation of acceleration techniques developed for classical DMs. In contrast, unconditional DBMs cannot be expressed this way.

## Bridge Matching in practice and $x_0$ reparametrization

In practice, the Prior process Q is chosen such, that both transitional density  $q(x_t|x_0) = \mathcal{N}(x_t|\alpha_t x_0, \sigma^2 I)$ and bridge density  $q(x_t|x_0, x_T)$  are Gaussian. In this case  $\nabla_{x_t} \log q(x_t|x_0) = -\frac{x_t - \alpha_t x_0}{\sigma^2}$ 

Hence, one can use change of variables:  $v(x_t, t, x_T) = -\frac{x_t - \alpha_t \hat{x}_0(x_t, t, x_T)}{\sigma_t^2}$ 

Original problem:

Reparameterized problem:

$$\min_{\phi} \mathbb{E}_{x_0, t, x_t, x_T} \left[ \| v_{\phi}(x_t, t, x_T) - \nabla_{x_t} \log q(x_t | x_0) \|^2 \right]$$
$$(x_0, x_T) \sim n(x_0, x_T), \text{ and } x_t \sim q(x_t | x_0, x_T).$$

$$\min_{\phi} \mathbb{E}_{x_0, t, x_t, \boldsymbol{x_T}} \left[ \lambda(t) \| \widehat{x}_0^{\phi}(x_t, t, \boldsymbol{x_T}) - x_0 \|^2 \right], \quad (7)$$
$$(x_0, x_T) \sim p(x_0, x_T), \ t \sim U([0, T]), \ x_t \sim q(x_t | x_0, x_T),$$

#### Learning pipeline for the reparameterized Diffusion Bridge model (Bridge Matching model)



## Distillation of diffusion bridge models

**Long inference problem:** Diffusion bridge models produce high-quality translations, but — like classical diffusion models — they require 10 to 1000 of steps to simulate the reverse SDE.



The goal of distillation is to train a new 1-step or few-step generator that mimics the full diffusion bridge model.

## Inverse Bridge Matching Distillation [11]

The core idea is to learn a one-step generator  $G_{\theta}$  of clean images from corrupted such that Diffusion Bridge Model for generated data coupling  $p_{\theta}(x_0, x_T)$  matches the teacher Diffusion Bridge Model learned on the ground-truth data:

1. We parameterize stochastic map  $p_{\theta}(x_0|x_T)$  by the one step stochastic generator  $G_{\theta}(x_T, z)$ ,

$$z \sim N(0, I), x_T \sim p(x_T).$$



2. We learn the generator  $G_{\theta}(x_T, z)$  in such way, that diffusion model for the generated data  $x_0^{\theta}$  matches the pre-trained teacher data  $x_0^*$ .

$$\begin{split} \min_{\theta} \mathbb{E}_{x_t, t, x_0, x_T} \left[ \lambda(t) | \widehat{x}_0^*(x_t, t, x_T) - \widehat{x}_0^\theta(x_t, t, x_T) | |^2 \right], \\ \text{s.t.} \quad \widehat{x}_0^\theta = \operatorname*{arg\,min}_{\widehat{x}_0} \mathbb{E}_{x_t, t, x_0, x_T} \left[ \lambda(t) | | \widehat{x}_0(x_t, t, x_T) - x_0 | |^2 \right], \\ \underbrace{(x_0, x_T) \sim p_\theta(x_0, x_T)}_{\text{Data from } G_\theta}, t \sim U([0, T]), x_t \sim q(x_t | x_0, x_T), \end{split}$$

Teacher model

Model for Ga

Intractable gradients problem since the objective includes term with argminimum.

### Tractable objective for the inverse bridge matching problem.

Solution: we show that the original constrained problem can be reformulated in the unconstrained one and used in practise:

$$\begin{split} \min_{\theta} \left[ \mathbb{E}_{x_t,t,x_0,x_T} \left[ \lambda(t) \| \widehat{x}_0^*(x_t,t,x_T) - x_0 \|^2 \right] - & \text{Teacher mode} \\ \min_{\phi} \mathbb{E}_{x_t,t,x_0,x_T} \left[ \lambda(t) \| \widehat{x}_0^\phi(x_t,t,x_T) - x_0 \|^2 \right] \right], & \text{Model for } G\theta \\ (x_0,x_T) \sim & p_{\theta}(x_0,x_T), \ t \sim U([0,T]), \ x_t \sim q(x_t | x_0, x_T). \\ & \text{Data from } G_{\theta} \end{split}$$

#### Learning pipeline for the inverse bridge matching distillation



## The results of Inverse Bridge Matching Distillation (IBMD, ours).







IBMD (Ours)



Teacher





Unconditional model, 1-step IBMD (ours) beats **1000-step** teacher model.

