

Development of an Interactive Platform or Catalog Analysis and Visualization of Galaxy Clusters with Al Support

Presented By

Pavlov Arkady, 2nd year student, Faculty of Computer Science, HSE University

Project Supervisor

Svetlana A. Voskresenskaia, Research Fellow, Faculty of Physics, HSE University

About this project

Technical overview and resources

Project Type: Interactive astronomical research platform

Core Technologies:

• Backend: Python, FastAPI, asyncio

• Frontend: JavaScript, TailwindCSS

• AI: Large Language Models (LLM)

Deployment: Docker, Nginx

Data Sources: SIMBAD, VizieR, NASA ADS, arXiv

Repository: https://github.com/gcluster-tech

Development Period: 2025 academic year

Our Project Logo

Problem Statement

What's wrong with current workflow?

Current Manual Workflow

- Search SIMBAD -> manually copy coordinates
- Search VizieR -> manually cross-reference object IDs
- Search ADS -> manually filter by object name
- Search arXiv -> manually validate relevance

Our Automated Solution

• One search -> All databases simultaneously with intelligent cross-referencing, coordinate validation, and Al-powered literature filtering.

Project Overview and System Architecture

What is this platform?

Unified astronomical research platform combining multiple data sources

FastAPI backend with async/await architecture, database integrations and LLM processing for literature

Web-based solution with modern UI/UX design based on TailwindCSS with multi-language support and Aladin Lite sky viewer

Real-time integration with leading astronomical databases:

- SIMBAD object database with identifiers & measurements
- VizieR various astronomical catalogs
- NASA ADS astrophysics literature search
- arXiv preprint server for astronomy

Al-powered literature summarization using LLM

FRONTEND UI API LAYER **RESTful Endpoints • ISON Responses BACKEND CORE** FastAPI • Async Processing • Caching AI PROCESSING DATA SOURCES

Tower of technologies

Main Interface

Landing page (mobile and desktop versions)

GC

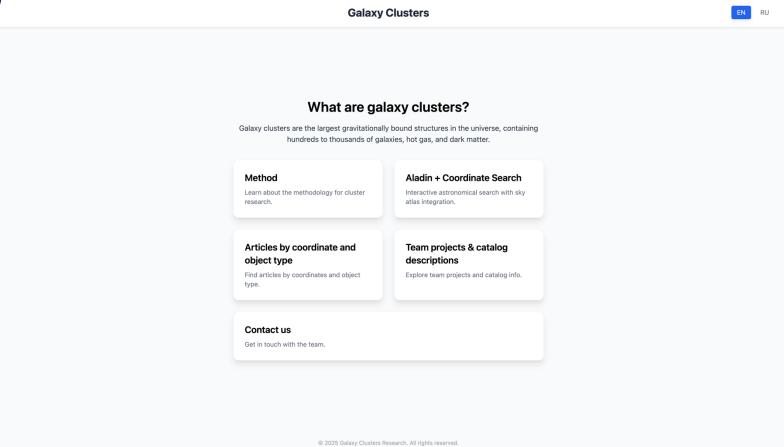
Что такое скопления галактик?

Скопления галактик — крупнейшие гравитационно связанные структуры во Вселенной, включающие сотни и тысячи галактик, горячий газ и тёмную материю.

Методология

Узнайте о методах исследования скоплений.

Aladin + Поиск по координатам


Интерактивный астрономический поиск с интеграцией звездного атласа.

Статьи по координатам и типу объекта

Найдите статьи по координатам и типу объекта.

Проекты команды и описания каталогов

Изучите проекты команды и информацию о

What makes us different?

1. Intelligent Cross-Database Querying

- Automatic coordinate conversion between databases
- Smart object ID resolution across catalogs
- vs manual copy-paste between sites

2. Unified Results Correlation

- Automatic merging of duplicate entries
- Distance-based object matching
- vs separate results from each database

3. Al-Enhanced Literature Analysis

- Context-aware paper filtering by object relevance
- Automated abstract summarization with key findings
- vs manual reading of hundreds of abstracts

Galaxy Clusters

Research Methodology & Chat Bot Overview

Astronomical Object Search Bot

Our chat bot is a CLI-based tool designed for astronomers to quickly retrieve information about astronomical objects. It accepts either object names or coordinates and returns comprehensive data from multiple astronomical databases.

Input Formats

- Object names (e.g., M31, NGC 4472)
- · Coordinates in degrees (10.6847 41.269)
- · HMS format (00:42:44.3 +41:16:09)

Output Data

- · Object parameters & coordinates
- · Scientific articles with abstracts
- · Catalog cross-references

External Data Sources

Our system integrates with the world's leading astronomical databases to provide comprehensive and up-to-date information:

SIMBAD

Astronomical object database with identifiers, basic measurements, and bibliography

VizieR

Access to astronomical catalogs including Abell, Planck, ROSAT, and other cluster catalogs

NASA ADS

Astrophysics literature search and citation database

arXiv

Preprint server for astronomy and astrophysics papers

Core Functionality

What makes us different?

