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Introduction

History
The study of combinatorics on words begins in 1906 with the works of
the A. Thue, continued by M. Morse and G. Hedlund in 1940. In his
work A. Thue established the next question: is there an infinite word
over a finite alphabet in which there are no words consisting of two
consecutive occurrences of the same factor ? Such words are called
cubes.
For example, this would be the word ababab.



The factor complexity function (Morse, Hedlund, 1940)

The factor complexity function of a word w is the function p(n) that
counts the number of distinct factors of length n from that word.

Example
Let Σ3 = {0, 1, 2} and given the word

w = 012212111

Factors of length 2: 02, 12, 22, 21, 11.
Thus, p(2) = 5

1 pw(n) is a non-decreasing function;

2 1 ≤ pw(n) ≤ qn;

3 ∃C : pw(n) ≤ C, when w is ultimately periodic 1.

1A sequence (ak) satisfying the condition ak+r = ak for all sufficiently large
values of k and some r is called ultimately periodic with period r.



Theorem (Morse and Hedlund)

Theorem (Morse and Hedlund)
Let w be an infinite word. If there exists n such that pw(n) ≤ n, then w
is eventually periodic.

This leads to two natural questions:

1 Given a word w — what is its complexity function?

2 Given a function f(n) — does there exist a word with this
complexity?



Sturmian words

Infinite word w = w0w1w2 · · · over the alphabet {0, 1} is called
Sturmian if its factor complexity pw(n) equals to n + 1 for all n.

It is a non-periodically balanced word, i.e. for each value of n, the
number of ones in the factors of the word w of length n takes no more
than two values - in fact, exactly two adjacent values.

Let u and v be two factors of the word w of the same length. Let |u|1
and |v|1 be the number of ones in the factors u and v, respectively. Then

||u|1 − |v|1| ≤ 1.

Sturmian Word is a mechanical word: an infinite word, each symbol of
which is given by one of two equalities:
wi = ⌊α(i + 1) + β⌋ − ⌊αi + β⌋ , or wi = ⌈α(i + 1) + β⌉ − ⌈αi + β⌉
where α ∈ (0, 1) is a slope of Sturmian word, and β ∈ [0, 1).



Example
The Fibonacci word is an example of a Sturmian word.

Let ϕ(0) = 0, ϕ(1) = 01. Now ϕ(n) = ϕ(n − 1)ϕ(n − 2)

0 −→ 01 −→ 010 −→ 01001 −→ 01001010 −→ 0100101001001 −→ · · ·

The start of the cutting sequence2 shown here illustrates the start of
the word w = 0100101001:

Characterization by a cutting sequence with a line of slope α = 1/φ
where φ is the golden ratio.

2A cutting sequence is a sequence of symbols whose elements correspond to the
individual grid lines crossed as a curve crosses a square grid.



The arithmetical complexity of infinite words
The concept of infinite word arithmetical complexity was introduced in:

Avgustinovich S. V. , Fon-Der-Flaass D. G. , Frid A. E.. Arithmetical
complexity of infnite words. Proc. Words, Languages and
Combinatorics III, 2000. Singapore: World Scientifc, 2003. P. 51-62.

Definition
An arithmetical factor of length n an infinite word w is a finite word of
the form

wkwk+dwk+2d · · · wk+nd

with common difference d and starting position k. and denote it by wk
d

Definition
Arithmetical closure of infinite word w is the set of all arithmetical
factors:

Aw = {wkwk+dwk+2d · · · wk+(n−1)d|k ≥ 0, d > 0}.



Other complexity functions

1 Lie complexity

2 Abelian complexity

3 k-Abelian complexity

4 arithmetical complexity

5 maximal pattern complexity

6 cyclic complexity

7 binomial complexity

8 window complexity,

9 periodicity complexity,

10 palindrome complexity



Abelian complexity (G. Richomme, K. Saari, and L. Q.
Zamboni)

Let u be a finite word over an alphabet Σ, and let a ∈ Σ, then |u|a
denotes the number of occurrences of the letter a in the word u.

