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1. Affine Algebraic Groups

1.1. Examples and �rst properties. Let K be an algebraically closed �eld, and
put V = Kn. The elements of the polynomial algebra K[x1; : : : ; xn] can be viewed
as K-valued functions on V . They form the algebra O(V ) of regular functions on
V . An algebraic subvariety X ⊆ V is the set of solutions of a system of polyno-
mial equations on V with the algebra of regular functions O(X). By de�nition,
functions in O(X) = O(V )=I(X) are restrictions of elements of O(V ) to X, and
I(X) = {f ∈ O(V ) : f |X≡ 0}. There are natural notions of morphisms and
isomorphisms between algebraic subvarieties. An a�ne variety is an isomorphism
class of algebraic subvarieties.

De�nition 1.1.1. An a�ne algebraic group is a group G equipped with a structure
of an a�ne variety such that the multiplication map � : G×G→ G, �(g1; g2) = g1g2
and the inverse map i : G→ G, i(g) = g−1 are morphisms of a�ne varieties.

Example 1.1.2 (The general linear group). Consider the group GL(n;K) = GL(n)
of all invertible (n × n)-matrices over K. It has a structure of an a�ne variety.
Namely, take the vector space Kn2+1 with coordinates (t; aij); i; j = 1; : : : ; n. Then
GL(n) may be realized as a subset of Kn2+1 de�ned by the equation det(aij)t = 1.
This implies O(GL(n)) = K[aij ][ 1

det ].
The multiplication map � is given as �(A;B) = AB = C, and if A = (aij),
B = (bij), C = (cij), then cij = ∑n

k=1 aikbkj . As we know from the course of linear
algebra, i(A) = A−1 = (dij) with dij = (−1)i+j

det(A) mji, where mji are minors of A.
This shows that the maps � : GL(n) × GL(n) → GL(n) and i : GL(n) → GL(n)
are polynomial, thus GL(n) is an a�ne algebraic groups.

Remark 1.1.3. In this course we consider only a�ne algebraic groups, so the
adjective "a�ne" will be sometimes omitted.

Proposition 1.1.4. Let G ⊆ GL(n) be a subgroup. Assume that G is a (closed)
subvariety in GL(n). Then G is an algebraic group.

Proof. The multiplication and inverse maps forG are the restrictions toG×G andG
of the corresponding maps for GL(n). Clearly, such restrictions are morphisms. ¤

A closed (in Zariski topology) subgroup of GL(n) is called a linear algebraic group.
As we shall prove later (see Theorem 1.3.20 and Remark 1.3.21), any a�ne algebraic
group admits a realization as a closed subgroup of some GL(n). So, the notion
"a�ne algebraic group" and "linear algebraic group" turn out to be synonyms. On
the other hand, some authors use the term "linear algebraic group" in order to �x
the matrix realization of a group G.

Example 1.1.5 (Classical Groups). Besides GL(n), there are four other series of
algebraic groups that are called classical.

(i) The special linear group SL(n) consists of the matrices of determinant 1 in
GL(n). It is clearly a subgroup de�ned by the equation det(aij) − 1 = 0
in GL(n). Thus SL(n) is an algebraic group. Since it is a hypersurface in
the space of matrices Mat(n×n;K), the dimension of SL(n) equals n2−1.

(ii) Let q : V × V → K be a bilinear symmetric non-degenerate form on the
space V = Kn. De�ne a group
O(q) := {A ∈ GL(n) : q(Av1; Av2) = q(v1; v2) for any v1; v2 ∈ V }:
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Let Q be a symmetric (n × n)-matrix associated with q, i.e. q(v1; v2) =
vT1 Qv2 for any v1; v2 ∈ V . Then

q(Av1; Av2) = (Av1)TQ(Av2) = vT1 ATQAv2;
and A ∈ O(q) if and only if ATQA = Q. The last equality may be
considered as a system of quadratic equations on aij , where, as usual, A =
(aij). This shows that O(q) is an algebraic group. It is called the orthogonal
group associated with the form q. For example, if v1 = (x1; : : : ; xn), v2 =
(y1; : : : ; yn), and the form q is de�ned as q(v1; v2) = x1y1 + · · · + xnyn,
then Q = E and O(q) = {A ∈ GL(n) : ATA = E}. In this case we denote
O(q) as O(n).

(iii) The equation ATQA = Q implies det(A) = ±1 (Q is non-degenerate !).
De�ne the special orthogonal group as

SO(q) = {A ∈ O(q) : det(A) = 1}:
Clearly, SO(q) is a subgroup in O(q), and this subgroup is proper (see
Exercise 1.1.11).

(iv) Assume that charK 6= 2. Let V = K2n, ! : V × V → K be a bilinear
skew-symmetric non-degenerate form on V , and 
 be the associated skew-
symmetric (2n× 2n)-matrix. De�ne the symplectic group as

Sp(!) = {A ∈ GL(2n) : !(Av1; Av2) = !(v1; v2) for any v1; v2 ∈ V } =
= {A ∈ GL(2n) : AT
A = 
}:

Again for the standard skew-symmetric form
!(v1; v2) = x1y2 − x2y1 + · · ·+ x2n−1y2n − x2ny2n−1

we reserve the notation Sp(!) = Sp(2n).
Example 1.1.6 (Finite groups). Recall that any �nite set X with n elements
admits a canonical structure of an a�ne algebraic variety (over K). This variety
has n irreducible one-point components and the algebra of regular functions O(X)
is the direct sum of n copies of the �eld K: O(X) = K⊕· · ·⊕K. In particular, any
K-valued function on X is regular, and any map X → Y to another a�ne variety
Y is a morphism. This shows that any �nite group G has a canonical structure of
an a�ne algebraic group.
Example 1.1.7 (Additive and multiplicative groups). The additive group Ga is
the a�ne line K1 with group low �(x; y) = x+y and i(x) = −x. The multiplicative
group Gm is the a�ne open subset K× ⊂ K with �(x; y) = xy, i(x) = x−1. Clearly,
they are commutative one-dimensional algebraic groups. The group Gm may be
realized as GL(1), but for a matrix realization of Ga one needs 2× 2-matrices:

{(
1 c
0 1

)
; c ∈ K

}
:

Proposition 1.1.8. Let G1 and G2 be a�ne algebraic groups. Then the direct
product G1 ×G2 has a canonical structure of an a�ne algebraic group.

Proof. If X1; X2; Y1; Y2 are a�ne varieties and �1 : X1 → Y1, �2 : X2 → Y2 are
morphisms, then � : X1 × X2 → Y1 × Y2, �(x1; x2) = (�1(x1); �2(x2)) is again a
morphism. This shows that the multiplication map and the inverse map:

� : (G1 ×G2)× (G1 ×G2) → G1 ×G2; �((g1; g2); (g′1; g′2)) = (g1g′1; g2g′2);
i : G1 ×G2 → G1 ×G2; i(g1; g2) = (g−1

1 ; g−1
2 )

are morphisms. ¤
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Proposition 1.1.8 allows us to construct many examples of algebraic groups. In
particular, the direct product T k = Gkm = K××· · ·×K× (k times) is a commutative
algebraic group called an algebraic torus. Note that, if ti is the coordinate in
the ith copy of K×, then O(T k) = K[t1; t−1

1 ; : : : ; tk; t−1
k ] is the algebra of Laurent

polynomials.
We �nish this subsection with some further examples of linear algebraic groups that
will be used frequently in this course.
Example 1.1.9 (Some other matrix groups). Let D(n), B(n) and U(n) be the
subgroups of diagonal, upper triangular, and upper triangular unipotent matrices
in GL(n) respectively:

D(n) =

8
>><
>>:

0
BB@

∗ 0 : : : 0
0 ∗ : : : 0
: : : : : : : : : 0
0 0 : : : ∗

1
CCA

9
>>=
>>;
; B(n) =

8
>><
>>:

0
BB@

∗ ∗ : : : ∗
0 ∗ : : : ∗
: : : : : : : : : ∗
0 0 : : : ∗

1
CCA

9
>>=
>>;
; U(n) =

8
>><
>>:

0
BB@

1 ∗ : : : ∗
0 1 : : : ∗
: : : : : : : : : ∗
0 0 : : : 1

1
CCA

9
>>=
>>;
:

Note that these subgroups are de�ned in GL(n) by equations of the form:
aij = 0 or 1 for some i; j;

so they are algebraic subgroups.
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Exercises to subsection 1.1.
Exercise 1.1.10. Check that if A;B ∈ Mat(n× n) and vT1 Av2 = vT1 Bv2 for any v1; v2 ∈
Kn, then A = B.
Exercise 1.1.11. Show that the group O(q) contains matrices A1 and A2 with det(A1) =
1 and det(A2) = −1.
Exercise 1.1.12. Check that SO(2) is commutative, but O(2) is not.
Exercise 1.1.13. Prove that for any bilinear symmetric non-degenerate form q on V = Kn
the subgroup O(q) (resp. SO(q)) is conjugate to O(n) (resp. to SO(n)) in GL(n). More-
over, for any bilinear skew-symmetric non-degenerate form ! on V = K2n the subgroup
Sp(!) is conjugate to Sp(2n) in GL(2n).
Exercise 1.1.14 (*). Prove that det(A) = 1 for any A ∈ Sp(!).
Exercise 1.1.15 (*). Show that SL(2) = Sp(2), but Sp(2n) is a proper subgroup of
SL(2n) for any n > 1.
Exercise 1.1.16. Show that GL(n;R) is not a closed subgroup in GL(n;C).
Exercise 1.1.17. Find the linear span of SL(n) in the vector space Mat(n× n).
Exercise 1.1.18. Find the center of a) GL(n); b) SL(n); c) B(n); d) U(n).
Exercise 1.1.19. Calculate the dimension of a) D(n); b) B(n); c) U(n).
Exercise 1.1.20. Describe elements of �nite order in Ga and Gm.
Exercise 1.1.21. Do all elements of �nite order form a subgroup in GL(n) ?
Exercise 1.1.22. Find a matrix realization for Gkm ×Gsa.
Exercise 1.1.23. Let A be a �nite-dimensional K-algebra. Prove that the automorphism
group of A is an a�ne algebraic group.
Exercise 1.1.24 (*). Let G be a group with a structure of an a�ne algebraic variety
such that the multiplication map � : G × G → G is a morphism. Prove that the inverse
map i : G→ G is a morphism.
Exercise 1.1.25 (**). Is the group SL(2) isomorphic to A3 as an a�ne variety ?
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1.2. Connected components and homomorphisms. Let G be an algebraic
group. Our aim is to show that the group structure on G imposes strong restrictions
on its geometry. The reason for this is "homogeneity" or "equal status of points".
More precisely, with any element g ∈ G one associates two mappings:

Lg : G→ G; Lg(x) = gx; Rg : G→ G; Rg(x) = xg:
By de�nition of an algebraic group, these mappings are morphisms. Moreover,
Lg−1 (resp. Rg−1) is inverse to Lg (resp. Rg), so Lg and Rg are automorphisms
of the variety G. For any x; y ∈ G the map Lyx−1 sends x to y. In particular, the
automorphism group of the variety G acts on G transitively.
Lemma 1.2.1. Let G be an algebraic group. Then the variety G is smooth.

Proof. Let x ∈ G and y be a smooth point of G. Then the automorphism Lxy−1

sends y to x, so x is also a smooth point. ¤

Lemma 1.2.2. If H is an (abstract) subgroup of an algebraic group G, then its
closure H is an algebraic subgroup of G.

Proof. Since for any h ∈ H the automorphism Lh : G → G preserves H, it also
preserves H. This implies HH ⊆ H. So for any g ∈ H one has Hy ⊂ H. But
Hy coincides with the closure of the subset Hy and is contained in H. This proves
that HH ⊂ H. The map i is an automorphism of G and, if it preserves a subset H,
then it preserves its closure H. So H is a subgroup in G, and by Proposition 1.1.4
this subgroup is algebraic. ¤

Recall that a subset Z of a variety X is called locally closed if Z is open in its
closure Z.
Lemma 1.2.3. Let G be an algebraic group and H ⊂ G a locally closed subset that
is an (abstract) subgroup of G. Then H is closed.

Proof. By Lemma 1.2.2, for any g ∈ H the coset gH is contained in H. Moreover,
gH is open in H as a translate of an open subset H ⊂ H. But H is dense in H, so
H ∩ gH 6= ∅. If x ∈ H ∩ gH, then g = xh−1 for some h ∈ H, thus g ∈ H. ¤

Theorem 1.2.4. Let G be an algebraic group and e ∈ G the unit. Then
(i) irreducible components of G coincide with connected components;

(ii) the connected component G0 containing e is a normal subgroup of a �nite
index in G, and all other connected components are cosets of G by G0.

Proof. Let G0; : : : ; Gk be the irreducible components of G. By de�nition, there
exists g ∈ G0 \ (G1 ∪ · · · ∪ Gk). The image of g under any automorphism of the
variety G also belongs to a unique irreducible component of G. This shows that
any element of G lies in a unique irreducible component, so Gi ∩ Gj = ∅ for any
i 6= j, and (i) is proved.
Since the variety G0×G0 is irreducible, so is its image �(G0×G0). Then �(G0×G0)
is contained in an irreducible component of G. But e ∈ �(G0 × G0), and thus
�(G0×G0) = G0. The same arguments show that i(G0) = G0, so G0 is a subgroup.
Now consider the morphism � : Gi × G0 → G, �(g; h) = ghg−1. The variety
Gi × G0 is irreducible, �(g; e) = e, thus �(Gi × G0) ⊆ G0, or ghg−1 ∈ G0 for any
g ∈ G;h ∈ G0, and G0 is normal in G.
For any g ∈ Gi the automorphism Lg maps G0 isomorphically to some irreducible
component of G. But Lg(e) = g, thus Lg maps G0 to Gi. Moreover, the number of
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irreducible components of any variety is �nite, so G0 has a �nite index in G, and
the proof of (ii) is completed. ¤

Lemma 1.2.5. Let G be a connected algebraic group and U; V ⊂ G be two non-
empty open subsets. Put UV := {uv : u ∈ U; v ∈ V }. Then G = UV .

Proof. Since the map i is an automorphism of the variety G, the subset V −1 :=
{g−1 : g ∈ V } is open. By Theorem 1.2.4, the group G is irreducible. For any
g ∈ G the intersection of two open subsets gV −1 and U is non-empty, so there are
v ∈ V , u ∈ U such that gv−1 = u, or g = uv. ¤

Proposition 1.2.6. Let G be an algebraic group and {Mi ⊂ G : i ∈ I} be a family
of subsets such that

1) e ∈Mi for any i ∈ I;
2) Mi are irreducible (in the induced topology);
3) Mi contains an open subset of Mi.

Then the subgroup H ⊆ G generated by the subsets Mi is closed and connected.

Proof. Consider M �1:::�k
i1:::ik := ��1:::�k(Mi1 × · · · ×Mik), where ��1:::�k(g1; : : : ; gk) :=

g�11 : : : g�kk with �i = ±1. Clearly, M �1:::�k
i1:::ik satis�es 1). Since the image and the

product of irreducible subsets are irreducible, we also have 2). Finally, take open
subsets Ui ⊂Mi ⊂Mi. By Theorem 3.0.24, the image of

Mi1 × · · · ×Mik →M �1:::�k
i1:::ik

contains an open subset of M �1:::�k
i1:::ik , and we get 3). Note that

H =
⋃
M �1:::�k
i1:::ik

and
M �1:::�k
i1:::ik ;M

�1:::�s
j1:::js ⊆M �1:::�k�1:::�s

i1:::ikj1:::js = M �1:::�k
i1:::ik M

�1:::�s
j1:::js :

Set M := M �1:::�k
i1:::ik with the maximal dimM �1:::�k

i1:::ik . Then any M �1:::�s
j1:::js is contained in

M �1:::�k�1:::�s
i1:::ikj1:::js = M (Theorem 3.0.25), thus H = M . This shows that H is connected.

By Lemma 1.2.2, H is a subgroup. Applying Lemma 1.2.5 to H and U = V an
open subset of M , we get H = UU ⊆ H, so H is closed. ¤

Corollary 1.2.7. The groups GL(n) and SL(n) are connected.

Proof. As we know from linear algebra, any non-degenerate matrix is a product of
elementary matrices. Thus one may apply Proposition 1.2.6 to irreducible curves
Mij = {E + cEij : c ∈ K} (i 6= j) and Mii = {E + (� − 1)Eii : � ∈ K×} which
generate GL(n). In the case of SL(n) the curves Mij (i 6= j) are su�cient. ¤

Remark 1.2.8. For GL(n), there is a simpler proof: it is irreducible as an open
subset of Mat(n× n).
Corollary 1.2.9. Let G be a connected algebraic group. Then the commutant
[G;G] is a closed connected subgroup of G.

Proof. Consider a morphism 
 : G × G → G, 
(x; y) = xyx−1y−1 and apply
Proposition 1.2.6 to {Mi} = {
(G)}. ¤

Now we come to the de�nition of a morphism in the category of algebraic groups.
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De�nition 1.2.10. Let G and F be algebraic groups. A morphism � : G→ H is
said to be a homomorphism if �(g1g2) = �(g1)�(g2), i.e. � is a homomorphism of
abstract groups.
Example 1.2.11. For any integral k the map A → det(A)k is a homomorphism
from GL(n) to K×.
On the other hand, the map C → C×, a → ea is a homomorphism of abstract
groups, but not a morphism.
Theorem 1.2.12. Let � : G → F be a homomorphism of algebraic groups. Then
Ker(�) ⊆ G and Im(�) ⊆ F are closed subgroups. Moreover,

dimG = dim Ker(�) + dim Im(�):

Proof. Since Ker(�) = �−1(e), it is a closed normal subgroup of G. Assume that
G is connected. The image Im(�) is a subgroup of F , and, by Theorem 3.0.24, it
contains an open subset U of Im(�). By Lemmas 1.2.2 and 1.2.5, Im(�) = UU =
Im(�).
If G0; G1; : : : ; Gk are connected components of G and g1 ∈ G1; : : : ; gk ∈ Gk, then

Im(�) = �(G0) ∪ �(g1)�(G0) ∪ · · · ∪ �(gk)�(G0)
is closed.
In order to prove the dimension formula, one may assume that �(G) = F . Any
�ber of �|G0 : G0 → F 0 is a coset of G0 by Ker(�)0 := Ker(�) ∩ G0. By Theo-
rem 3.0.26, one has dimG0 = dim Ker(�)0 + dimF 0. Clearly, dimG = dimG0 and
dimF = dimF 0. We claim that dim Ker(�) = dim Ker(�)0. Indeed, the connected
component Ker(�)0 is contained in G0, thus

dim Ker(�)0 ≤ dim Ker(�)0 ≤ dim Ker(�) = dim Ker(�)0:
¤

De�nition 1.2.13. A homomorphism � : G→ F is called an isomorphism if there
is a homomorphism  : F → G such that � ◦  = idF and  ◦ � = idG.
Remark 1.2.14. If charK = 0, then by Theorem 3.0.27 any bijective homomor-
phism is an isomorphism. For charK = p > 0 this is not the case: one may consider
the Frobenius homomorphism � : Ga → Ga, �(x) = xp.



