Separation Logic
Verifying concurrent programs, compositionally

NRU HSE

Author: Pavel Sokolov
June 25, 2025



The language

Definitions adapted from [1].
(aexpr) = (int)

| (ident)

| (aexpr) + (aexpr)

| (aexpr) - (aexpr)

(bexpr) = (aexpr) ‘<= (aexpr)

(cmd) ::= ‘skip’
| (ident) *:=" (aexpr)
| (emd) *;’ (cmd)
| ‘if’ (bexpr) ‘then’ (cmd) ‘else’ (cmd) ‘end’
| ‘while’ (bexpr) ‘do’ (cmd) ‘end’



Hoare Triples

m Express how commands change the program state.

m Take the form {P}c{Q}, where cis a command, and
P, Q are assertions about the program state before
and after execution of ¢, correspondingly.

Examples of valid Hoare triples:
m{X=m}X:=X+1{X=m+1}
B {X=2AX=3}X:=5{X=0}

|
{True}
if X <=0
then Y := 2
else Y :=X + 1
end

x<vy)



PP (Ple(a) Q@-aq @ SKP
(Pic{Q) {P}skip{P}
ASGN SEa

_ {Prci{@}  {Qle{R}
{P[X — a]} X:=a{P} {P}cy; c2{R}

|
{FP A b} {Q} {P A—=b}c{Q}
{P}if bthen ¢ else C; end{ Q}

WHILE
{P A b}c{P}

{P}while bdo cend{P A —b}




(expr) ::= (aexpr)
| (bexpr)
| “[{expr)T’

(emd) = (ident) *:=" (expr)
| (ident) “:="‘cons’ ‘C ((expr),)* )’
| ‘C{expr)]’ ‘:=" (expr)

; ‘dispose’ (expr)



Program example

In-place list reversal:

j = nil;

while i != nil do
k :=[1 + 1];
[i + 1] := j;
j =1,
i:=k

end

How to prove properties about it?



Enter Separation Logic

Definitions adapted from [2].
(assert) ::= (bexpr)

| (assert) N (assert)

| - (assert)

| emp

| (expr) — (expr)

| (assert) * (assert)

| (assert) — (assert)

Note that assertion now depends both on the local store
and on the heap!



Meaning of operators

m emp asserts that the heap is empty.

m e — € asserts that heap contains a single cell with
address e and value €.

m px p’ asserts that heap can be split into two parts
where p and p’ hold, respectively.

m p — p’ asserts that, if the current heap is extended
with a disjoint part where p holds, then p’ would hold
for the new state.






Separation Logic Rules

FRAM/ED c{Q} MuT
{P *{Fgcio <R} {(e = —)Me]:=€'{e — €}

DISPOSE
{e — —} disposee {emp}

And more...



One more example

{emp}
x := cons(a, a) ;

{xl1->a) *« x+1[|>a}
y := cons(b, b) ;

{xl1->a) *« x+1[|>-)

x (y [-> D) * (y +1 [-> =)}
[x + 1] =y - x ;
{xl>a*« x+1]->y-x

* (y |=>b) *x (y +1 |->-)}
[y + 1] :=x -y ;

{xl>a *« x+1]|>y-x)
¥ (y I->b) * (y+1 |->x-yv3}



Concurrent Separation Logic

What about programs executed in parallel?

x := cons(a, b); get(y);
ut (x) ; use(y);
P ’ dispose(y);

Two more rules: PARALLEL COMPOSITION and CRITICAL
REGION [3].



CSL Rules

PARALLEL COMPOSITION
{Pi}ci{Qy} {Pn}cn{Qn}
{Pix...xPy}(c] ... |lcn){Qq *...%x Qp}

CRITICAL REGION
{(P*R,) ANb}c{Qx R/}

{P}withrwhenbdoc{Q}




Applications

m Iris framework for Rocq prover;
m GhostCell formal verification for Rust;

m Verification of interrupts and preemptive threads in
OS kernels, GC allocators,...;



Bibliography

@ Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco
Gaboardi, Michael Greenberg, Catalin Hritcu, Vilhelm Sjéberg, Andrew Tolmach,
and Brent Yorgey.

Programming Language Foundations, volume 2 of Software Foundations.
Electronic textbook, 2024.
Version 6.7, http://softwarefoundations.cis.upenn.edu.

@ John C. Reynolds.
Separation logic: A logic for shared mutable data structures.
In Proceedings of the 17th Annual IEEE Symposium on Logic in Computer
Science, LICS '02, page 55-74, USA, 2002. IEEE Computer Society.

@ Pawet Sobocinski.
Report on lics 2016.
ACM SIGLOG News, 4(1):38-39, February 2017.


http://softwarefoundations.cis.upenn.edu