Two finite words u and v are called abelian equivalent ( u ∼ab v) if for
every letter a ∈ Σ we have:

|u|a = |v|a.

In other words, u and v are permutations of the same multiset of
symbols.

Parikh vector of a word v over the alphabet Σ = {a1, . . . , ak} is the
vector:

PV(v) = (|v|a1 , . . . , |v|ak
) .

Clearly, two words are abelian equivalent if and only if they have the
same Parikh vector.



Abelian complexity

The abelian complexity of a word w is defined as a function aw(n),
which counts the number of distinct abelian equivalence classes of
factors of length n occurring in w.

Lemma
An infinite word w is ultimately periodic if and only if there exists n
such that

aw(n) = 1.

Therefore, if a word is ultimately periodic, its abelian complexity is
bounded.

Sturmian words are aperiodic and satisfy: aw(n) = 2 for all n, and
moreover, this property characterizes them:

Theorem 2. Let w be an aperiodic infinite word. Then

aw(n) = 2 for all n ≥ 1 ⇐⇒ w is Sturmian.



Examples of apllications of combinatorics on words

Quasicrystals: algebraic, combinatorial and geometrical aspects Edita
Pelantová , Zuzana Masáková

The paper presents mathematical models of quasicrystals with
particular attention given to cut-and-project sets. There exists a general
family of sets that are known to have quasicrystalline properties: the
so-called cut and project sets, here abreviated to CP sets. For the
description of their properties we use the methods of combinatorics on
words. The construction of a one-dimensional set of CP is illustrated:



Phylogenetic analysis of DNA sequences based on k-word
and rough set theory (Chun Li ,Yan Yanga, Meiduo J ...)

Most methods for constructing phylogenetic trees require prior
sequence alignment because:

• It allows for the comparison of homologous regions (sequences
inherited from a common ancestor).

• It enables the calculation of evolutionary distances (e.g., the
number of mutations between sequences).

However, alignment has significant limitations:

• Computational complexity

• Ambiguity in alignment criteria

• Genomic rearrangements

• Differences in sequence lengths



Phylogenetic analysis of DNA sequences based on k-word
and rough set theory (Chun Li ,Yan Yanga, Meiduo J ...)

The phylogenetic tree of 19Hantaviruses.

How can biological sequences be characterized and compared while
avoiding multiple alignment?

Some methods shift the focus from analyzing individual nucleotides or
amino acids to studying sequence composition. In these approaches,
each sequence is represented as a vector whose components are derived
from k-words (substrings of length k)



Complete word-based vector

Let S be a binary (0, 1)-sequence of length m. The count of a word w of
length k (called a k-word) in S, denoted by c(w), is the number of
occurrences of w in the sequence S.

Since S contains m − k + 1 overlapping k-words, the frequency of
occurrence of w in S is defined as:

f(w) = c(w)
m − k + 1 .

Once the frequencies of all n = 2k possible k-words (or k-mers) are
known, we can construct the frequency vector:

Fk = (f(wk,1), f(wk,2), . . . , f(wk,n)) .



If some frequencies are equal, the corresponding k-words are sorted in
lexicographic order. Therefore, in the sorted frequency vector Fs, the
following relations hold:

f(wk,i1) ≤ f(wk,i2) ≤ · · · ≤ f(wk,in).

Thus, each frequency f(w) is assigned a unique position in the sorted
vector Fs, denoted as g(w). By combining this positional information
with the frequency itself, we form the vector:

VF P =
(
g(wk,1) · ef(wk,1), g(wk,2) · ef(wk,2), . . . , g(wk,n) · ef(wk,n)

)
.

S = 10110110111000000111111001001011011001101111110001000000110101010111110110001011011010100

and let k = 3. Then there are 23 = 8 possible 3-words in total:

000, 001, 010, 011, 100, 101, 110, 111.



the frequency vector:

Fk = (f(000), f(001), f(010), f(011), f(100), f(101), f(110), f(111)) =

= (0.1250, 0.0795, 0.1136, 0.1364, 0.0909, 0.1705, 0.1364, 0.1477) .