8 IVAN V. ARZHANTSEV

Exercises to subsection 1.2.
Exercise 1.2.15. Construct two non-isomorphic structures of an algebraic group on the
variety A3.
Exercise 1.2.16 (*). Show that the variety A1 \ {0; 1} does not admit a structure of an
algebraic group.
Exercise 1.2.17. Show that SO(2) is isomorphic to Gm, and the second connected com-
ponent of O(2) consists of elements of order two.
Exercise 1.2.18. Let H be a subgroup of a �nite index in G. Prove that H contains G0.
Exercise 1.2.19. Give an example of an algebraic group G such that the center Z(G) is
�nite, but Z(G0) is in�nite.
Exercise 1.2.20. By Theorem 1.2.4, for any algebraic group G the quotient group F =
G=G0 is �nite. Give an example of G which is not isomorphic to a semidirect product of
F and G0.
Exercise 1.2.21. LetK be a �eld. Prove that the polynomial det(aij)−1 ∈ K[a11; : : : ; ann]
is irreducible.
Exercise 1.2.22. Calculate the commutant of a) GL(n); b) SL(n); c) B(n); d) U(n).
Exercise 1.2.23. Let G ⊂ GL(n) be a closed connected subgroup with a �nite center
Z(G). Prove that Z(G=Z(G)) = {e}. It is true for a non-connected G ?
Exercise 1.2.24 (*). Let G be an algebraic group. Prove that [G;G] is a closed subgroup
of G.
Exercise 1.2.25 (*). Give an example of a homomorphism of Lie groups � : G1 → G2
such that Im(�) is not a (closed) Lie subgroup of G2.
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1.3. Actions and representations of algebraic groups. Let X be an algebraic
variety and G an algebraic group.
De�nition 1.3.1. A morphism � : G×X → X is said to be an (algebraic) action,
if it satis�es the following properties:

(i) �(e; x) = x for any x ∈ X;
(ii) �(g1; �(g2; x)) = �(g1g2; x) for any g1; g2 ∈ G, x ∈ X.

Further we abbreviate �(g; x) as g · x. The fact that we have an action of G on
X will be denoted as G : X, and a variety with a G-action will be called shortly a
G-variety.
Example 1.3.2. There are three remarkable actions of a group G on itself. Namely,
�L(g; g1) = gg1, �R(g; g1) = g1g−1, �C(g; g1) = gg1g−1.
De�nition 1.3.3. Assume that a group G acts on a variety X. For any x ∈ X
de�ne its orbit Gx := {y ∈ X : y = g · x for some g ∈ G} and its stabilizer
Gx := {g ∈ G : g · x = x}.
Theorem 1.3.4. Let an algebraic group G act on a variety X. Then for any
x ∈ X the stabilizer Gx is a closed subgroup of G and the orbit Gx is a smooth
locally closed subvariety of X. Moreover,

dimG = dimGx+ dimGx:

Proof. Consider a morphism
� : G×X → X ×X; �(g; x) = (x; g · x)

and the embedding rx : G→ G×X, rx(g) = (g; x). Clearly, Gx = r−1
x (�−1(x; x)),

thus Gx is closed.
For the orbit morphism G0 → X, g → g ·x, the image G0x contains an open subset
U of G0x (Theorem 3.0.24). Then giU is open in giG0x = giG0x = Gix. This
implies that Gx contains an open subset W = ∪ki=0giU of Gx = ∪ki=0Gix (here
g0 = e). But then Gx = ∪g∈GgW is open in Gx. Smoothness of Gx follows from
transitivity of the G-action (by automorphisms) on Gx.
The dimension of any �ber of the orbit morphism G0 → G0x equals dim(G0)x,
and Theorem 3.0.26 implies dimG0 = dim(G0)x + dimG0x. Finally, one can easily
check that dimG = dimG0, dimGx = dim(G0)x, and dimGx = dimG0x. ¤

Example 1.3.5. The group GL(n) acts on the space of symmetric n× n-matrices
as (A;S) → ASAT . Non-degenerate symmetric matrices form an open orbit and
the stabilizer of the unit matrix equals O(n). By Theorem 1.3.4, dim GL(n) =
dim O(n) + n(n+1)

2 , thus dim O(n) = n(n−1)
2 .

Corollary 1.3.6. For any action G : X there is a closed G-orbit.

Proof. The orbit Gx is open and dense in Gx. Hence dim(Gx \Gx) < dimGx and
any orbit of the smallest dimension is closed in X. ¤

Corollary 1.3.7. For any subset A ⊆ G de�ne the centralizer ZG(A) := {g ∈ G :
gx = xg for any x ∈ A}. Then ZG(A) is a closed subgroup of G.

Proof. For any a ∈ A the centralizer ZG(a) is the stabilizer of a ∈ G with respect to
the action �C (see Example 1.3.2). Thus ZG(a) is closed, and ZG(A) = ∩a∈AZG(a).

¤
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Proposition 1.3.8. For any action G : X and any integer k the subsets
Xk := {x ∈ X : dimGx ≥ k} and Xk := {x ∈ X : dimGx ≤ k}

are closed.

Proof. Since the setsXk andXk coincide forG andG0, andG0 preserves irreducible
components of X, one may reduce the proof to the case when G in connected
and X is irreducible. Again consider � : G × X → X × X, �(g; x) = (x; g · x).
By Theorem 3.0.26, there exist an integer m and a non-empty open subset U ⊆
�(G×X) such that

(i) for any point (x; y) ∈ U any component of the �ber �−1(x; y) has dimension
m;

(ii) any component of any non-empty �ber �−1(x; y) has dimension ≥ m.

Note that �−1(x; y) = {(g; x) : g · x = y} ∼= gGx ∼= Gx. The image of the projec-
tion of U to the �rst factor contains a non-empty open subset (Theorem 3.0.24).
This shows that Xk = X for k ≤ m and there is an open subset W ⊂ X which is
contained in X \Xm+1. Since Xm+1 is a G-invariant subset, the open G-invariant
subset GW also is contained in X \ Xm+1. Consider the decomposition into ir-
reducible components: X \ GW = Y (1) ∪ · · · ∪ Y (s). Any Y (i) is an irreducible
G-variety with dimY (i) < dimX. Arguing by induction on the dimension, one
may assume that Y (i)k is closed for any k. On the other hand, for k > m one has
Xk = Y (1)k ∪ · · · ∪ Y (s)k.
Finally, Xk = XdimG−k (Theorem 1.3.4). ¤

Proposition 1.3.9. Let an algebraic group G act on a variety X. Then the subset
XG of G-�xed points in closed in X.

Proof. For any g ∈ G de�ne a morphism  g : X → X ×X,  g(x) = (x; g · x). The
set Xg of g-�xed points is the preimage of the diagonal in X ×X, thus is closed.
The set XG is the intersection of closed subsets: XG = ∩g∈GXg: ¤

De�nition 1.3.10. Let V be a �nite-dimensional K-vector space. A (rational)
representation of an algebraic group G in the space V is a homomorphism

� : G→ GL(V )
of algebraic groups. Here V is said to be a (�nite-dimensional) rational G-module.
A representation is called faithful, if Ker(�) = {e}.
De�nition 1.3.11. Any representation � : G → GL(V ) de�nes an action �� :
G× V → V , g · v = �(g)v. Such actions are called linear.

Remark 1.3.12. A rational representation of GL(n) in a space V is a homomor-
phism � : GL(n) → GL(V ) such that the matrix entries of �(A) are polynomials in
aij ; 1

det(A) . The presence of 1
det(A) motivates the term "rational".

Remark 1.3.13. Standard constructions of representation theory (restrictions to
invariant subspaces, quotient and dual representations, direct sums, tensor prod-
ucts, symmetric and exterior powers,...) allow to produce numerous rational G-
modules from given ones.

Lemma 1.3.14. Any rational representation � : G → GL(V ) de�nes a natural
algebraic action on the projective space P(V ): g · [v] := [�(g)v].
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Proof. Let x1; : : : ; xn be a coordinate system on V . The preimage of the open chart
Ui : xi 6= 0 on P(V ) under the action map � : G× P(V ) → P(V ) is U ′i = {(g; [v]) :
xi(�(g)v) 6= 0}. The inverse image of the coordinate function xj

xi on Ui is

�∗(xjxi
)(g; [v]) = xj(�(g)v)

xi(�(g)v) =
∑
k �kj(g)xj(v)∑
k �ki(g)xi(v) ;

which is a regular function on U ′i . This proves that � is a morphism. ¤

Now we came to actions of an algebraic group G on an a�ne variety X. There is
a natural action of G on regular functions:

(g · f)(x) := f(g−1 · x); f ∈ O(X); x ∈ X; g ∈ G: (∗)
Lemma 1.3.15. Formula (∗) gives a well-de�ned linear G-action on O(X) by
automorphisms of a K-algebra.

Warning: in general, the K-space O(X) has in�nite dimension, so at the moment
we speak only about linear actions of an abstract group.

Proof. For any g ∈ G the function g · f is a composition X → X → K of the
automorphism Lg−1 and the function f , so g · f ∈ O(X). Clearly, e · f = f and
(g1 ·(g2 ·f))(x) = (g1 ·f)(g−1

2 ·x) = f(g−1
2 ·(g−1

1 ·x)) = f((g1g2)−1 ·x) = (g1g2 ·f)(x),
thus we have an action of an abstract group. Moreover,

(g · (�1f1 + �2f2))(x) = (�1f1 + �2f2)(g−1 · x) =
= (�1f1)(g−1 · x) + (�2f2)(g−1 · x) = (�1(g · f1) + �2(g · f2))(x);

and g · (f1f2) = (g · f1)(g · f2) by the same arguments. ¤

Theorem 1.3.16. The algebra O(X) is a union ⋃∞
i=1Wi of a �nite dimensional

rational G-submodules Wi ⊂ O(X).

Proof. The morphism � : G×X → X corresponds to a homomorphism of coordi-
nate algebras:

�∗ : O(X) → O(G×X) ∼= O(G)⊗K O(X); �∗(F ) =
m∑

i=1
fi ⊗ hi

with
F (g · x) =

m∑

i=1
fi(g)hi(x):

This proves that the linear span 〈GF 〉 of the orbit GF is contained in 〈h1; : : : ; hm〉,
so is �nite-dimensional. One may assume that h1; : : : ; hm form a basis in 〈GF 〉.
Since this subspace is G-invariant, the following formula holds for any g ∈ G:

(g · hi)(x) = hi(g−1 · x) =
m∑

j=1
pij(g−1)hj(x):

for some pij ∈ O(G). There are regular functions p′ij ∈ O(G), such that p′ij(g) =
pij(g−1). Thus an element g ∈ G acts in the space 〈GF 〉 by the matrix (p′ji(g)), and
the G-module 〈GF 〉 is rational. Finally, take a countable K-basis F1; F2; F3; : : : in
O(X) and set Wi = ∑i

j=1〈GFj〉. ¤

De�nition 1.3.17. A G-module V is called rational if any element v ∈ V is
contained in a �nite-dimensional rational submodule.
Corollary 1.3.18. The G-module O(X) is rational.
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Let G be a group and X, Y be two G-sets. Recall that a map � : X → Y is called
(G-)equivariant if �(g · x) = g · �(x) for all g ∈ G and x ∈ X. Moreover, if g · y = y
for all y ∈ Y , then an equivariant map � : X → Y is called (G-)invariant.
Theorem 1.3.19. Let G be an algebraic group acting on an a�ne variety X.
Then there are a rational �nite-dimensional G-module V and a closed G-equivariant
embedding I : X ,→ V .

Proof. Since the algebra O(X) is �nitely generated, there is a �nite-dimensional
rational G-submodule U ⊂ O(X) which generates O(X). Let V = U∗ be the
module dual to U . De�ne the map I : X → V , I(x) = lx ∈ U∗, where lx(u) := u(x).
By de�nition,
lx(�1u1 + �2u2) = (�1u1 + �2u2)(x) = �1u1(x) + �2u2(x) = �1lx(u1) + �2lx(u2);

and the function lx is linear. In order to prove that I is a closed embedding it is
su�cient to check that the dual homomorphism I∗ : O(V ) → O(X) is surjective.
The regular functions on V form the symmetric algebra Sym(U) of the space U . By
de�nition, for any u ∈ U one has I∗(u)(x) = u(I(x)) = u(lx) = lx(u) = u(x). This
shows that I∗(U) coincides with the subspace U ⊂ O(X), thus generates O(X),
and the homomorphism I∗ : O(V ) = Sym(U) → O(X) is surjective.
We need to check that I is equivariant. This is straightforward:
I(g ·x)(u) = lg·x(u) = u(g ·x) = (g−1 ·u)(x) = lx(g−1 ·u) = (g · lx)(u) = (g ·I(x))(u):

¤

Theorem 1.3.20. Any a�ne algebraic group admits a faithful representation.

Proof. Consider the action �L of G on itself be left translations: g · g1 = gg1.
By Theorem 1.3.19, there are a rational �nite-dimensional G-module V and an
equivariant closed embedding I : G ,→ V . Since the action �L is e�ective, the
corresponding representation � : G→ GL(V ) is faithful. ¤

Remark 1.3.21. It follows from the above theorem that any a�ne algebraic group
may be realized as a closed subgroup in some GL(n). Indeed, the homomorphism
� : G → �(G) is bijective and �(G) is closed in GL(V ) (Theorem 1.2.12). If
charK = 0, then � automatically de�nes an isomorphism between G and �(G). In
general, one may argue as follows: Take the unit e ∈ G and consider the orbit
morphism � : �(G) → I(G), �(�(g)) = �(g) · I(e). Since I : G → I(G) is an
isomorphism, the composition I−1 ◦ � ◦ � : G→ G is the identity map. This shows
that I−1 ◦ � is inverse to �.

Let an algebraic group G act on an algebraic variety X We are going to explain that
the algebra of regular functions O(X) is a rational G-module (with respect to the action
de�ned by (*)).
Proposition 1.3.22. Let X and Y be algebraic varieties. Then

O(X × Y ) ∼= O(X)⊗K O(Y ):

Proof. Assume that X is a�ne and Y = ∪si=1Yi be an a�ne covering of Y . Take any
f ∈ O(X × Y ). Let fi be the restriction of f to X × Yi. Fix a K-basis g1; g2; : : : of O(X).
Then fi = Pk gk⊗hik with hik ∈ O(Yi). Since fi−fj is identically zero on the a�ne open
subset Yi∩Yj , and hik; hjk ∈ O(Yi∩Yj), one has 0 = Pk gk⊗(hik−hjk), thus hik and hjk
coincide on Yi ∩ Yj . This shows that hik glue together to a regular function hk ∈ O(Y ),
and f = P

k gk ⊗ hk. So the natural homomorphism O(X) ×K O(Y ) → O(X × Y ) is
surjective. If some Pk gk ⊗ hk maps to zero, then we may restrict this equality to any
a�ne chart X × Yi and get hk = 0 for all k.
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For an arbitrary variety X, �x an a�ne covering X = ∪iXi. Taking any f ∈ O(X × Y ),
restricting it to all Xi×Y , and repeating the above arguments, we get the statement. �

Now the proof of Theorem 1.3.16 works also for:
Theorem 1.3.23. Let G be an algebraic group. For any G-variety X the algebra O(X)
is a rational G-module.
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Exercises to subsection 1.3.
Exercise 1.3.24. Prove that for any A ∈ GL(n) the centralizer ZGL(n)(A) is connected.
Is it true for SL(2) ?
Exercise 1.3.25. For any closed subset A ⊆ G de�ne the normalizer NG(A) = {g ∈ G :
gxg−1 ∈ A for any x ∈ A}. Check that NG(A) is a closed subgroup of G.
Exercise 1.3.26. Assume that there is an algebraic action of G on a vector space V .
Show that this action is linear (in the sense of De�nition 1.3.11) if and only if

g · (�1v1 + �2v2) = �1(g · v1) + �2(g · v2) for any g ∈ G; �1; �2 ∈ K; v1; v2 ∈ V:
Exercise 1.3.27. Describe orbits of the tautological linear actions: (a) SL(n) : Kn; (b)
D(n) : Kn; (c) B(n) : Kn; (d) U(n) : Kn; (e) O(n) : Kn; (f) SO(n) : Kn; (g)
Sp(2n) : K2n.
Exercise 1.3.28. Following Example 1.3.5, calculate dim Sp(2n).
Exercise 1.3.29 (*). Prove that the groups SO(n) and Sp(2n) are connected, and O(n)
consists of two connected components.
Exercise 1.3.30 (*). For any pair of groups listed below construct explicitly a surjective
two-sheeted homomorphism:

(a) SL(2) → SO(3);
(b) SL(2)× SL(2) → SO(4);
(c) Sp(4) → SO(5);
(d) SL(4) → SO(6).

Exercise 1.3.31. Let K be a �eld. Prove that the polynomial det(aij) ∈ K[a11; : : : ; ann]
is irreducible.
Exercise 1.3.32. Let V be a �nite-dimensional rational G-module. Prove that the nat-
ural G-action on the variety F(V ) of complete 
ags in V is algebraic.
Exercise 1.3.33 (*). De�ne an algebraic action of an algebraic group G on a prevariety
X. Show that in this case the subset XG need not be closed in X.
Exercise 1.3.34. Give an example of a non-linear algebraic action of the group Ga on
Kn.
Exercise 1.3.35. Let G be a �nite group. Prove that any G-module is rational.
Exercise 1.3.36. Assume that an algebraic group G acts on an irreducible variety X.
Then the formula (g · f)(x) := f(g−1 · x) de�nes a structure of a G-module on the �eld of
rational functions K(X). Give an example where this module is not rational.
Exercise 1.3.37 (*). Let G be an algebraic group acting of a quasia�ne variety Y . Prove
that there are an a�ne G-variety X and an open equivariant embedding J : Y ,→ X.
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1.4. Homogeneous spaces. Let G be an a�ne algebraic group and H a closed
subgroup of G. The set of left cosets G=H admits a natural transitive G-action:
g · g1H = gg1H. The aim of this section is to introduce a structure of an algebraic
variety on G=H such that the action above becomes algebraic. This structure is
based on the following result.
Theorem 1.4.1 (Chevalley's Theorem (1951)). Let G be an a�ne algebraic group
and H a closed subgroup of G.

(1) There are a representation � : G→ GL(V ) and a vector v ∈ V such that
H = {g ∈ G : �(g)v ∈ 〈v〉}:

(2) If the subgroup H is normal, then there is a representation �′ : G →
GL(V ′) such that H = Ker(�′).

Proof. Denote by I(H) the ideal of all functions f ∈ O(G) that are zero on the
(closed) subvariety H ⊂ G. As any ideal of O(G), I(H) is �nitely generated:
I(H) = (f1; : : : ; fs). Consider the action G : G by left translations. Clearly,

g ∈ H ⇔ gH = H ⇔ g · I(H) = I(H):
Fix a �nite-dimensional (rational) G-submodule W ⊂ O(X) containing f1; : : : ; fs
and set U = W ∩ I(H), dimU = k. We claim that g ∈ H if and only if g · U = U .
Indeed, the subspace U contains f1; : : : ; fs and is contained in I(H), thus the set of
common zeroes of functions from U is H, and g · U = U ⇒ gH = H. Conversely,
gH = H implies g ∈ H.
Let us recall a lemma from linear algebra (see Exercise 1.4.9).
Lemma 1.4.2. Assume that A is a linear operator on a vector space W and U is
a k-dimensional subspace of W . The operator A acts naturally on the kth exterior
power ∧kW of W , and A preserves the subspace U ⊂W if and only if it preserves
the line ∧k U ⊂ ∧kW .

Let us �x a basis u1; : : : ; uk of the subspace U . In order to prove (1), one should
set V = ∧kW and v = u1 ∧ · · · ∧ uk.
Now we came to (2). By the above construction, the vector v in an eigenvector for
H, and there exists a homomorphism �0 : H → K× such that h · v = �0(h)v. Let
us consider all homomorphisms �i : H → K× such that there is a non-zero vi ∈ V
with h · vi = �i(h)vi for any h ∈ H. The subspaces

Vi = {w ∈ V : h · w = �i(h)w for any h ∈ H}
form a direct sum in V . Denote this sum as:

~V =
k⊕

i=0
Vi:

If w ∈ Vi , then
h · (g · w) = g · ((g−1hg) · w) = g · �i(g−1hg)w = �i(g−1hg)(g · w);

thus g · w belongs to some Vj . This implies that ~V is G-invariant. Then G acts
naturally on the space L( ~V ) of linear operators on ~V : if ~� : G → GL( ~V ) is our
representation and C ∈ L( ~V ), then g · C := ~�(g)C ~�(g)−1. Since the group G
permutes the summands Vi in ~V , the subspace L0 := ⊕ki=0L(Vi) of L( ~V ) is G-
invariant. Let us consider the representation �′ : G → GL(L0). We claim that
Ker(�′) = H. Indeed, elements of H are sent to operators that are scalar on any Vi.
These are precisely the operators that commutes with each element of ⊕ki=0L(Vi).
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On the other hand, if an element g ∈ G is sent to an operator which is scalar on
any Vi, then, in particular, g preserves the line 〈v〉, and, by assumption, belongs to
H. ¤

Let us suppose for the rest of this section that charK = 0.
Corollary 1.4.3. The set G=H of left cosets admits a unique structure of a quasipro-
jective algebraic variety such that the natural action G : G=H is algebraic.