Unconditional model, 1-step IBMD (ours) accelerate inference up to **100 times.** 

Conditional model, IBMD (ours) accelerate inference up to **5 times.** 

Conditional model, IBMD (ours) accelerate inference in **50 times.**  We show the applicability of our IBMD distillation method in both *unconditional* and *conditional* settings.

We evaluate IBMD on diverse tasks, including super-resolution, JPEG restoration, inpaiting, and sketch-to-image translation.

In all settings, IBMD achieves significant inference speedups (up to 100×) and sometimes improves generation quality over the teacher.

## IBMD (ours) outperforms previous approached for DBMs acceleration

| 4× super-resolution (bicubic)                                                                                                                                                                   |       | magel | Net (256                                                                                                                                                                  | × 256)     | 4× super-resolution (pool)             |       | ImageNet ( $256 \times 256$ ) |       |            |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------|-------|-------------------------------|-------|------------|--|
|                                                                                                                                                                                                 | N     | IFE   | $\mathbf{FID}\downarrow$                                                                                                                                                  | CA ↑       |                                        | N     | FE ]                          | FID ↓ | CA ↑       |  |
| DDRM (Kawar et al., 2022)                                                                                                                                                                       |       | 20    | 21.3                                                                                                                                                                      | 63.2       | DDRM (Kawar et al., 2022)              | 2     | 20                            | 14.8  | 64.6       |  |
| DDNM (Wang et al., 2023)                                                                                                                                                                        |       | 100   | 13.6                                                                                                                                                                      | 65.5       | DDNM (Wang et al., 2023)               |       | 00                            | 9.9   | 67.1       |  |
| ПGDM (Song et al., 2023)                                                                                                                                                                        | 1     | 100   | 3.6                                                                                                                                                                       | 72.1       | ПGDM (Song et al., 2023)               | 1     | 00                            | 3.8   | 72.3       |  |
| ADM (Dhariwal & Nichol, 20                                                                                                                                                                      | 21) 1 | 000   | 14.8                                                                                                                                                                      | 66.7       | ADM (Dhariwal & Nichol, 2021           | l) 10 | 000                           | 3.1   | 73.4       |  |
| CDSB (Shi et al., 2022)                                                                                                                                                                         |       | 50    | 13.6                                                                                                                                                                      | 61.0       | CDSB (Shi et al., 2022)                | 5     | 50                            | 13.0  | 61.3       |  |
| I <sup>2</sup> SB (Liu et al., 2023a)                                                                                                                                                           | 1     | 000   | 2.8                                                                                                                                                                       | 70.7       | I <sup>2</sup> SB (Liu et al., 2023a)  | 10    | 000                           | 2.7   | 71.0       |  |
| IBMD-I <sup>2</sup> SB ( <b>Ours</b> )                                                                                                                                                          |       | 1     | 2.5                                                                                                                                                                       | 72.4       | IBMD-I <sup>2</sup> SB ( <b>Ours</b> ) |       | 1                             | 2.6   | 72.7       |  |
| Table 2. Results on the image JPEG restoration task with QF=5.Baseline results are taken from I <sup>2</sup> SB (Liu et al., 2023a). <b>JPEG restoration, QF</b> =5.ImageNet (256 $\times$ 256) |       |       | Table 4. Results on the image JPEO restoration task with QF=10.Baseline results are taken from $I^2SB$ (Liu et al., 2023a).JPEG restoration, QF= 10. ImageNet (256 × 256) |            |                                        |       |                               |       |            |  |
|                                                                                                                                                                                                 | NFE   | FID   | D↓ CA                                                                                                                                                                     | <b>\</b> ↑ |                                        | NFE   | FID                           | ↓ CA  | <b>\</b> \ |  |
| DDRM (Kawar et al., 2022)                                                                                                                                                                       | 20    | 28.   | .2 53                                                                                                                                                                     | .9         | DDRM (Kawar et al., 2022)              | 20    | 16.7                          | 7 64  | 1.7        |  |
| ПGDM (Song et al., 2023)                                                                                                                                                                        | 100   | 8.6   | 6 64                                                                                                                                                                      | .1         | ПGDM (Song et al., 2023)               | 100   | 6.0                           | 71    | .0         |  |
| Palette (Saharia et al., 2022)                                                                                                                                                                  | 1000  | 8.3   | 3 64                                                                                                                                                                      | .2         | Palette (Saharia et al., 2022)         | 1000  | 5.4                           | 70    | ).7        |  |
| CDSB (Shi et al., 2022)                                                                                                                                                                         | 50    | 38.   | .7 45                                                                                                                                                                     | 5.7        | CDSB (Shi et al., 2022)                | 50    | 18.6                          | 6 60  | 0.0        |  |
| I <sup>2</sup> SB (Liu et al., 2023a)                                                                                                                                                           | 1000  | 4.0   | 6 67                                                                                                                                                                      | .9         | I <sup>2</sup> SB (Liu et al., 2023a)  | 1000  | 3.6                           | 72    | 2.1        |  |
| I <sup>2</sup> SB (Liu et al., 2023a)                                                                                                                                                           | 100   | 5.4   | 4 67                                                                                                                                                                      | .5         | I <sup>2</sup> SB (Liu et al., 2023a)  | 100   | 4.4                           | 71    | .6         |  |
| IBMD-I <sup>2</sup> SB (Ours)                                                                                                                                                                   | 1     | 5.3   | 3 67                                                                                                                                                                      | .2         | IBMD-I <sup>2</sup> SB (Ours)          | 1     | 3.8                           | 72    | 2.4        |  |