Sorting the entries in ascending order gives the sorted frequency vector:

Fs = (0.0795, 0.0909, 0.1136, 0.1250, 0.1364, 0.1364, 0.1477, 0.1705) .

Therefore, the positional ranks (lex order for ties) are:

(g(000), g(001), g(010), g(011), g(100), g(101), g(110), g(111)) =

= (4, 1, 3, 5, 2, 8, 6, 7).

Thus, combining positional and frequency information, we get:

VF P = (4.5326, 1.0828, 3.3610, 5.7305, 2.1903, 9.4867, 6.8766, 8.1144) .



DNA bases — A, G, C, and T — can be classified according to various
properties:

• By chemical structure: purines R = {A, G} and pyrimidines
Y = {C, T};

• By functional group: amino group M = {A, C}, keto group
K = {G, T};

• By the number of hydrogen bonds: weak W = {A, T}, strong
S = {G, C}.

Assign value 1 to bases from the classes R, M , and W , and value 0 to
bases from Y , K, and S, respectively. Thus, a primary DNA sequence is
transformed into three binary (0, 1)-sequences:

• (R, Y )-characteristic,

• (M, K)-characteristic,

• (W, S)-characteristic.



For each of these, we compute a frequency-position vector:

V
(1)

F P , V
(2)

F P , V
(3)

F P ,

and the final combined vector:

v =
(
V

(1)
F P , V

(2)
F P , V

(3)
F P

)
.
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• Goal: Extract more information from biological sequences.

• Approach: Uses three binary representations of a DNA sequence,
constructing a full feature vector of dimension 3 × 2k for any given
k.

• Feature selection: Since not all k-mers contribute equally to
evolutionary distance, the most informative k-mers (carrying
maximal evolutionary signal) are selected.

• Dimensionality reduction: A compact feature vector is built
exclusively from these k-mers, drastically reducing dimensionality
while preserving sequence information.
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Feature selection scheme based on rough set theory

Rough Set Theory (RST), proposed by Pawlak in the 1980s, is an
effective mathematical tool for studying intelligent systems described
by imprecise, uncertain or vague information. Currently, rough set
theory is actively used for feature reduction and attribute selection.



An information system is defined as a quadruple S = ⟨U, A, V, f⟩,
where:

• U = {x1, x2, . . . , xn} is a finite non-empty set of objects (universe);

• A is a set of attributes that describe the objects;

• V is the domain of attribute values;

• f is an information function such that
∀a ∈ A, ∀x ∈ U : f(x, a) ∈ V .

If the set of attributes A is divided into condition attributes C and
decision attributes D, then the system S = ⟨U, C ∪ D, V, f⟩ is called a
decision system (or a decision table).



Let S = ⟨U, C ∪ D, V, f⟩ be a decision system. For an attribute ck ∈ C
and objects x, y ∈ U , we say that they are equivalent with respect to ck

if
f(x, ck) = f(y, ck).

The equivalence class of x with respect to ck is denoted by:

E[x]ck
= {y ∈ U | f(y, ck) = f(x, ck)}.

If x and y are equivalent with respect to ck but f(x, D) = f(y, D), they
are called consistent with respect to ck; otherwise, they are inconsistent
with respect to ck.

A set P ⊆ U is called consistent with respect to ck if any two objects
x, y ∈ P are consistent with respect to ck.

A set P ⊆ U is called inconsistent with respect to ck if:

• all objects x, y ∈ P are equivalent with respect to ck,

• but there exist x0, y0 ∈ P that are inconsistent with respect to ck.

A decision system S is said to be consistent with respect to ck if every
equivalence class with respect to ck is consistent.