Proof. Let us �rstly introduce an algebraic structure on G=H. Consider the projec-
tive space P(V ) and a point [v] ∈ P(V ) corresponding to a pair (V; v) constructed
in Theorem 1.4.1 (1). (Since the case G = H is trivial, we may assume that v 6= 0.)
By Lemma 1.3.14, the induced action G : P(V ) is algebraic, and the stabilizer of [v]
coincides with H. The orbit G[v] is open in its closure (Theorem 1.3.4) and thus
has a structure of a quasiprojective variety with an algebraic transitive G-action.
The orbit map G→ P(V ), g → g ·[v] de�nes a bijection G=H → G[v], and induces a
structure of a quasiprojective variety on G=H such that the natural action G : G=H
is algebraic.
Now assume that there exists another algebraic structure (G=H)1 on G=H. By
assumption, there is a commutative diagram

G
 

$$HHHHHHHHH
�

}}zz
zz

zz
zz

G=H � // (G=H)1 ;
where � and  are orbit morphisms and � is a set-theoretical bijection. Suppose
that G is connected. By Theorem 3.0.28, the map � is a rational morphism, thus
there exists an open subset W ⊆ G=H with � : W → �(W ) being isomorphism.
Since G acts transitively on G=H and all maps are G-equivariant, we may produce
a covering of G=H (by shifts of W ) such that � extends as an isomorphism to any
element of this covering: �(g · w) = g · �(g−1 · (g · w)). This shows that G=H and
(G=H)1 are isomorphic.
For non-connected G, one again may extend an isomorphism G0=(G0 ∩ H) →
(G0=(G0 ∩H))1 to G=H → (G=H)1 by translations. ¤

Corollary 1.4.4. Let H be a closed normal subgroup of G. Then the quotient group
G=H has a unique structure of an a�ne algebraic group such that the projection
G→ G=H is an algebraic homomorphism.

Proof. Consider the representation �′ : G → GL(V ′) from Theorem 1.4.1 (2). It
de�nes a bijective homomorphism G=H → �′(G). Since �′(G) is closed in GL(V )
(Theorem 1.2.12), it has a structure of an algebraic group, and induces a structure
of an algebraic group on G=H.
If G=H admits a structure of an algebraic group such that the projection G→ G=H
is algebraic, then we have a sequence of morphisms:

G×G=H → G=H ×G=H → G=H; (g; g1H) → (gH; g1H) → gg1H;
which shows that the left action G : G=H is algebraic. Thus the uniqueness follows
from Corollary 1.4.3. ¤

Proposition 1.4.5. Let G be an algebraic group and H a closed subgroup. Then
the projection morphism p : G→ G=H is open.
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Proof. All �bers of the morphism p : G→ G=H are isomorphic to H; in particular,
all their components have the same dimension. The variety G=H is smooth (e.g,
normal). Thus for connected G Proposition 1.4.5 follows from Theorem 3.0.32. For
arbitrary G, one should apply Theorem 3.0.32 to the restriction of p to a connected
component of G, where all �bers are isomorphic to H ∩G0. ¤

Proposition 1.4.6. Let G be an algebraic group and H a closed subgroup. Then
O(G=H) = O(G)H := {f ∈ O(G) : f(gh) = f(g) for any g ∈ G; h ∈ H}:

Proof. The dominant morphism p : G → G=H corresponds to an embedding
p∗ : O(G=H) ⊆ O(G)H . On the other hand, any function f ∈ O(G)H de�nes
a commutative diagram:

G
f

ÃÃA
AA

AA
AA

A
p

}}zz
zz

zz
zz

G=H � // A1:

If G is connected, then � ∈ O(G=H) (Corollary 3.0.29). For arbitrary G, these
arguments prove that � is regular on any irreducible (=connected) component of
G=H, thus f ∈ O(G=H). ¤

We �nish this section with some examples of homogeneous spaces.

Example 1.4.7 (Grassmannians and Flag Varieties). The group GL(n) acts tran-
sitively on the set of k-dimensional subspaces of V = Kn (1 ≤ k ≤ n). The stabilizer
of the standard k-subspace 〈e1; : : : ; ek〉 is

P (k; n) :=
{(

A B
0 C

)
: A ∈ GL(k); C ∈ GL(n− k); B ∈ Mat(k × (n− k))

}
:

So the homogeneous spaceGL(n)=P (k; n) is isomorphic to the Grassmannian Gr(k; n).
Now consider the subgroup B(n) ⊂ GL(n). It is the stabilizer of the standard
complete 
ag

{0} ⊂ 〈e1〉 ⊂ 〈e1; e2〉 ⊂ · · · ⊂ 〈e1; : : : ; en〉 = Kn

in Kn. Since GL(n) acts transitively of the set of complete 
ags, we again have
that GL(n)=B(n) is isomorphic to the 
ag variety F(n). It is well known that the
varieties Gr(k; n) and F(n) are projective. By Theorem 1.3.4, we have:

dim Gr(k; n) = n2 − (k2 + (n− k)2 + k(n− k)) = k(n− k);

dimF(n) = n2 − n(n+ 1)
2 = n(n− 1)

2 :

Example 1.4.8 (Homogeneous spaces for G = SL(2)). (1) Take G = SL(2) and
H = B := {A ∈ B(2) : det(A) = 1}. In order to apply Chevalley's Theorem,
consider the tautological SL(2)-module V = K2 and the �rst standard vector e1 ∈
V . Clearly, B = {A ∈ SL(2) : A · e1 ∈ 〈e1〉}. Since SL(2) acts transitively on the
set of lines in V , the homogeneous space SL(2)=B is isomorphic to the projective
line P1.
(2) Take G = SL(2) and H = U := U(2). Again consider V = K2 and v = e1, and
note that U = {A ∈ SL(2) : A · e1 = e1}: Thus, SL(2)=U is isomorphism to the
orbit of e1 in V . This is a quasi-a�ne (non-a�ne !) variety K2 \ {0}.
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(3) Finally, take G = SL(2) and H = T := {A ∈ D(2) : det(A) = 1}. Let V be
a three-dimensional space of 2 × 2-matrices with trace zero, where SL(2) acts by
conjugation: (A;C) → ACA−1. Set

v =
(

1 0
0 −1

)
:

The stabilizer of v coincides with T , and the orbit Gv consists of matrices with
eigenvalues 1 and −1. This orbit is de�ned in V by the equation det(C) = −1.
Thus SL(2)=T is an a�ne quadric in A3.
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Exercises to subsection 1.4.
Exercise 1.4.9. Prove Lemma 1.4.2.
Exercise 1.4.10. Find a faithful representation of the group GL(n)=Z(GL(n)).
Exercise 1.4.11. Prove that any irreducible component of G=H is also a connected
component, and G0 acts transitive on any such component.
Moreover, G=H is connected if and only if H intersects all connected components of G,
or, equivalently, G0H = G.
Exercise 1.4.12 (*). Prove that a homogeneous space G=H is quasi-a�ne if and only if
there are a rational �nite-dimensional G-module V and a vector v ∈ V such that

H = {g ∈ G : g · v = v}:
Exercise 1.4.13. Prove that a homogeneous space G=H is a�ne if and only if there are
a rational �nite-dimensional G-module V and a vector v ∈ V such that

H = {g ∈ G : g · v = v}
and the G-orbit Gv is closed in V .
Exercise 1.4.14. Assume that G=H is a�ne and there are a rational �nite-dimensional
G-module V and a vector v ∈ V such that H = Gv. Is it true that the orbit Gv is closed
in V ?
Exercise 1.4.15. Give an example of a homogeneous space G=H such that O(G=H) = K,
but G=H is not projective.
Exercise 1.4.16. Describe the variety SL(3)=U(3).
Exercise 1.4.17. Let G be an algebraic group and H1 ⊆ H2 ⊆ G closed subgroups. Show
that the map G=H1 → G=H2, gH1 → gH2 is a morphism.
Exercise 1.4.18 (*). Give an example of an algebraic group G and a closed subgroup H
such that the �bering p : G→ G=H is not locally trivial.





ALGEBRAIC GROUPS AND INVARIANT THEORY 21

1.5. The tangent algebra. From now on we shall assume that charK = 0.
Consider the group G = GL(n). Since GL(n) ⊂ Mat(n× n) is an open subset, the
tangent space TE(G) at the unit matrix E may be identi�ed with Mat(n×n). One
may de�ne a bilinear operation in this space: [A;B] = AB − BA. It is easy to
check that [·; ·] possesses the following properties:
[A;B] = −[B;A]; [A; [B;C]]+[B; [C;A]]+[C; [A;B]] = 0 for anyA;B;C ∈ Mat(n×n):
De�nition 1.5.1. A K-vector space g with a bilinear operation [·; ·] : g× g → g is
called a Lie algebra, if the operation [·; ·] satis�es the following conditions:

(i) (Antisymmetry) [x; y] = −[y; x] for any x; y ∈ g;
(ii) (The Jacobi Identity) [x; [y; z]]+[y; [z; x]]+[z; [x; y]] = 0 for any x; y; z ∈ g.

Remark 1.5.2. By analogy with the Leibnitz rule (fg)′ = f ′g + fg′, the Jacobi
Identity for Lie algebras may be rewritten as:

[x; [y; z]] = [[x; y]; z] + [y; [x; z]]:

The space Mat(n×n) with the operation [A;B] = AB−BA is an example of a Lie
algebra. The standard notation for this Lie algebra is gl(n).
A natural question arises: Why do we de�ne an operation in TE(G) as AB −BA,
but not via some other formula ? Below come some motivations for this de�nition.

(1) Let A ∈ GL(n) and LA : Mat(n × n) → Mat(n × n), LA(B) = AB
(resp. RA(B) = BA). Then LA (resp. RA) is a linear operator and its
di�erential dLA : TEGL(n) → TEGL(n) is given by dLA(X) = AX (resp.
dRA(X) = XA).

(2) Consider the inverse map i : GL(n) → GL(n), i(B) = B−1. The dif-
ferential di : TEGL(n) → TEGL(n) may be calculated using the explicit
formula for inverse matrix (Exercise 1.5.23). But now we prefer another ar-
guments. Any vector X ∈ TEGL(n) is a tangent vector to a smooth curve
� : K→ GL(n), �(0) = E, i.e., d

dt |t=0 �(t) = X. The image di(X) is the
tangent vector to the curve i(�(t)) = �(t)−1. One may di�erentiate the
identity �(t)�(t)−1 = E at t = 0 and obtain X�(0)−1 + �(0)(di(X)) = 0,
or di(X) = −X.

(3) Consider an inner automorphism aA : GL(n) → GL(n), aA(B) = ABA−1.
Here the di�erential daA : TEGL(n) → TEGL(n) is given as daA(X) =
AXA−1, because aA is the composition of LA and RA−1 . We have an
(algebraic) representation:

Ad : GL(n) → GL(Mat(n× n)); Ad(A)(X) = AXA−1:
(4) Let us calculate the di�erential

ad := dEAd : Mat(n× n) → Mat(Mat(n× n)):
Take again a curve �(t) with �(0) = E and d

dt |t=0 �(t) = X. Then for
any Y ∈ Mat(n× n):

d
dt |t=0 Ad(�(t))(Y ) = d

dt |t=0 �(t)Y �(t)−1 =

= XY �(0)−1 + �(0)Y (−X) = XY − Y X = [X;Y ]:
This proves that ad(X)(Y ) = [X;Y ].

De�nition 1.5.3. A representation of a Lie algebra g is a linear map � from g to
some gl(m) such that

�([x; y]) = �(x)�(y)− �(y)�(x) for all x; y ∈ g:
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For any �nite-dimensional Lie algebra g de�ne a linear map ad : g → gl(g),
ad(x)(y) = [x; y].
Lemma 1.5.4. The map ad : g → gl(g) is a representation of the Lie algebra g.

Proof. The statement follows from the Jacobi identity:
ad([x; y])(z) = [[x; y]; z] = [[x; z]; y] + [x; [y; z]] = [x; [y; z]]− [y; [x; z]] =

= (ad(x)ad(y)− ad(y)ad(x))(z):
¤

Proposition 1.5.5. Let G be a closed subgroup of GL(n).

(i) The subspace g := TEG ⊆ TEGL(n) is a Lie subalgebra of gl(n).
(ii) The structure of the Lie algebra on g = TeG does not depend on a (closed)

embedding G ⊆ GL(n).

Proof. Since for any g ∈ G the inner automorphism ag (of GL(n)) maps G to
G, the tangent space g = TEG is an invariant subspace for the representation
Ad : G → GL(gl(n)). So the same holds for its di�erential ad : g → gl(gl(n)), and
for any X;Y ∈ g one has ad(X)(Y ) = [X;Y ] ∈ g. This proves (i).
Further, the maps ag : G→ G, Ad(g) : g → g and ad(X) : g → g are de�ned in the
internal terms of the group G, thus the Lie bracket [X;Y ] := ad(X)(Y ) depends
only on G itself. ¤

Since any algebraic group G may be realized as a closed subgroup of some GL(n)
(Theorem 1.3.20), the tangent space TeG possesses a (canonical) structure of Lie
algebra.
De�nition 1.5.6. The representation Ad : G → GL(g) (resp. ad : g → gl(g)) is
called the adjoint representation of an algebraic group G (resp. of a Lie algebra g).
More generally, if H ⊆ G is a closed subgroup (resp. h ⊆ g is a Lie subalgebra) and
Ad (resp. ad) is the adjoint representation of G (resp. of g), then the restriction
Ad |H (resp. ad |h) de�nes a linear action H : g (resp. h : g). We shall call this
action an adjoint action of H (resp. of h).
Remark 1.5.7. Recall that a Lie algebra g is commutative if [x; y] = 0 for any
x; y ∈ g. If an algebraic group G is commutative, then ag = id for all g ∈ G ⇒
Ad(g) = E for all g ∈ G ⇒ ad(x) = 0 for all x ∈ g, thus Lie(G) is a commutative
Lie algebra.
Example 1.5.8. Consider G = SL(n). In order to �nd the tangent algebra, one
should calculate the di�erential of the map GL(n) → K×, A→ det(A) at the unit.
Direct calculations (see Exercise 1.5.22) shows that dE(det)(X) = tr(X), thus the
tangent algebra

Lie(SL(n)) := sl(n) = {X ∈ gl(n) : tr(X) = 0}:

Now take G = SO(n). For any smooth curve � : K→ SO(n), �(0) = E, we need to
�nd the tangent vector X = d

dt |t=0 �(t): Di�erentiating the identity �(t)T�(t) = E,
we get XT + X = 0. This implies that Lie(SO(n)) := so(n) is contained in the
space of skew-symmetric matrices. On the other hand, in the system ATA = E of
n2 de�ning equations for O(n) only n(n+1)

2 are pairwise di�erent, and dim so(n) =
dim SO(n)(= dim O(n)) ≥ n2 − n(n+1)

2 = n(n−1)
2 (cf. Example 1.3.5). Hence the

algebra so(n) is the algebra of skew-symmetric n× n-matrices.
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Below for algebraic groups G;H; : : : we denote their tangent algebras as Lie(G) =
g;Lie(H) = h; : : : .
De�nition 1.5.9. Let g and h be Lie algebras. A linear map � : g → h is said to
be a homomorphism (of Lie algebras) if

�([x; y]) = [�(x); �(y)] for all x; y ∈ g:
Theorem 1.5.10. Let G and H be algebraic groups and � : G → H a homomor-
phism. Then its di�erential d� : g → h is a homomorphism of Lie algebras.

Proof. Let L(g; h) be the space of linear maps from g to h. Consider the map
� : G→ L(g; h); �(g)(Y ) = (d� ◦Ad(g))(Y ) for all Y ∈ g:

The statement of the theorem follows from the calculation of d� : g → L(g; h) in
two ways:

G
� //

ag
²²

H
a�(g)

²²
G

� // H

g
d� //

Ad(g)
²² ÁÁ=

==
==

==
= h

Ad(�(g))
²²

g
d� // h:

Namely, take a smooth curve �(t), �(0) = E in G with d
dt |t=0 �(t) = X. Then

�(�(t))(Y ) = (d� ◦Ad(�(t)))(Y ) ⇒ d�(X)(Y ) = (d� ◦ ad(X))(Y ) = d�([X;Y ]):

On the other hand,
�(�(t))(Y ) = (Ad(�(�(t))) ◦ d�(Y )) ⇒ d�(X)(Y ) =

= ad(d�(X))(d�(Y )) = [d�(X); d�(Y )]:
¤

Lemma 1.5.11. Let G be an algebraic group and H a closed subgroup. Then
TeHG=H ∼= g=h:

Proof. Consider the surjection p : G → G=H. By Theorem 3.0.33, for a generic
g ∈ G the kernel of the di�erential dgp : TgG→ TgHG=H equals the tangent space
to the �ber. But G acts transitively on G and G=H and the map p is G-equivariant.
This implies that all points have equal status, and thus Ker(dgp) = Tg(gH) ∼= h
for any g ∈ G. On the other hand, G, H and G=H are smooth, and dim(G=H) =
dimG− dimH. So dgp is surjective, and

TeHG=H = Im(dep) ∼= g=Ker(dep) = g=h:
¤

Lemma 1.5.12. Let � : G→ H be a homomorphism of algebraic groups. Then
Lie(Ker�) = Ker d�; Lie(Im�) = Im(d�):

Proof. We may applies arguments given above to the surjection G→ �(G). ¤

Lemma 1.5.13. Let {Hi : i ∈ I} be a family of closed subgroups of G. Then

Lie(
⋂

i∈I
Hi) =

⋂

i∈I
Lie(Hi):
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Proof. Since any variety is Noetherian, there are elements H1; : : : ;Hk of our family
with ⋂k

j=1Hj = ⋂
i∈I Hi. Moreover, we may reduce the proof to the case k = 2 by

induction.
Consider the commutative diagram A of group homomorphisms and the induced
commutative diagram B of di�erentials:

G // G=H1

H2 //

OO

H2=H1 ∩H2

OO
g // g=h1

h2 //

OO

h2=h1 ∩ h2:

OO

By Lemma 1.5.11, the kernel of the lower arrow in diagram B equals Lie(H1 ∩H2).
Passing in diagram B by another way and applying Lemma 1.5.11 to the upper
arrow, we get that the kernel is Lie(H1) ∩ Lie(H2). ¤

De�nition 1.5.14. Let G be an algebraic group. A Lie subalgebra h ⊆ Lie(G) is
called algebraic if there exists a closed subgroup H ⊂ G with h = Lie(H).

Warning: Not any Lie subalgebra h ⊆ Lie(G) is algebraic, see Proposition 1.6.20.

