
Ibragimova Taisiya

Analysis and monitoring of
product upload dynamics on
the marketplace platform

Software project

1

About

This project develops a system
to collect, process, and analyze
large volumes of seller product-
upload events on the Ozon
marketplace

2

About

This project develops a system to collect, process, and analyze large volumes of seller
product-upload events on the Ozon marketplace

Focus areas

Development of architecture

Statistical metrics computation

Visualization

Automated alerting

Technologies

Clickhouse

Consul

Prometheus

Zookeeper Python Kafka

DockerGrafana

3

Problem statement

Ozon’s marketplace generates a high-velocity stream of product
load events from thousands of sellers.

Handling millions of small, frequent events per day

Ensuring data consistency and replication

Delivering real-time analytics and alerts

Key challenges

4

Tasks

Step 1. Draft requirements Step 3. Implement solution

Step 4. Test the system

Domain description, functional &
non-functional specs, constraints

• Implement database sharding locally (via
zookeeper)

• Deploy ClickHouse, Grafana, Prometheus (via
docker-compose)

• Create microservices that will simulate data
stream and compute metrics

• Connect & register microservices (via consul)

• Write simulation script

• Create leader election for microservices

• Develop ETL pipelines & pre-aggregations

• Build anomaly detection modules

Step 2. Compare alternatives

5

Limitations of PostgreSQL

Slow OLAP queries on growing
datasets

Vertical scaling limits

WAL/MVCC overhead under
heavy write load

6

Limitations of PostgreSQL

StorageScalability Transactions Maintenance

only vertical or
external sharding

(Citus/Postgres-XL)

single-node ACID;
no built-in 2PC
across cluster

row-oriented, sub-
optimal for
analytics.

long VACUUM,
index rebuilds on
TB-scale tables

WAL contention
and locking

delays

Write throughput

7

Functional Requirements

• Survive the ingestion of maximum 1000 rps

• Keep one year of history online

• Provide control-charts for upload latency, failure rate, and seller anomalies

• Trigger Prometheus alerts when specific metrics exceed the limit

The system has to:

8

Alternative approaches

Cassandra Apache Druid

A fault-tolerant, distributed analytics
engine built for fast, interactive queries

over large-scale time-series data.

A highly scalable database optimized for
fast writes, but less suitable for real-time

analytics due to eventual consistency.

9

Implementation

10

Architecture Overview

Unique identifier of the item

Event timestamp in nanoseconds

Type of event: "SAVE", "UPDATE", "ERROR"

Identifier for this upload attempt

Boolean flag

Source of the operation

If is_created=1, a ns ts when creation occurred; or 0

Production country code

JSON: info, company ID and list of media files

id

ts_ns

event

attempt_id

is_created

origin

up_ts

country

data

Synthetic data generation

11

PipelineArchitecture Overview

System running
via docker

12

PipelineArchitecture Overview

Orchestration of
microservice instances

13

Pipeline
14

Pipeline
15

Pipeline

JSON
events

Kafka

Materialized
views

SQL

SQL

Grafana

Prometheus

DockerConsul ZooKeper

16

Results & Testing

17

Vizualization
18

Vizualization
19

Alerts

Система алертинга
Как данные пишутся в prometheusFiring alert

Pending alert

Inactive alert

20

Tests

• 2 replicas (non-sharded)
• 8 vCPU, 48 GB RAM, 700 GB SSD
• 1,000 RPS peak

• 2 shards × 2 replicas
• Load balanced across shards
• No increase in latency

• Linear scalability by adding shards;
• Ready to handle higher loads

Ozon Production Cluster Local Sharded Cluster

Reference: Test setup:

21

Issues

Data skew Synthetic traffic Limited testing

Lacks specific
patterns

Effect of random
distribution in

Python

Pipeline with
scripted chaos tests

required

Deployment with
Kubernetes may be

an improvement

Cluster orchestration

22

References

	 [1] ACID-transactions in PostgreSQL. Accessed: 2025-05-10. 2025. url: https://blog.ydb. tech/sharded-is-not-distributed

	 [2] Denis Sheahan Adrian Cockcroft. Benchmarking Cassandra Scalability on AWS. url: https://netflixtechblog.com/benchmarking-cassandra-scalability

	 [3] T. Akidau et al. Streaming Systems: The What, Where, When, and How of Large-Scale Data Processing. O’Reilly Media, 2018.

	 [4] Apache Cassandra Documentation. Accessed: 2025-02-03. 2025. url: https://cassandra. apache.org/doc/latest/.

	 [5] Apache Druid Documentation. Accessed: 2025-02-03. 2025. url: http : / / druid . apache . org/docs/latest/.

	 [6] J. Carpenter and E. Hewitt. Cassandra: The Definitive Guide: Distributed Data at Scale. 2nd. O’Reilly Media, 2016.

	 [7] Citus. Accessed: 2025-20-05. 2025. url: https://demirhuseyinn-94.medium.com/scaling-horizontally-on-postgresql-cituss-impact-on-database-architecture

	 [8] ClickHouse Documentation. Accessed: 2025-02-03. 2025. url: https://clickhouse.com/docs/en/.

	 [9] Horizontal Scaling PostgreSQL. Accessed: 2025-28-05. 2025. url: https://www.cockroachlabs. com/blog/limitations-of-postgres/.

	 [10] Multiversion concurrency control. Accessed: 2025-18-05. 2025. url: https://en.wikipedia. org/wiki/PostgreSQL#Multiversion_concurrency_control_(MVCC).

	 [11] Postgre XL, github. Accessed: 2025-18-05. 2025. url: https : //github.com/pharosnet/postgres-xl.

	 [12] Round-Robin scheduling algorithm. Accessed: 2025-07-10. 2025. url: https://en.wikipedia. org/wiki/Round-robin_scheduling.

	 [13] Write-ahead logic. Accessed: 2025-18-05. 2025. url: https : //en.wikipedia.org/wiki/PostgreSQL#Storage_and_replication.

23