| Innainting Contor $(128 \times 128)$   | ImageNet ( $256 \times 256$ ) |       |                       |  |  |
|----------------------------------------|-------------------------------|-------|-----------------------|--|--|
| Inpainting, Center (128 × 128)         | NFE                           | FID ↓ | $\mathbf{CA}\uparrow$ |  |  |
| DDRM (Kawar et al., 2022)              | 20                            | 24.4  | 62.1                  |  |  |
| ПGDM (Song et al., 2023)               | 100                           | 7.3   | 72.6                  |  |  |
| DDNM (Wang et al., 2022)               | 100                           | 15.1  | 55.9                  |  |  |
| Palette (Saharia et al., 2022)         | 1000                          | 6.1   | 63.0                  |  |  |
| I <sup>2</sup> SB (Liu et al., 2023a)  | 10                            | 5.4   | 65.97                 |  |  |
| DBIM (Zheng et al., 2024)              | 50                            | 3.92  | 72.4                  |  |  |
| DBIM (Zheng et al., 2024)              | 100                           | 3.88  | 72.6                  |  |  |
| CBD (He et al., 2024)                  |                               | 5.34  | 69.6                  |  |  |
| CBT (He et al., 2024)                  | 4                             | 4.77  | 70.3                  |  |  |
| IBMD-I <sup>2</sup> SB ( <b>Ours</b> ) | 4                             | 5.1   | 70.3                  |  |  |
| IBMD-DDBM (Ours)                       |                               | 4.03  | 72.2                  |  |  |
| CBD (He et al., 2024)                  |                               | 5.65  | 69.6                  |  |  |
| CBT (He et al., 2024)                  | 2                             | 5.34  | 69.8                  |  |  |
| IBMD-I <sup>2</sup> SB ( <b>Ours</b> ) |                               | 5.3   | 65.7                  |  |  |
| IBMD-DDBM (Ours)                       |                               | 4.23  | 72.3                  |  |  |
| IBMD-I <sup>2</sup> SB ( <b>Ours</b> ) | 1                             | 6.7   | 65.0                  |  |  |
| IBMD-DDBM (Ours)                       | 1                             | 5.87  | 70.6                  |  |  |

Our method (IBMD) outperforms previous acceleration methods based on consistency distillation (CBD/CBT) and more advanced sampling techniques (DBIM).

## References

- 1. Liu, Guan-Horng, et al. "I \$^ 2\$ SB: Image-to-Image Schrödinger Bridge." *International Conference on Machine Learning*. PMLR, 2023.
- 2. Zhou, Linqi, et al. "Denoising Diffusion Bridge Models." *The Twelfth International Conference on Learning Representations*.
- 3. Doob, Joseph L., and J. I. Doob. *Classical potential theory and its probabilistic counterpart*. Vol. 262. New York: Springer, 1984.
- 4. Peluchetti, Stefano. "Non-denoising forward-time diffusions." *arXiv preprint arXiv:2312.14589* (2023).
- 5. Liu, X., Gong, C., & Liu, Q. (2022). Flow straight and fast: Learning to generate and transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*.
- 6. Shi, Yuyang, et al. "Diffusion schrödinger bridge matching." Advances in Neural Information Processing Systems 36 (2023): 62183-62223.
- 7. De Bortoli, Valentin, et al. "Augmented bridge matching." *arXiv preprint arXiv:2311.06978* (2023).
- 8. Albergo, Michael Samuel, et al. "Stochastic Interpolants with Data-Dependent Couplings." International Conference on Machine Learning. PMLR, 2024.
- 9. Yue, Conghan, et al. "Image Restoration Through Generalized Ornstein-Uhlenbeck Bridge." *Forty-first International Conference on Machine Learning.*
- 10. Yue, Z., Wang, J., & Loy, C. C. (2023). Resshift: Efficient diffusion model for image super-resolution by residual shifting. *Advances in Neural Information Processing Systems*, *36*, 13294-13307.
- 11. Gushchin, Nikita, et al. "Inverse Bridge Matching Distillation." *arXiv preprint arXiv:2502.01362* (2025).