Theorem 1.5.15. Let G be an algebraic group. The map Lie : H → Lie(H) de�nes
a bijection:
{closed connected subgroups H ⊆ G} ↔ {algebraic Lie subalgebras h ⊆ Lie(G)}:

Proof. By de�nition 1.5.14, the map Lie is surjective. In order to prove injectivity,
assume that Lie(H1) = Lie(H2). In particular, dimH1 = dimH2. If H1 ⊆ H2, then
H1 = H2 by Theorem 3.0.25. In the general case, one has

Lie(H1) = Lie((H1 ∩H2)0) = Lie(H2)
(Lemma 1.5.13), and H1 = (H1 ∩H2)0 = H2. ¤

Now consider a rational representation � : G→ GL(V ) and its tangent representa-
tion � := d� : g → gl(V ). For any subspace U ⊆ V de�ne

NG(U) = {g ∈ G : �(g)U = U}:
Proposition 1.5.16. For any vector v ∈ V and any subspace U ⊆ V one has:
Lie(Gv) = gv := {x ∈ g : �(x)v = 0}; Lie(NG(U)) = ng(U) := {x ∈ g : �(x)U ⊆ U}:

Proof. Applying Lemma 1.5.12 to G → G=Ker(�), we may assume that � : G →
GL(V ) is injective. In the case G = GL(V ), the subgroups GL(V )v and NGL(V )(U)
and their tangent algebras may be easily described in the matrix form. This
description implies that the statements are true. In the general case, �(Gv) =
GL(V )v ∩ �(G), �(NG(U)) = NGL(V )(U) ∩ �(G), and one applies Lemma 1.5.13 to
the closed subgroup �(G) ⊂ GL(V ). ¤

Theorem 1.5.17. Let � : G→ GL(V ) be a rational representation of a connected
group G, and � := d� : g → gl(V ) be the tangent representation. A subspace U ⊆ V
is G-invariant if and only if it is g-invariant. In particular, the representation � is
irreducible if and only if � is irreducible.
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Proof. A subspace U is G-invariant (resp. g-invariant) if and only if NG(U) = G
(resp. ng(U) = g). For a connected G, NG(U) coincides with G if and only if their
tangent algebras coincide (Theorem 1.5.15). By Proposition 1.5.16, Lie(NG(U)) = g
if and only if ng(U) = g. ¤
De�nition 1.5.18. Let g be a Lie algebra. A subspace a ⊆ g is called an ideal if
[x; y] ∈ a for all x ∈ g; y ∈ a.
Remark 1.5.19. A subspace a ⊆ g is an ideal if and only if it is a g-invariant
subspace with respect to the ad-representation.
Proposition 1.5.20. Let H be a closed connected subgroup of a connected group
G. The subgroup H is normal in G if and only if Lie(H) is an ideal of Lie(G).

Proof. A subgroup H is normal in G if and only if ag(H) = H for all g ∈ G.
We claim that this is equivalent to the condition "Lie(H) is an Ad(G)-invariant
subspace of Lie(G)". Indeed, if G preserves H, then it preserves its tangent space.
Conversely, assume that ag(H) 6= H for some g ∈ G. Then ag(H) is another
closed connected subgroup of G, and by Theorem 1.5.15 Lie(H) 6= Lie(ag(H)) =
Ad(g)(Lie(H)).
Finally, the subspace Lie(H) ⊆ Lie(G) is G-invariant if and only if it is g-invariant
(Theorem 1.5.17). ¤

For a Lie algebra g, the center is de�ned as
z(g) := {x ∈ g : [x; y] = 0 for all y ∈ g}:

Moreover, set
Z(g) := {g ∈ G : Ad(g)(x) = x for all x ∈ g};

and, for any x ∈ g,
ZG(x) = Z(x) := {g ∈ G : Ad(g)x = x}; zg(x) = z(x) := {y ∈ g : [y; x] = 0}:

Proposition 1.5.21. For any algebraic group G and any x ∈ Lie(G) = g one has
Lie(Z(x)) = z(x); Lie(Z(g)) = z(g):

Proof. The �rst statement follows directly from Proposition 1.5.16 applied to the
adjoint representation Ad with v = x.
For the second one, take a basis x1; : : : ; xn in g. Then Z(g) = ∩ni=1Z(xi), z(g) =
∩ni=1z(xi), and we may use Lemma 1.5.13. ¤
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Exercises to subsection 1.5.
Exercise 1.5.22. Consider the map det : GL(n) → K×, A → det(A). Prove that
dE(det)(X) = tr(X) for any X ∈ TEGL(n).
Exercise 1.5.23. Calculate the di�erential di : TEGL(n) → TEGL(n) using the formula
for inverse matrix in terms of minors.
Exercise 1.5.24. Prove that a Lie algebra is commutative if and only if any its subalgebra
is an ideal.
Exercise 1.5.25. What is an n-dimensional representation of a commutative Lie algebra
g ?
Exercise 1.5.26. Assume that G1 and G2 are connected algebraic groups such that the
Lie algebras Lie(G1) and Lie(G2) are isomorphic. Is it true that G1 and G2 are isomorphic
?
Exercise 1.5.27. Describe the tangent algebras of the groups Sp(2n), D(n), B(n) and
U(n).
Exercise 1.5.28. Prove that the following Lie algebras are isomorphic:

(a) sl(2) ∼= so(3);
(b) sl(2)× sl(2) ∼= so(4);
(c) sp(4) ∼= so(5);
(d) sl(4) ∼= so(6).

Exercise 1.5.29. Show that for any rational representation � : G → GL(V ) any G-
invariant subspace U ⊆ V is g-invariant, but for a non-connected G the converse is not
true.
Exercise 1.5.30. Let H be a closed subgroup of G. Prove that if H is normal in G, then
Lie(H) is an ideal of Lie(G). Give an example where the converse is not true.
Exercise 1.5.31. Set ZG(g) = {h ∈ G : gh = hg}. Then

Lie(ZG(g)) = {x ∈ g : Ad(g)x = x}:
Exercise 1.5.32. Prove that a connected algebraic group is commutative if and only if
its tangent algebra is commutative.
Exercise 1.5.33. For a connected G, prove that Lie(Z(G)) = z(g). For any G, one has
Lie(Z(G)) ⊆ z(g), but the inclusion may be strict.
Exercise 1.5.34. Let A be a �nite dimensional algebra. By a derivation of A we mean
a linear map D : A → A such that D(ab) = D(a)b + aD(b) for any a; b ∈ A. Denote by
Der(A) the subspace of all derivations in gl(A).

(i) Check directly that Der(A) is a Lie subalgebra in gl(A).
(ii) Let Aut(A) be the automorphism group of A, see Exercise 1.1.23. Prove that

Lie(Aut(A)) = Der(A):
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1.6. Algebraic tori. This section is devoted to a special important class of alge-
braic groups, namely algebraic tori Tm ∼= K× × · · · × K× (m times). The group
Tm is connected, commutative, and has a lot of other important properties that
are discussed below.
We begin with the study of characters.
De�nition 1.6.1. Let G be an algebraic group. A character of G is a homomor-
phism � : G→ K×.

The set X(G) of all characters has a structure of an Abelian group with respect to
the operation (�1 + �2)(g) := �1(g)�2(g), with the neutral element �0, �0(g) = 1
for all g, and with the inverse element (−�)(g) := �(g)−1.
Let G be the torus Tm. Take an integer vector u = (a1; : : : ; am) ∈ Zm. It de�nes
an (algebraic) homomorphism

�u : Tm → K×; �u((t1; : : : ; tm)) = ta1
1 : : : tamm :

Conversely,
Lemma 1.6.2. Any character � : Tm → K× has a form �u for some u ∈ Zm.

Proof. We start with m = 1. By de�nition,

�(t) =
k∑

i=−j
aiti

is a Laurent polynomial with ak 6= 0. Since it does not have roots in K×, the
same is true for p(t) = tj�(t). But any polynomial may be decomposed into linear
factors, so p(t) = aktk+j . The condition �(1) = p(1) = 1 implies ak = 1 and �nally
�(t) = tk.
For m > 1, we have

�((t1; : : : ; tm)) = �((t1; 1; : : : ; 1)) : : : �((1; : : : ; 1; tm)) = ta1
1 : : : tamm

for some ai ∈ Z. ¤

Corollary 1.6.3. The Abelian group X(Tm) is isomorphic to the lattice Zm.

Proof. The map � : X(Tm) → Zm, �(�u) = u, is bijective and respects the opera-
tions. ¤

Now we shall describe automorphisms of Tm. Lemma 1.6.2 shows that any homo-
morphism � : Tm → Tm has a form:

�((t1; : : : ; tm)) = (ta11
1 : : : ta1m

m ; : : : ; tam1
1 : : : tammm )

for some integer aij . Consider a matrix A = (aij) ∈ Mat(n× n;Z), and denote the
automorphism � as �A.
Lemma 1.6.4. �BA = �B ◦ �A for any A;B ∈ Mat(n× n;Z).

Proof. For any t = (t1; : : : ; tm) ∈ Tm, we have

�BA(t) =
(tb11a11+···+b1mam1

1 : : : tb11a1m+···+b1mamm
m ; : : : ; tbm1a11+···+bmmam1

1 : : : tbm1a1m+···+bmmamm
m )

= �B(�A(t)):
¤
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The lemma implies that a homomorphism �A is an automorphism if and only if the
matrix A is invertible. So the group Aut(Tm) is isomorphic to GL(n;Z).
Further, for any algebraic group G, an automorphism � : G → G acts on X(G)
as (� · �)(g) := �(�−1(g)). In our case, let e1; : : : ; em be the standard basis of
X(Tm) ∼= Zm. Since �−1

A = �A−1 , we have
�−1
A ((t1; : : : ; tm)) = (tc11

1 : : : tc1mm ; : : : ; tcm1
1 : : : tcmmm );

where A−1 = (cij), and thus �A(ei) = ci1e1 + · · · + cimem. This proves that
�A acts in the bases e1; : : : ; em via the matrix (AT )−1. In particular, there is
an isomorphism between Aut(Tm) and Aut(X(Tm)). Let us summarize all these
observations.
Proposition 1.6.5. There are isomorphisms:

Aut(Tm) ∼= Aut(X(Tm)) ∼= GL(m;Z):
Remark 1.6.6. The group GL(m;Z) does not have any reasonable structure of an
a�ne algebraic group.
Remark 1.6.7. Any isomorphism Tm ∼= (K×)m de�nes the standard basis in the
lattice X(Tm). Conversely, any basis e1; : : : ; em in X(Tm) de�nes an isomorphism
� : Tm ∼= (K×)m, �(t) = (e1(t); : : : ; em(t)).

Our next objective is the classi�cation of rational Tm-modules.
De�nition 1.6.8. An (algebraic) quasitorus is an algebraic group Q isomorphic to
Tm ×A, where A is a �nite Abelian group.
Lemma 1.6.9. Elements of �nite order are dense in Q.

Proof. Clearly, an element (t; a), t ∈ Tm, a ∈ A has a �nite order if and only if t
does. So it is su�cient to prove the statement for Q = Tm.
Let F (X1; X−1

1 ; : : : ; Xm; X−1
m ) be a Laurent polynomial such that F (�1; �−1

1 ; : : : ; �m; �−1
m ) =

0 for any �i with �Ni = 1 for some N > 0. We claim that F is identically zero. In-
deed,

(1) If m = 1, then F (X1; X−1
1 ) has in�nitely many roots in K, which is possible

only for the zero polynomial;
(2) Assume that m > 1. By the inductive hypothesis, for any element � ∈ K×

of �nite order, the polynomial
F�(X2; X−1

2 ; : : : ; Xm; X−1
m ) := F (�; �−1; X2; X−1

2 ; : : : ; Xm; X−1
m )

is identically zero. This implies that F does not depend on X1 (Exer-
cise 1.6.21) and F is identically zero.

¤

Let us recall a de�nition and two facts (see Exercises 1.6.25 and 1.6.26) from linear
algebra.
De�nition 1.6.10. An element A ∈ Mat(n×n) is called semisimple (or diagonal-
izable) if it is conjugate to a diagonal matrix.
Lemma 1.6.11. Any element of �nite order in GL(n) is semisimple.
Lemma 1.6.12. Let {Ai : i ∈ I} be a family of pairwise commuting semisim-
ple operators on a �nite-dimensional vector space. Then the operators Ai may be
diagonalized simultaneously.
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Let V be a rational Q-module. For any character � ∈ X(Q), de�ne a subspace
V� = {v ∈ V : g · v = �(g)v for all g ∈ Q}:

Theorem 1.6.13. Let Q be a quasitorus. For any rational Q-module V one has:
V =

⊕

�∈X(Q)
V�

Proof. We start with a �nite-dimensional case.
Lemma 1.6.14. Any rational �nite-dimensional Q-module is a direct sum of a
one-dimensional submodules.

Proof. Let � : Q→ GL(V ) be a �nite-dimensional rational representation. For any
element g ∈ Q of �nite order the operator �(g) is semisimple (Lemma 1.6.11). Since
Q is commutative, there exists a basis in V such that the operators �(g) are repre-
sented by diagonal matrices for all elements g ∈ Q of �nite order (Lemma 1.6.12).
Thus the image of a dense subset of Q is contained in the subgroup D(n) of diagonal
matrices in GL(n) (n = dimV ). But the subgroup D(n) is closed in GL(n), and
this implies �(Q) ⊆ D(n). ¤

Since any one-dimensional submodule of V is contained in some V�, we have V =∑
�∈X(Q) V�. The same holds for any rational Q-module, because any its element

is contained in a �nite-dimensional rational submodule.
We claim that the sum ∑

�∈X(Q) V� is direct. Indeed, suppose that v1 + · · ·+vk = 0
is a linear combination with non-zero vi ∈ V�i , where �i are pairwise di�erent, and
k is the smallest possible. Take g ∈ Q with �1(g) 6= �2(g). Then �1(g)v1 + · · · +
�k(g)vk = 0, and we may �nd a shorter combination:

(�1(g)− �2(g))v2 + · · ·+ (�1(g)− �k(g))vk = 0;
a contradiction. ¤
Theorem 1.6.15. Any closed subgroup H ⊆ Tm is a quasitorus. Moreover, there
are an isomorphism Tm ∼= (K×)m and positive integers d1; : : : ; ds (s ≤ m) such
that

H = {(t1; : : : ; tm) : td1
1 = · · · = tdss = 1}:

Proof. The torus Tm is commutative, and H is a normal subgroup of Tm. By The-
orem 1.4.1 (2), there is a �nite-dimensional rational representation � : Tm → GL(k)
such that H = Ker(�). There are characters �1; : : : ; �k such that the representation
� is equivalent to t → diag(�1(t); : : : ; �k(t)) (Theorem 1.6.13). This proves that
H = {t ∈ Tm : �1(t) = · · · = �k(t) = 1}.
Now we need one more fact from a course of algebra.
Proposition 1.6.16. Let B be a �nitely generated subgroup of Zm. Then B is a
free Abelian group. Moreover, there are a basis a1; : : : ; am of Zm, a basis b1; : : : ; bs
of B (s ≤ n) and positive integers d1; : : : ; ds such that b1 = d1a1; : : : ; bs = dsas.

Take a subgroup B generated by �1; : : : ; �k in X(Tm) ∼= Zm. Clearly,
H = {t ∈ Tm : �(t) = 1 for all � ∈ B}:

Let us �x the corresponding bases a1; : : : ; am and b1; : : : ; bs of X(Tm) and B re-
spectively. Applying an automorphism of Tm, one may assume that a1; : : : ; am is
a standard basis of Zm. Then

H = {(t1; : : : ; tm) ∈ Tm : td1
1 = · · · = tdss = 1};
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so H is isomorphic to
Zd1 × · · · × Zds × (K×)m−s;

where Zr is a cyclic group of order r. ¤
Corollary 1.6.17. A closed subgroup of a quasitorus is a quasitorus.

Proof. Since Q ∼= Tm × A and A is isomorphic to the direct product of l �nite
cyclic groups, the quasitorus Q (as well as any its closed subgroup) is isomorphic
to a closed subgroup of the torus Tm × T l. ¤

Now we came to the tangent algebra Lie(Tm) := t. At the �rst glance, it is not
an interesting object: t is just an m-dimensional commutative Lie algebra. But we
shall show now that it is naturally equipped with an additional structure, so called
Q-form.
The di�erential of a character � : Tm → K× de�nes a linear function

de� := d� : t → K
that may be considered as an element of the dual space t∗. The equalities (�1 +
�2)(t) = �1(t)�2(t) and �1(e) = �2(e) = 1 imply d(�1 + �2) = d�1 + d�2. Let us
denote the pairing between t and t∗ as (·; ·), (v; l) = l(x). De�ne a sublattice:

t(Z) := {x ∈ t : (x; d�) ∈ Z for all � ∈ X(Tm)};
and a Q-subspace:

t(Q) := {x ∈ t : (x; d�) ∈ Q for all � ∈ X(Tm)}:
De�nition 1.6.18. A subspace h ⊆ t is called Q-de�ned if h is the K-linear span
of h ∩ t(Q), i.e.,

h = 〈h ∩ t(Q)〉K:
Lemma 1.6.19. A subspace h ⊆ t is Q-de�ned if and only if there are �1; : : : ; �s ∈
X(Tm) with

h =
s⋂

i=1
Ker(d�i):

Proof. There are �1; : : : ; �s such that
h ∩ t(Q) = {x ∈ t(Q) : (x; d�i) = 0; i = 1; : : : ; s}:

Then
〈h ∩ t(Q)〉K = {x ∈ t : (x; d�i) = 0; i = 1; : : : ; s};

and h coincides with 〈h∩ t(Q)〉K if and only if it may be de�ned by a desired system
of linear equations. ¤
Proposition 1.6.20. A subspace h ⊆ t is an algebraic subalgebra of t if and only
if h is Q-de�ned.

Proof. We know that any closed subgroup H ⊆ Tm is given as
H = {t ∈ Tm : �1(t) = · · · = �s(t) = 1 for some �1; : : : ; �s ∈ X(Tm)};

or
H =

s⋂

i=1
Ker(�i):

By Lemma 1.5.12, Lie(Ker(�i)) = Ker(d�i), and by Lemma 1.5.13, Lie(H) =⋂s
i=1 Ker(d�i): Now Lemma 1.6.19 completes the proof. ¤
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Exercises to subsection 1.6.
Exercise 1.6.21. Let F (Y1; : : : ; Yn) be a polynomial and Fa(Y2; : : : ; Yn) := F (a; Y2; : : : ; Yn)
for a ∈ K. Prove that if Fa(Y2; : : : ; Yn) coincides with Fb(Y2; : : : ; Yn) for in�nitely many
b ∈ K, then F (Y1; : : : ; Yn) does not depend on Y1.
Exercise 1.6.22. Find the group of characters X(G) for G equals (a) GL(n); (b) SL(n);
(c) O(2); (d) B(n); (e) a quasitorus; (f) a �nite group.
Exercise 1.6.23. Describe the set of homomorphisms {� : Tm → T r}.
Exercise 1.6.24. Let A ∈ Mat(n× n) be a semisimple element and U ⊆ V := Kn be an
A-invariant subspace. Prove that A |U is a semisimple element of GL(U).
Exercise 1.6.25. Prove that any element of �nite order in GL(n) is semisimple.
Exercise 1.6.26. Let {Ai} be a family of pairwise commuting semisimple operators
on a �nite-dimensional vector space. Prove that the operators Ai may be diagonalized
simultaneously.
Exercise 1.6.27. Do semisimple elements form a subgroup of GL(n) ?
Exercise 1.6.28. Prove that semisimple elements form a dense subset of Mat(n×n), but
for n > 1 this subset is not open.
Exercise 1.6.29. Let G be a commutative algebraic group such that G0 is a torus. Prove
that G is a quasitorus.
Exercise 1.6.30. Let Q be a quasitorus and � : Q→ G be a surjective homomorphism.
Prove that G is a quasitorus.
Exercise 1.6.31. Let H be a closed subgroup of Tm. Prove that any character of H may
be extended to a character of Tm.
Exercise 1.6.32. In terms of Lemma 1.6.19, prove that

〈h ∩ t(Q)〉K = {x ∈ t : (x; d�i) = 0; i = 1; : : : ; s}:
Exercise 1.6.33. Prove that the di�erential de : Aut(Tm) → GL(t) de�nes an isomor-
phism between Aut(Tm) and the subgroup

H := {A ∈ GL(t) : A(t(Z)) = t(Z)}:
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1.7. Jordan decompositions.
De�nition 1.7.1. An element A ∈ Mat(n × n) is called nilpotent if AN = 0 for
some N , or, equivalently, all eigenvalues of A are 0.
De�nition 1.7.2. An element A ∈ GL(n) is called unipotent if A−E is nilpotent,
or, equivalently, all eigenvalues of A are 1.
Lemma 1.7.3. The subset Nil(n) ⊂ Mat(n × n) of all nilpotent elements and the
subset Uni(n) ⊂ GL(n) of all unipotent elements are closed.