Traditional Approach

Manual Steps (up to 15 min):

- 1. Open SIMBAD -> search "Vega"
- 2. Copy coordinates manually
- 3. Open VizieR -> paste coordinates
- 4. Check for catalog matches
- 5. Open ADS -> search by name
- 6. Filter papers manually
- 7. Read abstracts one by one
- 8. Cross-check object IDs

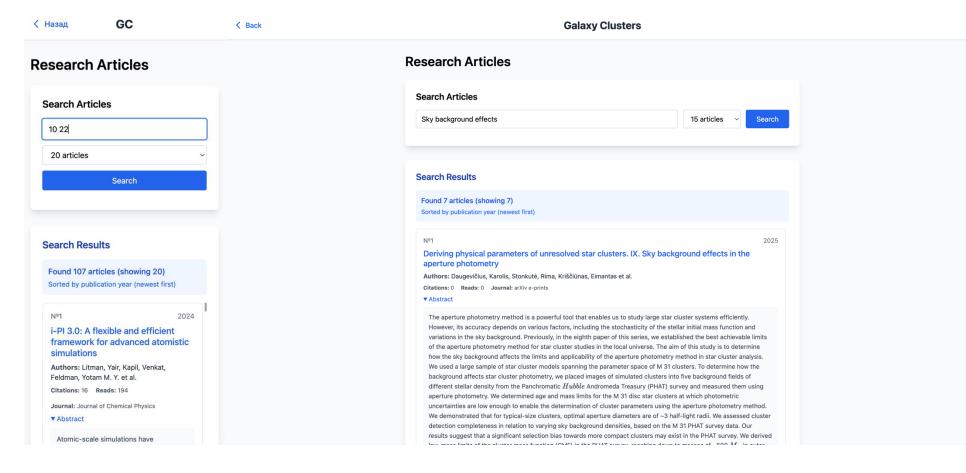
Error-prone, time-consuming

Our Platform

Automated Workflow (up to 2 min):

- 1. Type "Vega" -> press Enter
- 2. Al automatically:
 - Queries all 4 databases
 - Validates coordinates
 - Merges duplicate results
 - Filters relevant papers
 - Summarizes key findings
- 3. Review unified results

Fast, accurate, comprehensive


Search Result Interface

Comprehensive data display (mobile and desktop versions)

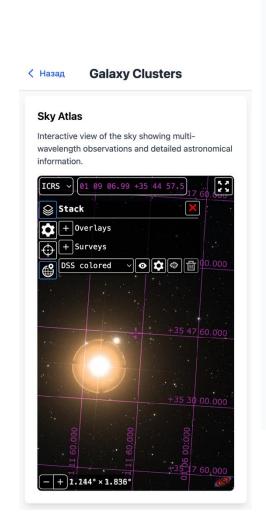
Search Results Features:

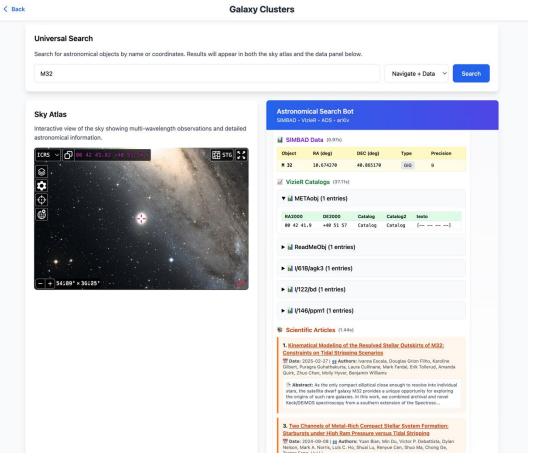
- Interactive tables with sorting
 - Literature links to papers
 - Article abstracts

Real Example
Search for "10 22" returns
cleared data from NASA ADS

Al-Powered Research Assistant

Beyond simple database queries


Unique AI Capabilities:


- Contextual Understanding Knows when "M31" and "Andromeda" refer to the same object
- Smart Paper Filtering Distinguishes relevant papers from noise
- Research Gap Detection Identifies understudied aspects of objects

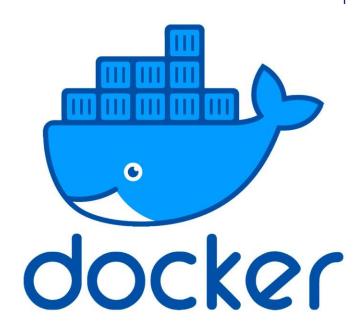
Other Features:

- Touch-optimized interface
- Responsive tables with horizontal scroll
- Simplified navigation for small screens
- Fast loading on mobile networks
- Gesture support for sky viewer

Fully cross-platform – Works seamlessly on desktop, tablet, and mobile devices with adaptive UI.

Deployment & Scalability

Production-ready solution


Infrastructure

- Docker containerization for consistent deployment
- Nginx reverse proxy for load balancing
- SSL/TLS encryption for secure connection
- Health monitoring with automated checks
- Log aggregation for debugging & analytics

Scalability Features:

Horizontal scaling ready: Load balancer + multiple backend instances

Database optimization by applying caching layer that reduces API usage

Conclusion

Key Achievements

Theorem (Project Success)

Successfully created a **unified platform** that integrates major astronomical databases with AI-powered analysis, reducing research time and improving data accessibility.

Technical Metrics:

- Over 10,000 objects accessible via unified search
- Al-powered literature summarization in seconds
- Real-time cross-database queries (SIMBAD, VizieR, ADS, arXiv)
- Fully responsive interface for desktop and mobile

Live Demo: gclusters.tech

Questions and Discussion

Thank you for your attention!

Contact Information:

Student: Arkady Pavlov **Email:** aspavlov@hse.ru

Personal GitHub: https://github.com/Tokollo5/

Supervisor: Svetlana A. Voskresenskaia **Email:** savoskresenskaya@edu.hse.ru

Live Demo: gclusters.tech