Let S = ⟨U, C ∪ D, V, f⟩ be a system consistent with respect to ck, and
let x, y ∈ U such that f(x, D) ̸= f(y, D) (then necessarily
f(x, ck) ̸= f(y, ck)).
Then there exists an inflection point between x and y, whose value is
defined as:

fIP(x, y, ck) = 1
2 [f(x, ck) + f(y, ck)]

The corresponding inflection ratio is given by:

RIP(x, y, ck) = |f(x, ck) − f(y, ck)|
fIP(x, y, ck) × 100%

Now suppose that a certain order is defined on U = {x1, x2, . . . , xn}
and the objects are sorted:

x1 ≤ x2 ≤ · · · ≤ xn.

Then it is possible to find the inflection points between any adjacent
objects and compute the corresponding RIP. The smallest among them
is called the minimal inflection ratio with respect to ck and is denoted
by:

Rmi(ck)



Algorithm for computing Rmi(ck):

Input: decision table S = ⟨U, C ∪ D, V, f⟩;
Output: Rmi(ck) for ck ∈ C

1 Sort the objects {x1, . . . , xn} in ascending order of f(xi, ck).
Rename them as {y1, . . . , yn} such that f(yi, ck) ≤ f(yi+1, ck).

2 Partition the set {y1, . . . , yn} into equivalence classes E1, . . . , Em

with respect to ck.

3 For each class Ei, if it is inconsistent, redefine the decision values
f(y, D) as the union of all decision labels in that class. After this,
the table becomes consistent with respect to ck.

4 In the resulting table, find all adjacent pairs (yj , yj+1) such that
f(yj , D) ̸= f(yj+1, D), compute RIP for them, and select the
minimum. This is Rmi(ck).

By repeating steps 1–4 for each attribute ck, one can compute Rmi(ck)
for all attributes.

Definition 8.
If SIG(ck, C, D) > 0, then the attribute ck is considered important.

The larger the value of SIG(ck, C, D), the greater the significance of the
attribute. In this paper, this criterion is used to evaluate the
importance of k-mers and — as will be shown later — enables the
selection of informative attributes and dimensionality reduction of the
feature vector for DNA sequences.



Definition
Let S = ⟨U, C ∪ D⟩ be a decision system. The significance of each
condition attribute ck ∈ C is defined as

SIG(ck, C, D) = Rmi(ck) − λ,

where λ ≥ 0 is an equilibrium constant.

Definition
Let S = ⟨U, C ∪ D⟩ be a decision system. If SIG(ck, C, D) > 0, the
condition attribute ck is said to be important.

The greater the value of SIG(ck, C, D), the more important the
attribute ck is. Therefore, in this work, we use the proposed function
SIG(ck, C, D) to evaluate the significance of the condition attribute ck.
By identifying important attributes, one can obtain a feature vector for
DNA sequences with significantly reduced dimensionality.



To estimate the evolutionary distance between two sequences i and j,
the following formula is used:

D(i, j) = 1
2 (1 − cos(vi, vj)) · d(vi, vj)

where:

• vi, vj are the feature vectors for sequences i and j,

• cos(vi, vj) is the cosine of the angle between the vectors,

• d(vi, vj) is the Euclidean distance between them.

Based on the resulting distance matrix, a phylogenetic tree is
constructed using the UPGMA method.
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Testing the Algorithm on Hantavirus Genomes

The training set consists of 19 hantavirus strains. Hantavirus (HV) is a
negative-sense RNA virus from the Bunyaviridae family. For a given
value of k, we construct a full vector of size 3 × 2k based on k-mers for
each of the 19 HV sequences, and then compute the minimal inflection
ratio and the corresponding significance of each k-mer.

It was found that for k = 11 and λ = 0.17%, all 19 HV strains can be
correctly classified. Moreover, the resulting phylogenetic tree aligns well
with the accepted taxonomy.

The total number of selected significant k-mers was 869, meaning that
out of 3 × 211 = 6144 possible components, 869 of the most informative
were selected. These selected k-mers were used to construct the feature
vector for each DNA sequence.
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