Proof. Let PA(x) = xn + a1xn−1 + · · · + an be the characteristic polynomial of a
matrixA. It is well known that the coe�cients a1; : : : ; an depend onA polynomially.
So the subvariety Nil(n) is de�ne in Mat(n× n) by

a1(A) = · · · = an(A) = 0:
The subvariety Uni(n) is E+Nil(n), thus it is closed in Mat(n×n) and in GL(n). ¤

For any nilpotent A one may de�ne correctly the exponent:

exp(A) := E + A
1! + A2

2! + A3

3! + : : : :

Since for a nilpotent A ∈ Mat(n×n) one has An = 0, the map exp : Nil(n) → GL(n)
is a morphism. Moreover, the matrix A

1! + A2

2! + : : : is nilpotent, so exp(A) is
unipotent, and exp sends Nil(n) to Uni(n).
Conversely, for any B ∈ Uni(n) one may de�ne the logarithm:

ln(B) = ln(E +B0) := B0 − B2
0

2 + B3
0

3 − : : : :

Lemma 1.7.4. The map exp : Nil(n) → Uni(n) is an isomorphism of varieties.

Proof. The fact that exp and ln are inverse to each other follows from well-known
identities of formal power series:

exp(ln(x)) = x; ln(exp(x)) = x:
¤

Let A ∈ GL(n). Since the intersection of any family of closed subgroups in GL(n)
is again a closed subgroup, there exists the smallest closed subgroup containing A.
Denote it by G(A).
Assume that A ∈ Uni(n). For any t ∈ K de�ne At := exp(t ln(A)).
De�nition 1.7.5. A closed subgroup G ⊂ GL(n) is called unipotent if any element
A ∈ G is unipotent.
Proposition 1.7.6. Let A 6= E be a unipotent matrix. Then

1) {At : t ∈ K} is a one-dimensional unipotent subgroup in GL(n) isomorphic
to Ga;

2) G(A) = {At : t ∈ K}.

Proof. Note that
A1; A2 ∈ Nil(n); A1A2 = A2A1 ⇒ exp(A1 +A2) = exp(A1) exp(A2):

This implies exp((t1 + t2) ln(A)) = exp(t1 ln(A)) exp(t2 ln(A)), and the map expA :
K → GL(V ), expA(t) = At is a homomorphism of algebraic groups. By Theo-
rem 1.2.12, the subgroup expA(K) = {At : t ∈ K} is closed in GL(n).
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Lemma 1.7.7. The group Ga has no proper closed subgroups.

Proof. Since Ga is one-dimensional and irreducible, any its proper closed subset is
�nite. But Ga contains no proper �nite subgroups, because the only element of
�nite order in Ga is the unit. ¤

Thus for 1) it is su�cient to prove that {At : t ∈ K} is non-trivial. But this is
clear, since it contains A 6= E.
Moreover, G(A) ⊆ {At : t ∈ K} by minimality, and, again by Lemma 1.7.7, G(A) =
{At : t ∈ K}. ¤

Now we need some more facts from linear algebra. For any A ∈ Mat(n×n) consider
the factorization of the characteristic polynomial:

PA(x) = (x− �1)k1 : : : (x− �r)kr ; �1; : : : ; �r ∈ K; k1 + · · ·+ kr = n:
For V = Kn, de�ne the root subspaces:

V �i := {v ∈ V : (A− �iE)kiv = 0}:
It is well known that V = V �1 ⊕ · · · ⊕ V �r . Consider the semisimple operator As
that acts on any V �i as �iE. The operator An := A − As is nilpotent. Moreover,
if A is invertible, then As is invertible too, and Au := AA−1

s is unipotent. Finally,
As commutes with A, An and Au.
De�nition 1.7.8. (i) Additive Jordan decomposition of a matrixA ∈ Mat(n×

n) is a decomposition A = As + An, where As is semisimple, An is nilpo-
tent, and AsAn = AnAs.

(ii) Multiplicative Jordan decomposition of a matrix A ∈ GL(n) is a decompo-
sition A = AsAu, where As is semisimple, Au is unipotent, and AsAu =
AuAs.

The arguments given above explain that any A ∈ Mat(n × n) (resp. A ∈ GL(n))
possesses the additive (resp. multiplicative) Jordan decomposition.
Proposition 1.7.9. For any A ∈ Mat(n × n) (resp. A ∈ GL(n)), the additive
(resp. multiplicative) Jordan decomposition is unique.

Proof. Assume that A = A′s + A′n is another decomposition. Since A′sA = AA′s,
A′nA = AA′n, we have

A′sV �i ⊆ V �i ; A′nV �i ⊆ V �i ; i = 1; : : : ; r:
But A′s is semisimple, and there is a decomposition

V �i = V �i�1 ⊕ · · · ⊕ V �i�li with V �i�j := {v ∈ V �i : A′sv = �jv}:
The operators A and A′n preserve all V �i�j . Let vij be an eigenvector for A′n in V �i�j .
Then

Avij = (A′s +A′n)vij = �jvij + 0vij = �jvij
Thus �j = �i for any i; j, and A′s = As, A′n = A−A′s = A−As = An.
The same arguments work in the multiplicative case. ¤

Corollary 1.7.10. An element A ∈ Mat(n × n) is semisimple (resp. nilpotent,
unipotent) if and only if A = As (resp. A = An, A = Au).
Lemma 1.7.11. For any A ∈ Mat(n× n) there is a polynomial F (x) ∈ K[x] such
that As = F (A).



ALGEBRAIC GROUPS AND INVARIANT THEORY 35

Proof. By the Chinese remainder theorem there exists F (x) ∈ K[x] with
F (x) ≡ �i (mod(x− �i)ki):

Then F (A) |V �i≡ �iE, thus F (A) = As. ¤

Corollary 1.7.12. For any B ∈ Mat(n × n) the condition AB = BA implies
AsB = BAs, AnB = BAn, AuB = BAu.
Theorem 1.7.13. Let G ⊆ GL(n) be a closed subgroup and A ∈ G. Then
As; Au ∈ G.

Proof. By de�nition, A ∈ G implies G(A) ⊆ G. One may suppose that As; Au 6= E.
Lemma 1.7.14. G(As) is a quasitorus.

Proof. The element As is contained in a closed subgroup H conjugate to D(n) ⊂
GL(n). Thus G(As) ⊆ H and G(As) is a quasitorus (Theorem 1.6.15). ¤

The intersection of G(As) and G(Au) consists of e, because all elements of G(As)
are semisimple, and all elements of G(Au) are unipotent.
Lemma 1.7.15. BC = CB for any B ∈ G(As); C ∈ G(Au).

Proof. Note thatAs; Au ∈ ZGL(n)(As)∩ZGL(n)(Au), thusG(As); G(Au) ⊆ ZGL(n)(As)∩
ZGL(n)(Au) by minimality. This proves that

As ∈ Hs := {B ∈ G(As) : BC = CB for all C ∈ G(Au)};
Au ∈ Hu := {C ∈ G(Au) : BC = CB for all B ∈ G(As)};

Again by minimality we have G(As) = Hs, G(Au) = Hu. ¤

Denote by G(As; Au) the subgroup of GL(n) generated by G(As) and G(Au). We
have proved that the map G(As)×G(Au) → GL(n), (B;C) → BC is an injective
homomorphism. Thus G(As; Au) is a closed subgroup of GL(n) isomorphic to
G(As)×G(Au), and A = AsAu implies G(A) ⊆ G(As; Au).
Consider the projections �s : G(A) → G(As), �u : G(A) → G(Au). Since Ker(�s) ⊆
G(Au), and G(Au) has no proper closed subgroups, there are two possibilities:

(i) Ker(�s) = G(Au) ⇒ Au ∈ G(A) ⇒ Au ∈ G ⇒ As ∈ G;
(ii) Ker(�s) = {e}. Then G(A) is a quasitorus and �u(g) = E for any g ∈ G(A)

(Proposition 1.7.16). But �u(A) = Au, a contradiction.

The proof of Theorem 1.7.13 is completed. ¤

Proposition 1.7.16. Let Q be a quasitorus. Then all homomorphisms � : Q→ Ga
and  : Ga → Q are trivial.

Proof. Since the set F of elements of �nite order is dense in Q (Lemma 1.6.9), and
the only element of �nite order in Ga is e, we have �(F ) = {e}. The preimage
�−1(e) is a closed subset of Q containing F , thus �−1(e) = Q.
Conversely,  (Ga) is contained in Q0, and by Proposition 1.6.15  (Ga) is a torus.
Let g 6= e, g ∈  (Ga) be an element of order N . Then g =  (u), and  (Nu) = e.
But Ga has no proper closed subgroups, and Ker( ) = Ga. ¤

Corollary 1.7.17. G(A) = G(As; Au).
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Proof. By Theorem 1.7.13 As; Au ∈ G(A), thus G(As); G(Au) ⊆ G(A), and
G(As; Au) ⊆ G(A). On the other hand, A = AsAu ∈ G(As; Au), and G(A) ⊆
G(As; Au). ¤

Theorem 1.7.18. Let G ⊆ GL(n), G1 ⊆ GL(n1) be closed subgroups and � :
G → G1 be a homomorphism of algebraic groups. Then for any A ∈ G one has
�(As) = �(A)s, �(Au) = �(A)u.

Proof. The condition �(A) ∈ �(G(A)) ⊂ GL(n1) implies G(�(A)) ⊆ �(G(A)). On
the other hand, the closed subgroup �−1(G(�(A))) contains A, thus G(�(A)) =
�(G(A)). One knows that

G(A) ∼= G(As)×G(Au); G(�(A)) ∼= G(�(A)s)×G(�(A)u);
and may consider homomorphisms

�′s ◦ � : G(Au) → G(�(A)s); �′u ◦ � : G(As) → G(�(A)u):
By Proposition 1.7.16, they are trivial, and �(G(As)) ⊆ G(�(A)s), �(G(Au)) ⊆
G(�(A)u). Hence �(As) is semisimple and �(Au) is unipotent. Moreover, these
elements commute, and �(A) = �(As)�(Au) is the multiplicative Jordan decompo-
sition of A. By the uniqueness property, �(As) = �(A)s, �(Au) = �(A)u. ¤

Corollary 1.7.19. Let G be an algebraic group and g ∈ G. The Jordan de-
composition g = gsgu is well-de�ned, i.e., does not depend of a closed embedding
G ⊆ GL(n).

Now we come to Jordan decomposition in the tangent algebra.
Let G ⊆ GL(n) be a closed subgroup and x ∈ g ⊆ gl(n). De�ne G(x) as the
smallest closed subgroup in GL(n) such that x belongs to its tangent algebra.
Clearly, G(x) ⊆ G, G(x) is connected and dimG(x) ≥ 1 for any x 6= 0. If x is a
nilpotent element of gl(n), then G(x) coincides with {exp(tx)}; if x is semisimple,
then G(x) is a torus.
Theorem 1.7.20. 1) x ∈ g ⇒ xs; xn ∈ g;

2) if � : G→ G1 is a homomorphism, then d�(xs) = d�(x)s, d�(xn) = d�(x)n.

Proof. The proof is parallel to the proofs of Theorems 1.7.13 and 1.7.18, so we just
sketch it. Let us take the stabilizer (in GL(n)) of the element xs under the adjoint
action. Its tangent algebra is the centralizer of xs in gl(n), and thus contains xn.
This shows that G(xn) stabilizes xs. We claim that G(xn) normalizes G(xs). In-
deed, if gG(xs)g−1 6= G(xs) for some g ∈ G(xn), then Lie(gG(xs)g−1) 6= Lie(G(xs))
and

xs ∈ Lie(gG(xs)g−1 ∩G(xs)) = Lie(gG(xs)g−1) ∩ Lie(G(xs));
a contradiction with minimality of G(xs).
The same arguments show that G(xs) normalizes G(xn). Since G(xs) ∩ G(Xn) =
{e}, we again have thatG(xs; xn) := 〈G(xs); G(xn)〉 is a closed subgroup isomorphic
to G(xs)×G(xn). Moreover, G(x) ⊆ G(xs; xn). Using projections we get G(xn) ⊆
G(x) ⊆ G, thus xn ∈ g and xs = x− xn ∈ g.
Concerning 2), one easily checks that

�(G(x)) = G(�(x)); �(G(xs)) ⊆ G(d�(x)s); �(G(xn)) ⊆ G(d�(x)n):
This implies that d�(xs) is semisimple, d�(xn) is nilpotent and by Lemma 1.5.10
they commute, thus form additive Jordan decomposition of d�(x). ¤
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Corollary 1.7.21. Additive Jordan decomposition x = xs + xn for an element
x ∈ g = Lie(G) is well-de�ned.
Theorem 1.7.22. Let G ⊂ GL(n) be a unipotent subgroup. Then any element
x ∈ g is nilpotent and the map exp : g → G is an isomorphism of algebraic varieties.

Proof. If x = xs + xn with xs 6= 0, then G(xs) ⊂ G, where G(xs) is a torus, a
contradiction. Thus the map exp : g → GL(n) is de�ned. Moreover, for any x ∈ g
the subgroup G(x) = {exp(tx) : t ∈ K} is contained in G, hence exp : g → G.
Conversely, for any A ∈ G the subgroup G(A) = {At : t ∈ K} is contained in G.
Set B = ln(A). The tangent vector to the curve

At = E + tB
1! + t2B2

2! + : : :

at t = 0 is B. This shows that B ∈ g and ln sends G to g. Since G is a closed
subset of GL(n), Lemma 1.7.4 completes the proof. ¤
Corollary 1.7.23. Any unipotent group G is isomorphic (as a variety) to an a�ne
space. In particular, G is connected.
Proposition 1.7.24. Let G be a commutative unipotent group. Then exp : g → G
is an isomorphism of algebraic groups, where g is considered as an additive group
of the underlying vector space.

Proof. Since g is a commutative Lie algebra (Remark 1.5.7), any linear operators
B;C ∈ g commute, and exp(B + C) = exp(B) exp(C). ¤
Corollary 1.7.25. Any commutative unipotent group of dimension m is isomor-
phic to (Ga)m.
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Exercises to subsection 1.7.
Exercise 1.7.26. Prove that any connected one-dimensional algebraic group is isomor-
phic either to Ga or to Gm.
Exercise 1.7.27. Prove that the product and the sum of two commuting semisimple
(resp. nilpotent) operators is again semisimple (resp. nilpotent). Prove that the product
of two commuting unipotent operators is again unipotent.
Exercise 1.7.28. Is the variety Nil(n) irreducible ?
Exercise 1.7.29. Assume that A is a degenerate matrix and de�ne a multiplicative
Jordan decomposition of A as in De�nition 1.7.8 (ii). Does such a decomposition always
exist and is it unique ?
Exercise 1.7.30. Prove that for any A ∈ Mat(n × n) there is a polynomial f(x) such
that f(A) = As and f(0) = 0.
Exercise 1.7.31. Find an element A ∈ GL(n) with G(A) = D(n).
Exercise 1.7.32. What is the maximal possible dimension of a subgroup of the form
G(A), where A ∈ GL(n) ?
Exercise 1.7.33. Assume that all elements of Lie(G) are nilpotent. Prove that G0 is a
unipotent group.
Exercise 1.7.34. Let G1 and G2 be connected algebraic groups. Show that for a ho-
momorphism of Lie algebras � : Lie(G1) → Lie(G2), the equalities �(xs) = �(x)s and
�(xn) = �(x)n do not hold in general. In particular, not any homomorphism of tangent
algebras may be "integrated" to a homomorphism of corresponding connected groups.
Exercise 1.7.35 (*). Does there exist an algebraic group G such that all elements of
G0 are unipotent, but there is a connected component gG0 of G consisting of semisimple
elements ?
Exercise 1.7.36 (*). Prove that any commutative algebraic group G is isomorphic to
Gs ×Gu, where Gs is a quasitorus and Gu is a commutative unipotent group.
Exercise 1.7.37 (*). Give an example of a Lie subgroup G ⊂ GL(n;C) and an element
A ∈ G such that As; Au =∈ G.
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1.8. Solvable groups. Maximal tori and Borel subgroups.
Theorem 1.8.1 (Borel's Fixed Point Theorem (1956)). Assume that a connected
solvable algebraic group G acts on a complete (e.g., projective) variety. Then XG 6=
∅.

Proof. We proceed by induction on the length of the derived series of G. For the
basis, assume that G is commutative. Then a closed orbit Y in X (see Corol-
lary 1.3.6) is isomorphic to G=H, where H is a closed (normal) subgroup of G, thus
Y is a�ne (Corollary 1.4.4). On the other hand, Y is irreducible (G is connected)
and complete (as a closed subset of a complete variety). This proves that Y is a
G-�xed point.
For a non-commutative G, consider the commutant [G;G]. We know that [G;G] is
a proper closed connected subgroup of G (Corollary 1.2.9). Since [G;G] is normal
in G, the group G=[G;G] acts on X [G;G]. By inductive hypothesis, the set X [G;G]

is non-empty. By Proposition 1.3.9, X [G;G] is closed in X, thus complete. Again
by inductive hypothesis, the set (X [G;G])G=[G;G] = XG is non-empty. ¤

Theorem 1.8.2 (The Lie-Kolchin Theorem (1948)). Let G be a connected solvable
algebraic group and � : G → GL(V ) be a rational representation. Then there is a
non-zero vector v ∈ V such that �(g)v = �(g)v for some � ∈ X(G) and any g ∈ G.

Proof. On may assume that V is �nite-dimensional. The action G : P(V ) (see
Lemma 1.3.14) has a G-�xed point. This point corresponds to a G-invariant line L
in V , and G acts on L via some character. ¤

The Lie-Kolchin Theorem admits the following useful reformulation.
Theorem 1.8.3. Let G be a connected solvable algebraic group and � : G→ GL(V )
be a rational �nite-dimensional representation. Then there is an element A ∈
GL(V ) such that

A�(G)A−1 ⊆ B(n) =








∗ ∗ : : : ∗
0 ∗ : : : ∗
: : : : : : : : : ∗
0 0 : : : ∗







:

Proof. Since the variety F(V ) of complete 
ags in V is projective, the natural
action G : F(V ) has a �xed point. Now we should take a basis in V compatible
with a G-�xed 
ag. ¤

Corollary 1.8.4. Let G be a connected solvable algebraic group and U(G) ⊂ G be
the set of all unipotent elements in G. Then U(G) is a closed normal subgroup of
G and G=U(G) is a torus.

Proof. We may assume that G ⊂ GL(n) and even G ⊆ B(n). Here U(G) =
G ∩ U(n) is a closed normal subgroup in G and the natural homomorphism G →
B(n)=U(n) ∼= Tn identi�es G=U(G) with a connected subgroup of Tn. ¤

Theorem 1.8.5. Let G ⊂ GL(n) be a unipotent subgroup. Then there is A ∈ GL(n)
such that

AGA−1 ⊆ U(n) =








1 ∗ : : : ∗
0 1 : : : ∗
: : : : : : : : : ∗
0 0 : : : 1







:
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Proof. We claim that G is solvable. In order to prove it, we use induction on dimG.
If dimG = 1, then G = G(A) for any A ∈ G, A 6= e, and thus is commutative.
If dimG > 1, take a maximal proper closed subgroup H ⊂ G. It is connected (as
a unipotent group) and solvable by inductive hypothesis. The Ad-representation
de�nes a linear action H : g=h. By the Lie-Kolchin Theorem, there is a non-zero
eigenvector x + h ∈ g=h. But all elements of H are unipotent, and x + h is H-
�xed. The condition Ad(H)x ⊆ x + h implies ad(h)x ⊆ h, or [x; h] ⊆ h. The
one-dimensional subgroup G(x) is not contained in H (x =∈ h) and normalizes H.
By maximality of H, the semidirect product G(x) iH coincides with G. We have
proved that H is normal in G and dimG=H = 1. Hence H and G=H are solvable,
and so is G.
Applying Theorem 1.8.3, we �nd A ∈ GL(n) such that AGA−1 ⊆ B(n). But all
element of G are unipotent, so AGA−1 ⊆ U(n). ¤

Corollary 1.8.6. Any unipotent group is solvable.

