Факультет компьютерных наук

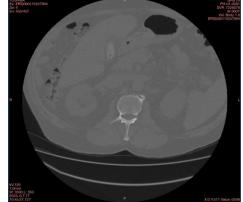
Исследовательский курсовой проект

Анализ медицинских снимков с помощью глубоких нейронных сетей Analysis of medical images using deep neural networks

Выполнил: Варакин Михаил Сергеевич (БПИ224)

Руководитель проекта: Курочкин Илья Ильич


Зав.лаб. Ц1


KT

Цель исследования

Исследовать архитектуры глубоких нейронных сетей, их применимость и процесс обучения моделей для задачи сегментации и классификации исследований КТ

Задачи исследования

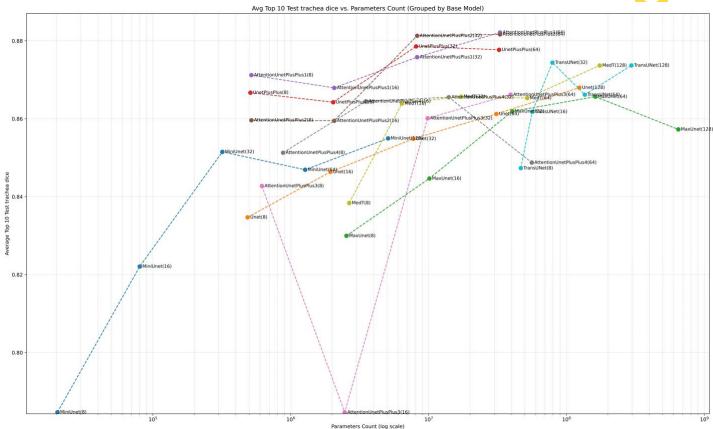
- 1) Исследование архитектур нейронных сетей для сегментации изображений и их применимости для сегментации исследований КТ.
- 2) Сравнение архитектур нейронных сетей для сегментации изображений по метрикам качества при работе с исследованиями КТ и выбор архитектуры с наиболее высоким качеством сегментации по совокупности метрик.

Задачи исследования

- 3) Разработка способов оптимизации обучения нейронных сетей для сегментации исследований КТ в условиях ограниченной оперативной памяти.
- 4) Исследование и разработка способов повышения качества сегментации исследований КТ.

Задачи исследования

- 5) Исследование архитектур нейронных сетей для классификации изображений и их применимости к классификации исследований КТ.
- 6) Разработка способов повышения качества классификации исследований КТ.


- 1) Был проведен анализ основных подходов к сегментации медицинских снимков (послойная сегментация независимых срезов КТ, сегментация фрагментов КТ и сегментация КТ целиком в виде трехмерного изображения).
- 2) Был предложен способ эффективного обучения нейронных сетей для задач, связанных с исследованиями КТ, в условиях ограниченной оперативной памяти.

3) Был проведен глубокий анализ и масштабное тестирование различных архитектур нейронных сетей для сегментации изображений, в том числе предложенных автором, в ходе которого были как подтверждены известные, так и выявлены новые особенности задачи медицинской сегментации исследований КТ и подходов, используемых при ее решении

4) Были разработаны способы повышения качества сегментации и классификации, включавшие в себя работу с данными (выбор аугментаций, предобработка данных), обучением (подбор функционала ошибки, размеров батчей, оптимизаторов и так далее), архитектурами нейронных сетей и способа их использования.

5) В рамках задачи классификации был разработан подход, позволивший измерить давление в легочной артерии с большей точностью, чем ранее известные подходы, и экспериментально доказана его эффективность.

	Обучение	Обучение	Дообучение	Лучший из ранее	Подход, описанный в
	нейронной	нейронной сети	предобученной на	известных	работе
	сети		ImageNet	результатов	
			нейронной сети		
Размер	128x128	256x256	256x256	224х224 (с вложенными	224x224, 299x299
использованных				патчами)	
изображений					
Метод	Разделение	Разделение	Разделение	10-fold CV (кросс-	10-fold CV (кросс-
оценивания	выборки на	выборки на	выборки на	валидация)	валидация)
	обучающую и	обучающую и	обучающую и		
	тестовую	тестовую (90:10)	тестовую (90:10)		
	(90:10)				
Доля верных	89,44%	90,06%	91,36%	97,27%	98,26%
ответов					
Доля ошибок	10,56%	9,94%	8,64%	2,73%	1,74%


6) Было экспериментально показано, что использование доступных в открытом доступе наборов данных позволяет обучить модели, способные эффективно решать задачи сегментации и классификации на новых данных.

В ходе исследования были выполнены все поставленные задачи, что привело к достижению поставленной цели

Полученные результаты могут быть полезны как для практического применения для диагностики заболеваний, так и для исследователей в области компьютерного зрения в целом и его медицинских приложений в частности.

Спасибо за внимание!