In fact, we may say more.
Corollary 1.8.7 (of the proof of Theorem 1.8.5). If G is a unipotent group, then
there is a sequence of subgroups

{e} = G0 CG1 C · · ·CGk = G;
such that Gi=Gi−1 ∼= Ga.
Corollary 1.8.8. The subgroup U(n) is a maximal (with respect to inclusion)
unipotent subgroup of GL(n).
Corollary 1.8.9. X(G) = 0 for any unipotent group G.

Proof. Assume that � : G→ K× is a non-trivial character. Then there is a number
i with �(Gi−1) = 1 and � |Gi being non-trivial, so � is a non-trivial character of
the group Gi=Gi−1, a contradiction with Proposition 1.7.16. ¤

Now we are ready to prove the structural theorem for connected solvable groups.
Theorem 1.8.10. Let G be a connected solvable algebraic group. Then there is a
subtorus T ⊆ G such that G = T i U(G).

Proof. By Corollary 1.8.4, the quotient G=U(G) is a torus H.
Lemma 1.8.11. For any torus Tm, there is t0 ∈ Tm such that G(t0) = Tm.

Proof. By Theorem 1.6.15, it is su�cient to �nd an element t0 ∈ Tm such that
any character of Tm is not equal to 1 at t0. On may take t0 = (p1; : : : ; pn), where
p1; : : : ; pn are pairwise di�erent (positive) prime integers. ¤

Now take t0 ∈ H with G(t0) = H, consider the projection � : G→ H and �x g ∈ G
with �(g) = t0. If g = gsgu is Jordan decomposition, then t0 = �(gs)�(gu). Hence
�(gu) = e, and one may assume that g = gs is semisimple. The subgroup G(g)0 is
a torus of dimension ≥ dimH, because �(G(g)0) can not be a proper subgroup of
H. By dimension reasons, G(g)0 iU(G) coincides with G, and G(g)0 is the desired
subtorus T . ¤

De�nition 1.8.12. Let G be an algebraic group. A subtorus T ⊆ G is called a
maximal torus of G if it is not contained in any other subtorus of G.
Example 1.8.13. The subgroup D(n) is a maximal torus of GL(n).
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Proposition 1.8.14. Any two maximal tori of a connected solvable algebraic group
G are conjugate.

Proof. We know that G = T i U(G).
Lemma 1.8.15. Any semisimple element s ∈ G is conjugate to an element of T .

Proof. Consider the homogeneous G-space G=T . An element s ∈ G is conjugate to
an element of T if and only if s has a �xed point on G=T . The projection

 := � |U (G) : U(G) → G=T
is bijective, and thus is an isomorphism of varieties. By Theorem 1.7.22, the map

� :=  ◦ exp : Lie(U(G)) → G=T
is also an isomorphism. Moreover, the torus T acts on Lie(U(G)) via adjoint action,
t exp(A)t−1 = exp(tAt−1), and thus the morphism � is T -equivariant with respect
to the action T : G=T , t · uT = tuT = tut−1T . This shows that G=T may be
identi�ed with an a�ne space Am with a linear T -action.
Suppose that U(G) is commutative. Then exp : Lie(U(G)) → U(G) is an iso-
morphism of groups (Proposition 1.7.24) and, via our identi�cation G=T ∼= Am,
the U(G)-action on G=T is the action by parallel translations on Am. Finally,
the group G acts on Am via a�ne transformations, and thus preserves the �nite-
dimensional subspace A of a�ne functions in O(Am). By assumption, the element s
is semisimple, and there is a basis {f1; : : : ; fm+1} in A consisting of s-eigenvectors.
Renumbering, one may suppose that the linear parts of f1; : : : ; fm are linearly inde-
pendent. The hyperplanes f1 = 0; : : : ; fm = 0 are s-invariant and their intersection
is an s-�xed point.
If U(G) is not commutative, we proceed by induction. The commutant [U(G); U(G)]
is a closed normal subgroup of G, and for the group

G=[U(G); U(G)] ∼= T i U(G)=[U(G); U(G)]
the element s[U(G); U(G)] is conjugate to an element of T . Thus for some g ∈ G,
one has gsg−1 ∈ T i [U(G); U(G)]. Again by inductive hypothesis, this element is
conjugate to an element of T . ¤

The condition s ∈ gTg−1 implies G(s) ⊆ gTg−1. This proves that any subgroup
G(s) is conjugate to a subgroup of T . By Lemma 1.8.11, any subtorus in G is
conjugate to a subtorus in T . (In particular, T is a maximal torus in G.) ¤

De�nition 1.8.16. Let G be an algebraic group. A maximal connected solvable
subgroup of G is called a Borel subgroup.
Example 1.8.17. Theorem 1.8.3 implies that B(n) is a Borel subgroup of GL(n).
Lemma 1.8.18. Let G be an algebraic group and B ⊆ G be a Borel subgroup of
maximal dimension. Then the homogeneous space G=B is projective.

Proof. By Theorem 1.4.1, there exist a rational G-module V and a non-zero v ∈ V
such that

B = {g ∈ G : g · v ∈ 〈v〉}:
Let F0 be a closed subvariety of the 
ag variety F(V ) consisting of complete 
ags
with the �rst element 〈v〉. The subvariety F0 is B-invariant, and by Borel's Fixed
Point Theorem B has a �xed point F ∈ F0. The stabilizer GF coincides with B,
because B is the stabilizer of F 's �rst element. We claim that the G-orbit of F is
closed in F(V ). Indeed, any G-orbit in the closure of GF has smaller dimension.
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On the other hand, the stabilizer of any point on F(V ) is solvable, and B has a
maximal dimension among (closed) solvable subgroups of G.
We have proved that GF ∼= G=B is closed in the projective variety F(V ), thus is
projective too. ¤
Theorem 1.8.19. Let G be an algebraic group. Then

(1) any two Borel subgroups of G are conjugate;
(2) any two maximal tori of G are conjugate.

Proof. Let B be a Borel subgroup of G and B0 be a Borel subgroup of maximal
dimension. By Borel's Fixed Point Theorem, B has a �xed point on G=B0, or,
equivalently, there is g ∈ G with gBg−1 ⊆ B0. By maximality of B, gBg−1 = B0,
and the �rst statement is proved.
Now take two maximal tori T1 and T2 in G. Since T1 and T2 are connected and
solvable, there are Borel subgroups B1 and B2 with T1 ⊆ B1, T2 ⊆ B2. We know
that gB1g−1 = B2 for some g ∈ G. By Proposition 1.8.14, the torus T2 and gT1g−1

are conjugate. ¤
Corollary 1.8.20. Let G be an algebraic group and B a Borel subgroup of G. Then
the homogeneous space G=B is projective.
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Exercises to subsection 1.8.
Exercise 1.8.21. Let B and B1 be Borel subgroups in SL(2) and SO(3) respectively. Are
B and B1 isomorphic as algebraic groups ?
Exercise 1.8.22. Show by examples that the following conditions:

a) G is connected;
b) G is solvable;
c) X is complete

are essential in Borel's Fixed Point Theorem.
Exercise 1.8.23. Check that NGL(n)B(n) = B(n).
Exercise 1.8.24. Let G be a solvable algebraic group and U(G) ⊂ G be the set of all
unipotent elements in G. Prove that U(G) is a closed normal subgroup of G. Is it true
that G=U(G) is a quasitorus ?
Exercise 1.8.25. Let G be a unipotent group and X an a�ne G-variety. Prove that any
G-orbit on X is closed.
Exercise 1.8.26. A subgroup P of an algebraic group G is said to be parabolic if P
contains a Borel subgroup of G. Prove that the homogeneous space G=H is projective if
and only if H is parabolic.
Exercise 1.8.27 (*). Classify up to conjugation parabolic subgroups of GL(n).
Exercise 1.8.28 (*). Let G be an algebraic group acting on a variety X and B be a
Borel subgroup of G. Assume that Y ⊆ X is a closed B-invariant subset. Prove that
GY := {g · y : g ∈ G; y ∈ Y } is closed in X.
Exercise 1.8.29. Prove that any two maximal unipotent subgroups of an algebraic group
G are conjugate.
Exercise 1.8.30. Show that two maximal connected commutative subgroups of G need
not be conjugated.
Exercise 1.8.31 (*). Describe Borel subgroups and maximal tori in SO(n) and Sp(2n).
Exercise 1.8.32 (**). Let G be a solvable algebraic group and H a closed subgroup of
G. Prove that the homogeneous space G=H is a�ne.
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1.9. Reductive groups. In the present section we �rst introduce two concepts of
the radical for algebraic groups.

Lemma 1.9.1. Let F be a solvable (resp. unipotent) algebraic group and � : G→ F
be a surjective homomorphism. The group G is solvable (resp. unipotent) if and
only if so is Ker�.

Proof. The statement concerning solvability is standard. If s ∈ G is a semisimple
element, then �(s) is semisimple, so �(s) = e and s ∈ Ker�. This proves that G
contains no semisimple elements (i.e., is unipotent) if and only if so does Ker�. ¤

Lemma 1.9.2. Let G be an algebraic group and H1, H2 two normal closed con-
nected solvable (resp. unipotent) subgroups of G. Then the subgroup H1H2 possesses
the same properties.

Proof. The image of the map H1×H2 → G, (h1; h2) → h1h2 satis�es the conditions
of Proposition 1.2.6, so H1H2 is a closed connected subgroup of G. Clearly, it is
normal. Applying Lemma 1.9.1 to the homomorphism

H1H2 → H1H2=H2 ∼= H1=(H1 ∩H2);

we get that H1H2 is solvable (resp. unipotent). ¤

De�nition 1.9.3. The radical R(G) of an algebraic group G is the largest (closed)
connected normal solvable subgroup of G.

Remark 1.9.4. By Lemma 1.9.2, the subgroup R(G) is well-de�ned. Moreover,
R(G) = R(G0) because R(G) ⊆ R(G0) and R(G0) is a normal subgroup of G.

De�nition 1.9.5. An algebraic group G is semisimple if R(G) = {e}.
Lemma 1.9.6. If G is an algebraic group, then G=R(G) is semisimple.

Proof. Let � : G → G=R(G) be the projection. Assume that R(G=R(G)) 6=
{e}. Then it has positive dimension. By Lemma 1.9.1, the preimage H :=
�−1(R(G=R(G))) is a normal solvable subgroup of G of positive dimension, thus
H0 ⊆ R(G) and �(H) is �nite, a contradiction. ¤

Proposition 1.9.7. An algebraic group G is semisimple if and only if its tangent
algebra g is semisimple.

Proof. If r(g) 6= 0, then g contains a non-zero commutative ideal a: take the last
non-zero element in the sequence of commutants of r(g). Then a ⊆ z(zg(a)). On
the other hand, the ideal z(zg(a)) is the tangent algebra to the normal algebraic
subgroup

H = {g ∈ G : Ad(g)y = y for all y ∈ zg(a)}:
By Proposition 1.9.8, the group H0 is commutative, and thus H0 ⊆ R(G).

Conversely, if R(G) 6= {e}, then it contains a connected commutative subgroup
that is normal in G, and its tangent algebra is a commutative ideal of g. ¤

Proposition 1.9.8. If G is connected and g = Lie(G) is a commutative Lie algebra,
then the group G is commutative.
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Proof. Let gs (resp. gn) be the set on semisimple (resp. nilpotent) elements in g.
Since g is commutative, gs and gn are ideals in g. Let us �x a closed embedding
G ⊆ GL(n). The map exp : gn → G de�nes an isomorphism between gn and some
commutative unipotent subgroup Gu of G. Moreover, Gu is normal in G (because
gn is an ideal).
One may assume that gs is the set of diagonal matrices in g (Lemma 1.6.12). Then
gs = Lie(G ∩ D(n)) = Lie(Gs), where Gs := (G ∩ D(n))0 is a torus. Again, the
subgroup Gs is normal in G. Since Gu ∩ Gs = {e}, the map � : Gu × Gs → G,
�(g1; g2) = g1g2 is a injective homomorphism. Since any element of G admits
multiplicative Jordan decomposition, � is an isomorphism. ¤

Now we introduce a product of normal subgroups of G which is "almost" direct.
De�nition 1.9.9. Let G be a connected algebraic group and H1; : : : ; Hk its closed
connected subgroups. The group G is said to be an almost direct product of
H1; : : : ;Hk (notation: G = H1 ·H2 · ::: ·Hk), if

(i) hihj = hjhi for any hi ∈ Hi, hj ∈ Hj , i 6= j;
(ii) the homomorphism

� : H1 × · · · ×Hk → G; �(h1; : : : ; hk) = h1 : : : hk;
is surjective and Ker� is a �nite (central) subgroup of H1 × · · · ×Hk.

Example 1.9.10. The group GL(n) is an almost direct product of H1 = {�E :
� ∈ K×} and H2 = SL(n) with Ker� = {(�E; �−1E) : �n = 1}.
Lemma 1.9.11. Let G be a connected algebraic group and H1; : : : ;Hk be closed
connected subgroups. Then G is an almost direct product of H1; : : : ; Hk if and only
if g = h1 ⊕ · · · ⊕ hk (a direct sum of Lie algebras).

Proof. Assume that k = 2. If G = H1 ·H2, then h1 ∩ h2 = 0, h1 and h2 are ideals
of g and the di�erential of � : H1 ×H2 → G de�nes an isomorphism h1 ⊕ h2 ∼= g.
Conversely, if g = h1⊕h2, then H1 and H2 are normal subgroups of G with H1∩H2
being �nite. A commutator h1h2h−1

1 h−1
2 belongs to H1 ∩H2, and irreducibility of

H1H2H−1
1 H−1

2 implies that h1h2 = h2h1. Finally, � : H1 ×H2 → G is surjective,
because of Theorem 1.2.12.
For k > 2 we use induction. If G = H1 · ::: ·Hk, then

g = Lie(H1 · ::: ·Hk−1)⊕ hk = h1 ⊕ · · · ⊕ hk:

Conversely, if g = h1⊕· · ·⊕hk, then the subgroups Hi are normal in G, and, looking
at

H1 ×H2 × · · · ×Hk−1 → H1H2:::Hk−1;
one checks that Lie(H1H2:::Hk−1) = h1 ⊕ h2 ⊕ · · · ⊕ hk−1. Hence we obtain

G = (H1 · :::: ·Hk1) ·Hk = H1 · ::: ·Hk−1 ·Hk:
¤

De�nition 1.9.12. The unipotent radical Ru(G) of an algebraic group G is the
largest normal unipotent subgroup of G.
Remark 1.9.13. By Lemma 1.9.2, the subgroup Ru(G) is well-de�ned and again
Ru(G) = Ru(G0).
De�nition 1.9.14. An algebraic group G is reductive if Ru(G) = {e}.
Example 1.9.15. Any �nite group and any quasitorus are reductive.
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Theorem 1.9.16. Let G be an algebraic group. The following conditions are equiv-
alent:

(1) G is reductive;
(2) R(G) is a torus;
(3) G0 = T · S, where T is a torus and S is a connected semisimple subgroup;
(4) any �nite-dimensional rational representation of G is completely reducible;
(5) G admits a faithful �nite-dimensional completely reducible rational repre-

sentation.

Proof. (1)⇒(2) Since R(G) = T iU(R(G)), where U(R(G)) is the set of all unipo-
tent elements in R(G), the subgroup U(R(G)) is invariant under any au-
tomorphism of G, and thus U(R(G)) ⊆ Ru(G).

(2)⇒(3) Set T = R(G) = R(G0) and S = [G0; G0]. Let V be a �nite-dimensional
G-module. Since T is a torus, there is a decomposition

V =
⊕

�∈X(T )
V�; V� := {v ∈ V : t · v = �(t)v}:

The subgroup T is normal in G, thus G permutes the summands V�. On
the other hand, the stabilizer of V� is closed in G, so G0 preserves any V�.
In particular, taking a faithful representation �, we see that T is contained
in the center of G0.

Any element of S is a product of commutators, so it acts on any V�
with determinant 1. This implies that S ∩ T is �nite.

By Lemma 1.9.6, the group G=T is semisimple. Then Lie(G=T ) is
semisimple and [Lie(G=T );Lie(G=T )] = Lie(G=T ) (Corollary 4.0.40).

Lemma 1.9.17. Let F be a connected algebraic group with [Lie(F );Lie(F )] =
Lie(F ). Then [F; F ] = F .

Proof. If [F; F ] is a proper subgroup, then F=[F; F ] is an Abelian group of
a positive dimension, Lie(F=[F; F ]) = Lie(F )=Lie([F; F ]) is commutative,
and thus [Lie(F );Lie(F )] ⊆ Lie([F; F ]). ¤

We have proved that the group G0=T coincides with its commutant,
and the natural projection � : S → G0=T is surjective, with Ker(�) be-
ing �nite. This proves that S is semisimple (Lie(S) = Lie(G0=T ), use
Proposition 1.9.7) and G0 = T · S.

(3)⇒(4) Take any �nite-dimensional G-module V and again consider the decompo-
sition V = ⊕�∈X(T )V� with respect to T . Any subspace V� is G0-invariant.
We claim that V� is a completely reducible S-module. Indeed, Theo-
rem 1.5.17 reduces the problem to representations of Lie algebras, where
the statement is know as Weyl's Theorem (see Theorem 4.0.41).

We have obtained that V is completely reducible G0-module. Now let
U be a G-invariant subspace of V and p : V → U be a G0-equivariant
projection. For any g ∈ G de�ne an operator pg(v) := g · p(g−1 · v). Fix a
representative gi in any connected component of G.

Lemma 1.9.18. The operator

P := 1
|G=G0|

∑

i
pgi : V → V

is a G-equivariant projection on U .
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Proof. Clearly, P : V → U , and it is su�cient to check that P (u) = u for
any u ∈ U . But

P (u) = 1
|G=G0|

∑

i
gi · p(g−1

i · u) = 1
|G=G0|

∑

i
gi · (g−1

i · u) = u:

¤

Finally, the kernel of P is a G-invariant subspace complementary to U .
(4)⇒(5) Follows from Theorem 1.3.20.
(5)⇒(1) Let � : G → GL(V ) be a faithful completely reducible representation .

Suppose that Ru(G) 6= {e}. By Theorem 1.8.5, the subspace V Ru(G) 6=
0. But Ru(G) is normal in G, and V Ru(G) is G-invariant. By complete
reducibility, there is a complementary G-invariant subspace W :

V = V Ru(G) ⊕W:
The subspace W is non-zero (� is faithful), and, again by Theorem 1.8.5,
WRu(G) 6= 0, a contradiction with V Ru(G) ∩W = 0.

¤

Corollary 1.9.19. For a reductive G, R(G) is a central subtorus of G0.
Corollary 1.9.20. All classical groups are reductive.

Proof. Since the tautological representation of a classical group is completely re-
ducible, we may apply (5). (In fact, the tautological representation is almost always
irreducible, see Exercise 1.9.34.) ¤

De�nition 1.9.21. A connected algebraic group G is said to be simple, if Lie(G)
is a simple Lie algebra.

Warning: A simple algebraic group G may contain a proper normal subgroup:
take G = SL(2).
Proposition 1.9.22. For any reductive group G, one has

G0 = T ·G1 · ::: ·Gk;
where T is a torus and Gi are simple subgroups.

Proof. For the semisimple part S ⊆ G0, one has Lie(S) = g1 ⊕ · · · ⊕ gk, where gi
are simple ideals (Theorem 4.0.39). We claim that gi is an algebraic Lie subalgebra
of Lie(S). Indeed, the center of a simple Lie algebra is trivial, and

gi = {x ∈ Lie(S) : [x; y] = 0 for all y ∈ gj ; j 6= i}:
Thus gi = Lie(Si), where

Si := {g ∈ S : Ad(g)y = y for all y ∈ gj ; j 6= i}:

Lemma 1.9.11 implies that S = G1 · ::: · Gk, where Gi := S0
i , and, �nally, G0 =

T ·G1 · ::: ·Gk. ¤

We �nish this section with complete reducibility of any rational G-module for a
reductive G.
Let � = �(G) be the set of isomorphism classes of rational �nite-dimensional simple
G-modules. For any rational G-module V one can de�ne a submodule V� as the
sum of all simple submodules of V whose class is �.
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De�nition 1.9.23. The submodule V� is called the isotypic component of type �
of the module V .
Theorem 1.9.24. Let G be a reductive group and V a rational G-module. Then

V = ⊕�∈�V�:

Proof. Since any vector v ∈ V lies in a �nite-dimensional submodule, Theorem 1.9.16
(4) implies that v ∈ ∑

�∈� V�.
Suppose that v1 + · · ·+ vk = 0, where non-zero vi belong to di�erent V�i . There is
a �nite-dimensional G-submodule W that contains v1; : : : ; vk. Consider a decom-
position

W = W1 ⊕ · · · ⊕Ws;
where Wi are simple G-modules. We claim that V� ∩ W is a sum of some Wi.
Indeed, if U is a simple G-submodule in W , then, by the Schur Lemma, U has
zero projection on any Wi that is not isomorphic to U . This shows that the sum
W = ∑

� V� ∩W is direct, a contradiction. ¤
Remark 1.9.25. The decomposition V = ⊕�∈�V� is called the isotypic decompo-
sition of a rational G-module V .
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Exercises to subsection 1.9.
Exercise 1.9.26. Classify all closed subgroups of positive dimension in SL(2) up to
conjugation.
Exercise 1.9.27. Fix a sequence 1 ≤ k1 < k2 < · · · < ks = n of positive integers and the
standard basis e1; : : : ; en in Kn. Let Pk1;:::;ks be the stabilizer in GL(n) of the 
ag

{0} ⊂ 〈e1; : : : ; ek1〉 ⊂ 〈e1; : : : ; ek2〉 ⊂ · · · ⊂ 〈e1; : : : ; eks〉 = Kn:
Calculate R(Pk1;:::;ks) and Ru(Pk1;:::;ks).
Exercise 1.9.28. Prove that SO(4) is an almost direct product of two closed subgroups
isomorphic to SL(2).
Exercise 1.9.29. Let G be an algebraic group. Prove that G=Ru(G) is reductive.
Exercise 1.9.30. Do there exist connected algebraic groups G1 and G2 such that G1 is
reductive, G2 is not, and Lie(G1) ∼= Lie(G2) ?
Exercise 1.9.31. Show that a direct product, a normal subgroup and a quotient group
of a reductive group is reductive.
Exercise 1.9.32. Let G be a reductive group and � : F → G be a surjective homomor-
phism with �nite kernel. Show that F is reductive.
Exercise 1.9.33. Prove that Lie(R(G)) = r(g).
Exercise 1.9.34. Let V be the tautological module of a classical group G (recall that G =
GL(n);SL(n);O(n); SO(n); Sp(2n)). Prove that V is irreducible with the only exception
G = SO(2).
Exercise 1.9.35 (*). List all classical groups that are semisimple. Which of them are
simple ?
Exercise 1.9.36. Let H and N be closed connected subgroups of an algebraic group G.
Assume that H normalizes N . Then the subgroup HN is closed in G and Lie(HN) =
Lie(H) + Lie(N).
Exercise 1.9.37 (*). Assume that all elements of an algebraic group G are semisimple.
Prove that G0 is a torus.
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2. Invariant Theory

2.1. Finite generation. Let G be an algebraic group and X a G-variety. Recall
that the algebra of regular functions O(X) is a rational G-module with respect to
the action:

(g · f)(x) := f(g−1 · x):
De�ne O(X)G := {f ∈ O(X) : g · f = f for all g ∈ G}. Clearly, O(X)G is a
subalgebra in O(X) and the restriction of an element f ∈ O(X)G to a G-orbit in X
is a constant. The algebra O(X)G is called the algebra of invariants of the action
G : X, and an element f ∈ O(X)G is called an invariant.
Theorem 2.1.1 (Hilbert's Theorem on Invariants (1890)). Let G be a reductive
algebraic group and X an a�ne G-variety. Then the algebra of invariants O(X)G
is �nitely generated.

Proof. Consider the isotypic decomposition of the G-module O(X):
O(X) = ⊕�∈�(G)O(X)�:

If � = 0 is a class of the one-dimensional G-modules with trivial G-action, then
O(X)0 = O(X)G. Consider a G-invariant subspace

O(X)G := ⊕� 6=0O(X)�:
Clearly, O(X) = O(X)G ⊕O(X)G.
De�nition 2.1.2. The projection R : O(X) → O(X)G along O(X)G is called the
Reynolds operator on O(X).

Let us collect some properties of the Reynolds operator.
Lemma 2.1.3. (i) The map R is G-invariant;

(ii) R(ff1) = fR(f1) for any f ∈ O(X)G, f1 ∈ O(X);
(iii) any G-invariant subspace of O(X) is R-invariant.

Proof. (i) Since the subspacesO(X)G andO(X)G areG-invariant, we haveR(g· f) =
R(f).

(ii) Set f1 = f+
1 + f−1 , where f+

1 ∈ O(X)G, f−1 ∈ O(X)G. Then ff1 = ff+
1 + ff−1 ,

ff+
1 ∈ O(X)G. Since for any simpleG-submodule U ⊂ O(X) of type � the subspace

fU = {fu : u ∈ U} is also a simple G-submodule of the same type, one has
O(X)GO(X)G ⊆ O(X)G;

thus ff−1 ∈ O(X)G, and R(ff1) = ff+
1 = fR(f1).

(iii) Let W ⊆ O(X) be a G-invariant subspace. The isotypic decomposition of W
leads to W = WG ⊕WG, there WG ⊆ O(X)G, WG ⊆ O(X)G. Thus f = f ′ + f ′′
with f ′ ∈WG, f ′′ ∈WG, and R(f) = f ′ ∈W . ¤

We come to the proof of Theorem 2.1.1 in the particular case, where X is a rational
G-module V . Here the algebra O(V ) is a polynomial algebra that has a natural
grading O(V ) = ⊕n≥0O(V )n, where O(V )n is the span of monomials of degree n.
Since G acts linearly, it preserves homogeneous components. In particular,

O(V )G = ⊕n≥0O(V )Gn :
Put I1 := ⊕n>0O(V )Gn . Then I := I1O(V ) CO(V ) is the ideal of O(V ) generated
by invariants of positive degree. By the Hilbert Basis Theorem, any ideal of O(V )
is �nitely generated, thus I = (f1; : : : ; fk). One may assume that the elements
f1; : : : ; fk are homogeneous and belong to I1.
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Lemma 2.1.4. f1; : : : ; fk generate the algebra O(V )G.

Proof. Take a homogeneous element F ∈ O(V )G. In order to prove that F ∈
K[f1; : : : ; fk], we apply induction on degF . The case degF = 0 is obvious. If
degF > 0, then F ∈ I, thus F = a1f1 + · · · + akfk for some ai ∈ O(V ). By
Lemma 2.1.3, one has

F = R(F ) = R(a1f1) + · · ·+R(akfk) = R(a1)f1 + · · ·+R(ak)fk:
Since deg fi > 0, we may suppose that R(ai) are homogeneous invariants with
degR(ai) < degF . By inductive hypothesis, R(ai) ∈ K[f1; : : : ; fk], so F ∈ K[f1; : : : ; fk].

¤

Now we are ready to prove Theorem 2.1.1 for arbitrary a�ne G-variety X. By
Theorem 1.3.19, X may be realized as a closed G-invariant subvariety of some G-
module V . The embedding X ,→ V corresponds to the surjective G-equivariant
restriction homomorphism p : O(V ) → O(X). Clearly, the restriction of p to
O(V )G de�nes a homomorphism p′ : O(V )G → O(X)G.

Lemma 2.1.5. Let V be an a�ne G-variety and X its closed G-invariant subva-
riety. Then the restriction homomorphism p′ : O(V )G → O(X)G is surjective.

Proof. For any non-zero f ∈ O(X)G, the preimage of the line p−1(〈f〉) is a G-
submodule W ⊂ O(V ) that is mapped surjectively on 〈f〉. By the Schur Lemma,
p sends any isotypic component of non-zero type in W to zero. Thus there is a
G-invariant F ∈W such that p(F ) = f . ¤

Since O(V )G is �nitely generated, so is its homomorphic image O(X)G, and The-
orem 2.1.1 is proved. ¤

Unfortunately, the proof given above does not provide any algorithm for �nding a
generating set for O(X)G. It turns out to be a very di�cult problem. We �nish
this section this a method that allows to �nd a generating set in many important
cases. This method is called the method of sections.
Assume that S ⊂ X is a closed subvariety. De�ne
Z(S) := {g ∈ G : g · s = s for all s ∈ S}; N(S) := {g ∈ G : g · s ∈ S for all s ∈ S}:
Clearly, Z(S) is a normal subgroup of the group N(S), and the quotient group
W = W (S) := N(S)=Z(S) acts (algebraically) on S. The surjection O(X) → O(S)
de�nes a homomorphism � : O(X)G → O(S)W .

Lemma 2.1.6. Suppose that there is an open dense subset U ⊆ X such that for
any x ∈ U the orbit Gx intersects S. Then � is injective.

Proof.
f ∈ O(X)G; �(f) = 0 ⇒ f |S≡ 0 ⇒ f |U≡ 0 ⇒ f = 0:

¤

Moreover, if f1; : : : ; fk ∈ O(X)G and �(f1); : : : ; �(fk) generate O(S)W , then � is
an isomorphism. In particular, f1; : : : ; fk generate O(X)G.
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Example 2.1.7. Consider G = GL(n) and X = Mat(n × n) with the adjoint
G-action: A · M := AMA−1. Take S to be the subspace of diagonal matrices.
Here Z(S) = D(n) and N(S) is the group of monomial matrices. Indeed, the
standard basis inKn is the only basis proper for any operator from S, and N(S) may
only permutes basis vectors. This shows that W is isomorphic to the permutation
group �n and it acts on S permuting the diagonal entries. Let �1; : : : ; �n be
elementary symmetric polynomials in standard coordinates on S. It is well known
that �1; : : : ; �n is a generating set for O(S)W .
In order to verify the condition of Lemma 2.1.6, one may take the open subset U of
matrices with pairwise di�erent eigenvalues. It is well known that any matrix from
U is diagonalizable.
Now let f1; : : : ; fn be the coe�cients of the characteristic polynomial

PA(x) = xn + f1(A)xn−1 + · · ·+ fn(A);
considered as polynomial functions on the space Mat(n× n). The restriction of fi
to the subspace of diagonal matrices equals (−1)i�i. This proves that

O(Mat(n× n))GL(n) = K[f1; : : : ; fn]:
Moreover, we know that �1; : : : ; �n generate O(S)W freely, and so do f1; : : : ; fn.
Example 2.1.8. Let G = SL(n) and X be the space Sym(n) of symmetric n× n-
matrices with the action: A ·M := AMAT . It is natural to consider the line aE,
a ∈ K as the subvariety S. Here Z(S) = SO(n). If A ∈ N(S), then AEAT = aE.
Taking determinant, we get an = 1. Thus N(S) = CnZ(S), where

Cn = {diag(−�; �; : : : ; �) : �n = −1};
and W ∼= Zn acts on S via multiplications by � = �2, �n = 1. This proves that
O(S)W = K[F ], F (aE) = an.
Since any non-degenerate symmetric matrix is GL(n)-equivalent to E, its SL(n)-
orbit intersects S, and we may put U to be the set of non-degenerate symmetric
matrices.
The determinant det de�nes a G-invariant function on X. Its restriction to S
coincides with F , so

O(Sym(n))SL(n) = K[det]:
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Exercises to subsection 2.1.
Exercise 2.1.9. Give an example of a non-�nitely generated subalgebra in K[x1; x2].
Exercise 2.1.10. Check that R is the only G-invariant projection of O(X) to O(X)G.
Exercise 2.1.11. Assume that G is �nite and f ∈ O(X). Show that

R(F ) = 1
|G|

X

g∈G
g · f:

Exercise 2.1.12. For the tautological action GL(n) : Kn and f ∈ O(Kn), show that
R(f) = f((0; : : : ; 0)).
Exercise 2.1.13. Let f(x1; : : : ; xn) ∈ K[x1; : : : ; xn] be a homogeneous polynomial of
degree k. Prove that there exist linear forms l1(x1; : : : ; xn); : : : ; lN (x1; : : : ; xn) such that
f = lk1 + · · ·+ lkN .
Exercise 2.1.14. Let G be a �nite group and V a �nite-dimensional G-module. Prove
that O(V )G is generated by homogeneous invariants of degree ≤ |G| (Noether's Theorem).
Exercise 2.1.15. Using the method of sections, �nd a generating set of the algebra of
invariants for
(a) the tautological action SO(n) : Kn;
(b) the tautological action Sp(2n) : K2n;
(c) the diagonal action SL(n) : Kn ⊕ · · · ⊕Kn (s times, s ≤ n).

Exercise 2.1.16. Find a generating set of the algebra of invariants for the linear actions:
(a) Zn : K2, � · (x1; x2) = (�x1; �x2), �n = 1;
(b) Zn : K2, � · (x1; x2) = (�x1; �−1x2), �n = 1.

Exercise 2.1.17. Find a generating set of the algebra of invariants for the linear action
K× : K4; t · (x1; x2; x3; x4) = (t3x1; tx2; t−1x3; t−2x4):
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2.2. The quotient morphism and categorical quotients. Let G be a reductive
group and X an a�ne G-variety. Assume that f1; : : : ; fk generate the algebra
O(X)G. Consider a morphism:

� : X → Kk; �(x) = (f1(x); : : : ; fk(x)):

Clearly, � is constant on G-orbits. Moreover, the morphism � : X → �(X) does
not depend on the choice of generators f1; : : : ; fk, because it may be realized as the
morphism X → Spec(O(X)G) corresponding to the inclusion O(X)G ⊂ O(X).

De�nition 2.2.1. The morphism � : X → Y := Spec(O(X)G) corresponding to
the inclusion O(X)G ⊂ O(X) is called the quotient morphism for an a�ne G-variety
X.

Let us summarize basic properties of the quotient morphism.

Theorem 2.2.2. (1) � is surjective;
(2) if Z ⊆ X is a closed G-invariant subvariety, then �(Z) is closed in Y ;
(3) if {Z�} is a family of closed G-invariant subvarieties of X, then

⋂
�
�(Z�) = �(

⋂
�
Z�);

(4) if U ⊆ Y is an open subset, then �∗U : O(U) → O(�−1(U))G is an isomor-
phism.

Proof. (1) For any y ∈ Y consider the ideal
Iy := {f ∈ O(Y ) : f(y) = 0}CO(Y ) = O(X)G:

Applying the Reynolds operator, we get (O(X)Iy)G ⊂ Iy. In particular, O(X)Iy 6=
O(X). Let m be a maximal ideal of O(X) with O(X)Iy ⊆ m. Then �(x) = y,
where x ∈ X is a point corresponding to the maximal ideal m.

(2) Let � : Z ,→ X be the closed G-equivariant embedding. The restric-
tion homomorphisms �∗ : O(X) → O(Z) and �∗′ : O(X)G → O(Z)G are sur-
jective (Lemma 2.1.5). This proves that the morphism  : YZ → Y , where
YZ := Spec(O(Z)G), is a closed embedding,

O(Z) O(X)�∗oo

O(Z)G

OO

O(X)G�∗′oo

OO Z
� //

�Z
²²

X
�

²²
YZ

 // Y

and �(Z) =  (YZ), because the quotient morphism �Z for the a�ne G-variety Z
is surjective.

(3) Let I� CO(X) be the ideal corresponding to Z�. We claim that (∑� I�)G =∑
� IG� . Indeed, if F = f1 + · · ·+ fk ∈ (∑� I�)G with fi ∈ I�i , then F = R(F ) =

R(f1) + · · · + R(fk) with R(fi) ∈ IG�i (Lemma 2.1.3 (iii)), and F ∈ ∑
� IG� . The

opposite inclusion is obvious.
Suppose that f ∈ O(X)G is identically zero on ⋂

� Z�. Then there is m ∈ N such
that

fm ∈ (
∑
�
I�)G =

∑
�
IG� ;
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and thus f vanishes on ⋂
� �(Z�). Since both ⋂

� �(Z�) and �(⋂� Z�) are closed
in Y , this proves the inclusion

⋂
�
�(Z�) ⊆ �(

⋂
�
Z�):

The opposite inclusion holds set-theoretically.

(4) First assume that U = Yf ⊆ Y is a principal open subset. Here

O(U) = (O(X)G)f = { f1
fm : f1 ∈ O(X)G}

and
O(�−1(U))G = (O(X)f )G = { f2

fk : f2
fk is G− invariant}:

But then f2 ∈ O(X)G and O(U) = O(�−1(U))G.
Since any open U is a �nite union of principal open subsets, the statement follows
from

O(U1 ∪ U2) = O(U1) ∩ O(U2) = O(�−1(U1))G ∩ O(�−1(U2))G =

= (O(�−1(U1)) ∩ O(�−1(U2)))G = O(�−1(U1 ∪ U2))G:
¤

In general, invariants do not separate all G-orbits in X. The following corollary
shows that they do separate closed orbits.
Corollary 2.2.3. Let � : X → Y be the quotient morphism. For any y ∈ Y , the
�ber �−1(y) contains a unique closed G-orbit Oy. This orbit is contained in the
closure of any orbit from �−1(y).

Proof. Since �−1(y) is closed and G-invariant, it contains a closed G-orbit (Corol-
lary 1.3.6). Let O1 and O2 be two closed G-orbits in �−1(y). Then O1 ∩ O2 = ∅,
and by Theorem 2.2.2 (3), �(O1) ∩ �(O2) = ∅. But �(O1) = �(O2) = y, a con-
tradiction. Finally, Corollary 1.3.6 also implies that the closure of any orbit from
�−1(y) contains a closed G-orbit, and it should be Oy.

¤

Example 2.2.4. Consider G = GL(n) and X = Mat(n × n) with the adjoint G-
action: A ·M := AMA−1. It was shown in Example 2.1.7 that here Y = Kn and
the map � sends a matrix to the coe�cients of its characteristic polynomial. A
�ber of � is the set of matrices with �xed eigenvalues (with multiplicities). Any
�ber contains a �nite number of G-orbits which are parametrized by Jordan normal
forms with the prescribed diagonal.
In particular, the �ber �−1(0; : : : ; 0) is the set Nil(n) of nilpotent matrices and

�−1((−
(n

1

)
;
(n

2

)
; : : : ; (−1)n

(n
n

)
))

is the set Uni(u) of unipotent matrices. Moreover, if the discriminant of the poly-
nomial xn + a1xn−1 + · · ·+ an is non-zero, then the �ber �−1(a1; : : : ; an) consists
of one G-orbit.

Now we are going to prove an important universal property of the quotient mor-
phism.
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De�nition 2.2.5. Let G be an algebraic group and X a G-variety. A G-invariant
morphism � : X → Y is said to be a categorical quotient, if for any G-invariant
morphism � : X → Z there exists a unique morphism  : Y → Z such that the
following diagram is commutative:

X
�

ÃÃ@
@@

@@
@@�

~~~~
~~

~~
~

Z Y
 o o

Remark 2.2.6. It follows from the de�nition that, if the categorical quotient exists,
then it is unique (up to isomorphism), see Exercise 2.2.16.

The usual notation for the categorical quotient is � : X → X==G.
Theorem 2.2.7. Let G be a reductive group and X an a�ne G-variety. Then the
quotient morphism � : X → Y is the categorical quotient.

Proof. Let � : X → Z be a G-invariant morphism. We de�ne �rstly the desired map
 as a map of sets: for any y ∈ Y put  (y) = �(�−1(y)). Clearly, it is the only way
to make the above diagram commutative. But we need to explain that �(�−1(y))
is one point. Indeed, the �ber �−1(y) contains a unique closed G-orbit Oy, and any
other orbit O ⊆ �−1(y) contains Oy in its closure, thus �(O) = �(Oy) = z for some
z ∈ Z.
Now we prove that  is a continuous map.
De�nition 2.2.8. A G-invariant subset W ⊆ X is said to be saturated if

x ∈ X; w ∈W; Gx ∩Gw 6= ∅ ⇒ x ∈W:
Lemma 2.2.9. A subset W ⊆ X is saturated if and only if there is a subset W1 ⊆ Y
such that W = �−1(W1).

Proof. The condition Gx1 ∩ Gx2 6= ∅ is equivalent to "x1 and x2 are in the same
�ber of �". So, W is saturated if and only if it consists of �bers of the quotient
morphism. ¤

Take an open subset U ⊆ Z. Then �−1(U) is open and saturated in X. By
Theorem 2.2.2 (2), the set D := �(X \ �−1(U)) is closed in Y , thus  −1(U) =
�(�−1(U)) = Y \D is open.
Finally we check that  is a morphism, i.e., for any open U ⊆ Z and f ∈ O(U) the
function  ∗(f) lies in O( −1(U)). Theorem 2.2.2 (4) implies
�∗(f) ∈ O(�−1(U))G = O(�−1( −1(U)))G = �∗(O( −1(U))) ⇒  ∗(f) ∈ O( −1(U)):

¤

We �nish this section with the following unexpected alternative: for a G-module V
the quotient space V==G is either an a�ne space or a singular variety.
Proposition 2.2.10. Let V be a �nite-dimensional rational G-module. Then
O(V )G is a polynomial algebra if and only if �(0) is a smooth point on V==G.

Proof. If O(V )G is a polynomial algebra, then V==G = Spec(O(V )G) is an a�ne
space, and any its point is smooth. Conversely, suppose that �(0) ∈ V==G is
smooth. Let m C O(V )G be the maximal ideal corresponding to �(0). We know
that T�(0)V==G ∼= (m=m2)∗. Hence, if n = dimV==G, then dim m=m2 = n, and
there are homogeneous elements f1; : : : ; fn ∈ m whose images form a basis of m=m2.
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Using induction on degree, one easily checks that f1; : : : ; fn generate the ideal m.
By Lemma 2.1.4, the elements f1; : : : ; fn generate the algebra O(V )G. If there
exists a non-zero polynomial F (X1; : : : ; Xn) such that F (f1; : : : ; fn) ≡ 0, then the
transcendency degree of the �eld of quotients QO(V )G is less then n, a contradiction
with n = dimV==G. ¤
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Exercises to subsection 2.2.
Exercise 2.2.11. Let G be an algebraic group and X an a�ne G variety. Suppose
that the algebra O(X)G is �nitely generated. Give an example where the morphism
� : X → Spec(O(X)G) de�ned by the embedding O(X)G ⊂ O(X) is not surjective.
Exercise 2.2.12. Let � : X → Y be the quotient morphism from Example 2.2.4. Prove
that the set of semisimple elements in any �ber �−1(y) is the unique closed GL(n)-orbit
Oy.
Exercise 2.2.13. Let G be a �nite group, X a G-variety and � : X → X==G the quotient
morphism. Prove that � is a �nite morphism and any �ber of � is a G-orbit.
Exercise 2.2.14. Let G be a reductive group and X an irreducible a�ne G-variety. Show
by an example that the components of a �ber of the quotient morphism � : X → X==G
may have di�erent dimension.
Exercise 2.2.15. Let � : X → X==G be the quotient morphism and U ⊆ X==G be an
open subset. Prove that

� |�−1(U): �−1(U) → U
is the categorical quotient for the G-variety �−1(U).
Exercise 2.2.16. Prove that the categorical quotient is unique (up to isomorphism).
Exercise 2.2.17. Let G be an algebraic group, X a G-variety and � : X → X==G the
categorical quotient. Prove that the morphism � is surjective.
Exercise 2.2.18. Consider an action Tm : Kn, t · (x1; : : : ; xn) = (�1(t)x1; : : : ; �n(t)xn)
with some �1; : : : ; �n ∈ X(Tm). Prove that Kn==Tm is a point if and only if all �i are
non-zero and the cone generated by �1; : : : ; �n in the space X(Tm)⊗ZQ is strictly convex.
Exercise 2.2.19 (Igusa's Criterion). Let G be a reductive group, X an irreducible a�ne
G-variety, and Y a normal irreducible a�ne variety. Assume that there is a dominant
G-invariant morphism � : X → Y such that codimY (Y \�(X)0) ≥ 2 and there exists open
U ⊆ Y such that �−1(y) contains a dense G-orbit for any y ∈ U . (Here �(X)0 denotes
the maximal open subset of the image �(X), see Theorem 3.0.24.) Prove that � : X → Y
is the categorical quotient.
Exercise 2.2.20. Set G = O(n) and X = Kn⊕· · ·⊕Kn (s times, s ≤ n) with the diagonal
G-action. De�ne Fij(v1; : : : ; vs) := q(vi; vj). Prove that O(X)G is a polynomial algebra
generated by Fij . Formulate and prove the corresponding statement for G = Sp(2n).
Exercise 2.2.21. Let G be an algebraic group and H ⊆ G a reductive subgroup. Prove
that the homogeneous space G=H is a�ne.
Exercise 2.2.22. Let G be an algebraic group, X a G-variety, and � : X → Z a G-
invariant morphism. We say that two points x; x′ ∈ X are equivalent if there is a sequence
of points on X: x = x1; x2; : : : ; xk = x′ such that Gxi ∩ Gxi+1 6= ∅ for i = 1; : : : ; k − 1.
Prove that �(x) = �(x′).
Exercise 2.2.23 (*). Consider an action Tm : Kn+1,

t · (x1; : : : ; xn+1) = (�1(t)x1; : : : ; �n+1(t)xn+1)
with some �1; : : : ; �n+1 ∈ X(Tm), �1 6= �2. Prove that the corresponding action Tm : Pn
admits the categorical quotient with Pn==Tm being a point.
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2.3. Rational invariants. Rosenlicht's Theorem. Let G be an algebraic group
and X an irreducible G-variety. There is a natural G-action on the �eld of rational
functions K(X): (g · f)(x) = f(g−1 · x). Consider the �eld of rational invariants:

K(X)G := {f ∈ K(X) : g · f = f for all g ∈ G}:
In this situation, there is no problem with �nite generation.
Proposition 2.3.1. Let K ⊂ L be a �nitely generated �eld extension. Then for
any K ⊂ E ⊆ L, the extension K ⊂ E is �nitely generated.

Proof. Let Y1; : : : ; Yr be a transcendency basis in E. It may be extended to a
transcendency basis Y1; : : : ; Yr; Yr+1; : : : ; Yk in L. Then K(Y1; : : : ; Yk) ⊆ L is a
�nite algebraic extension of some degree N . Any element � ∈ E is algebraic over
K(Y1; : : : ; Yr). Let F�(T ) (resp. H�(T )) be the minimal polynomial of � over
K(Y1; : : : ; Yr) (resp. K(Y1; : : : ; Yk)). Then H�(T ) divides F�(T ), thus H�(T ) does
not depend on Yr+1; : : : ; Yk, and F�(T ) ≡ H�(T ). In particular, the degree of �
over K(Y1; : : : ; Yr) is bounded by N . Applying the Primitive Element Theorem, we
get that the degree of E over K(Y1; : : : ; Yr) is bounded by N . ¤
Corollary 2.3.2. For any algebraic group G and any irreducible G-variety X, the
�eld K(X)G is �nitely generated over K.

The quotient of two regular invariants is a rational invariant, thus QO(X)G ⊆
K(X)G. In general, we do not have an equality here.
Example 2.3.3. Consider an action K× : K2, t · (x1; x2) = (tx1; tx2). In this case
O(X)G = K, but the function x1

x2
is a non-constant rational invariant.

Proposition 2.3.4. Assume that X is an irreducible a�ne G-variety and one of
the following conditions holds:

(a) G is �nite;
(b) G is unipotent;
(c) G is connected, X(G) = 0, O(X) is factorial, and O(X)× = K×.

Then QO(X)G = K(X)G.

Proof. (a) If F ∈ K(X)G, then

F = f1
f2

=
f1(∏g 6=e g · f2)∏

g∈G g · f2
∈ QO(X)G:

(b) Take F = f1
f2
∈ K(X)G. By Theorem 1.8.5, the linear span of the orbit Gf2

contains a non-zero G-invariant h = ∑
i �i(gi · f2), �i ∈ K×. Then

F = f1
f2

= gi · f1
gi · f2

= �i(gi · f1)
�i(gi · f2) =

∑
i �i(gi · f1)∑
i �i(gi · f2) ∈ QO(X)G:

(c) Assume that
F = pa1

1 : : : pakk
qb11 : : : qbss

∈ K(X)G;

where p1; : : : ; pk; q1; : : : ; qs are pairwise di�erent primes. The G-action preserves
this decomposition. On the other hand, G can not permute the factors (G is
connected) and can not send a factor to an associated element (O(X)× = K× and
X(G) = 0). Hence all p1; : : : ; pk; q1; : : : ; qs are G-invariants. ¤

Now we came to the "best possible" notion of a quotient for a G-variety.
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De�nition 2.3.5. Let G be an algebraic group and X an irreducible G-variety. A
G-invariant morphism � : X → Y is said to be a geometric quotient, if the following
conditions hold:

(G1) � is surjective;
(G2) �−1(y) is a G-orbit for any y ∈ Y ;
(G3) � is open;
(G4) �∗U : O(U) → O(�−1(U))G is an isomorphism for any open U ⊆ Y .

Notation: � : X → X=G.
By Proposition 1.3.8 and Theorem 3.0.26, if there is a G-invariant morphism � :
X → Y satisfying condition (G2), then all orbits in X are closed and have the same
dimension. Unfortunately, the later conditions are not su�cient for the existence
of geometric quotient (Exercise 2.3.23).
Proposition 2.3.6. Let G be an algebraic group and X an irreducible G-variety.
If there is a surjective G-invariant morphism � : X → Y , where Y is a normal
G-variety and �−1(y) is a G-orbit for any y ∈ Y , then � is a geometric quotient.

Proof. Conditions (G1) and (G2) are included into assumptions. Condition (G3)
follows from Theorem 3.0.32. Finally, (G4) follows from Corollary 3.0.29. ¤

Example 2.3.7. LetG = K× andX = Kn\{0} with t·(x1; : : : ; xn) = (tx1; : : : ; txn).
By Proposition 2.3.6, the morphism � : X → Pn−1, �((x1; : : : ; xn)) = [x1 : ::: : xn]
is a geometric quotient. In particular, for reductive G and quasia�ne X the variety
X=G need not be quasia�ne.
Proposition 2.3.8. A geometric quotient � : X → X=G is the categorical one.

Proof. Let � : X → Z be a G-invariant morphism:
X

�

ÃÃA
AA

AA
AA�

~~~~
~~

~~
~

Z Y:
 oo

De�ne  (y) = �(�−1(y)). The map  is continuous, because for any open U ⊆ Z
the subset  −1(U) = �(�−1(U)) is open in Y (use (G3)). Finally, for any f ∈ O(U)
one has �∗(f) ∈ O(�−1(U))G = �∗(O( −1(U))) (use (G4)). Since �∗ is injective
and �∗ = �∗ ◦  ∗, the function  ∗(f) is contained in O( −1(U)). ¤

Corollary 2.3.9. If a geometric quotient � : X → X=G exists, then it is unique
(up to isomorphism).

We come to the main result of this section.
Theorem 2.3.10 (Rosenlicht's Theorem (1956)). Let G be an algebraic group and
X an irreducible G-variety. Then there is a non-empty open G-invariant subset
U ⊆ X which admits a geometric quotient � : U → U=G.

Proof. By Proposition 1.3.8, there is an open G-invariant subset U ⊆ X such that
all G-orbits on U are of the same dimension. Fix a generating set f1; : : : ; fm of
K(X)G. Reducing U , one may assume that f1; : : : ; fm are regular on U . Moreover,
f1; : : : ; fm are regular on ⋃

g∈G gU , so U may be supposed to be invariant.
Consider a subalgebra K[f1; : : : ; fm] ⊆ K(X)G and set Y := Spec(K[f1; : : : ; fm]),
The inclusion K[f1; : : : ; fm] ⊆ O(U) de�nes a dominant morphism � : U → Y .
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Reducing Y to a principal open subset, one may assume that Y is normal and � is
surjective.
Consider a morphism

� : G× U → U × U; �(g; x) = (x; g · x)
and two sets

A := Im(�) = {(x; x′) ∈ U × U : x′ ∈ Gx};
B := U ×Y U = {(x; x′) ∈ U × U : �(x) = �(x′)}:

Since � is G-invariant, we get A ⊆ B.
Lemma 2.3.11. A is dense in B.

Proof. Let V and V ′ be open a�ne subsets of U . It is su�cient to prove that
 : W := �−1(V ×Y V ′) → V ×Y V ′; (g; x) → (x; g · x)

is dominant. Since U is irreducible, the set V × V ′ meets the diagonal �U , and W
is non-empty.
The variety V ×Y V ′ is a�ne, and we shall check that

 ∗ : O(V ×Y V ′) = O(V )⊗O(Y ) O(V ′) → O(W );

 ∗(
s∑

i=1
ui ⊗ vi) →

[
(g; x) →

s∑

i=1
ui(x)vi(g · x)

]

is injective. Suppose that ∑s
i=1 ui⊗ vi lies in Ker( ∗). For any g ∈ G the function

hg(x) =
s∑

i=1
ui(x)vi(g · x)

is a rational function on U . Since it vanishes on V ∩g−1V ′, it is identically zero. We
claim that this condition implies that F = ∑s

i=1 ui⊗vi is a zero (rational) function
on U ×Y U . Firstly, one may assume that v1; : : : ; vs are linearly independent over
K(U)G = �∗(K(Y )). Indeed, if, say, v1 = c2v2 + · · · + csvs, ci ∈ K(U)G, then F
coincides with ∑s

i=2(ui + ciu1)⊗ vi on U ×Y U . Now the statement follows from
Lemma 2.3.12. Let ui, vi, i = 1; : : : ; s be rational functions on U such that
v1; : : : ; vs are linearly independent over K(U)G. If ∑s

i=1 ui(g ·vi) = 0 for all g ∈ G,
then u1 = · · · = us = 0.

Proof. We argue by induction on s. The case s = 1 is obvious. Suppose that s > 1.
If u1 6= 0, then

s∑

i=1
h · (uiu−1

1 )(g · vi) = 0

for all g; h ∈ G. Thus
s∑

i=2
(h · (uiu−1

1 )− uiu−1
1 )(g · vi) = 0:

By inductive hypothesis, h · (uiu−1
1 ) = uiu−1

1 for all h ∈ G, so uiu−1
1 ∈ K(U)G. The

linear dependence
v1 + u2u−1

1 v2 + ·+ usu−1
1 vs = 0

leads to a contradiction. ¤

Lemma 2.3.11 is proved. ¤
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Further, the variety B = U ×Y U contains a dense irreducible subset A = Im(�),
thus B is irreducible.
Lemma 2.3.13. Let B be an irreducible variety, W ⊆ B a non-empty open subset
and � : B → Z a dominant morphism. Then there is a non-empty open subset
V ⊆ Z such that �−1(z) ∩W is dense in �−1(z) for any z ∈ V .

Proof. Let C1; : : : ; Ck be irreducible components of B \W . Renumbering, one may
assume that �(C1); : : : ; �(Cr) are dense in Z, and �(Cr+1); : : : ; �(Ck) are not. Set

V := Z \
k⋃

i=r+1
�(Ci):

Reducing V , we may assume that
(i) the dimension of any component of any �ber of the morphism � ′ : �−1(V ) →

V equals dimB − dimZ;
(ii) for any i = 1; : : : ; r the dimension of any component of any �ber of the

morphism � |Ci : Ci → V equals dimCi − dimZ
(Theorem 3.0.26). Since dimCi < dimB, now any component of a �ber �−1(z) is
not contained in C1 ∪ · · · ∪ Cr, and hence meets the open subset W . ¤

We are going to apply Lemma 2.3.13 to W = A0, where A0 is the maximal open
subset of A = Im(�), and to the projection � : B → U , �(x; x′) = x. Reducing Y ,
we may suppose that any �ber of � has a dense intersection with A. But

�−1(x) = {x} × �−1(�(x)); A ∩ �−1(x) = {x} ×Gx;
and all G-orbits in U are closed. This proves that for any y ∈ Y the �ber �−1(y) is a
G-orbit. Now Proposition 2.3.6 shows that � : U → Y is a geometric quotient. ¤
Corollary 2.3.14 (of the proof). In notation of Theorem 2.3.10, for any generating
set f1; : : : ; fm of K(X)G there is a non-empty open G-invariant subset U ⊆ X such
that all fi are regular on U and for any two points x; x′ ∈ U the condition Gx = Gx′
is equivalent to fi(x) = fi(x′), i = 1; : : : ;m.
Corollary 2.3.15. An action G : X has an open orbit if and only if K(X)G = K.
Proposition 2.3.16. Assume that there is a non-empty open G-invariant subset
W ⊆ X and rational invariants f1; : : : ; fk that are regular on W , such that for any
x1; x2 ∈W the condition fi(x1) = fj(x2) for all i; j = 1; : : : ; k implies Gx1 = Gx2.
Then f1; : : : ; fk generate K(X)G.

Proof. Extend f1; : : : ; fk to a generating set f1; : : : ; fk; fk+1; : : : ; fm of K(X)G. By
assumptions, there is a dominant morphism � : W → Spec(K[f1; : : : ; fk]) whose
�bers are G-orbits. Reducing W , we may assume that there is a dominant mor-
phism  : W → Spec(K[f1; : : : ; fm]) with the same �bers. By Theorem 3.0.28,
the varieties Spec(K[f1; : : : ; fk]) and Spec(K[f1; : : : ; fm]) are birationally isomor-
phic. ¤
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Exercises to subsection 2.3.
Exercise 2.3.17. Give an example of an SL(2)-action on an irreducible a�ne variety X
with QO(X)SL(2) 6= K(X)SL(2).
Exercise 2.3.18. Let G be a connected algebraic group and H ⊆ G a closed subgroup.
Check that the projection p : G→ G=H is a geometric quotient with respect to the right
H-action on G.
Exercise 2.3.19. For a reductive G and an irreducible a�ne X, the quotient morphism
� : X → X==G is a geometric quotient if and only if all G-orbits in X are of the same
dimension.
Exercise 2.3.20. For a �nite G and an irreducible a�ne X, the quotient morphism
� : X → X==G is a geometric quotient.
Exercise 2.3.21. Let G be reductive and X be irreducible a�ne G-variety. Prove that
the following conditions are equivalent:

(i) QO(X)G = K(X)G;
(ii) there is a non-empty open V ⊆ X==G such that for any y ∈ V the �ber �−1(y)

of the quotient morphism contains a dense G-orbit.
Exercise 2.3.22. Let � : X → X=G be a geometric quotient. Prove that K(X)G =
�∗(K(X=G)). Is the same true for a categorical quotient ?
Exercise 2.3.23 (*). Consider an action K× : K2 \ {0}, t · (x1; x2) = (tx1; t−1x2). Prove
that here all orbits are closed and of dimension one, but the action does not admit geo-
metric quotient.
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3. Appendix One: Some Facts from Algebraic Geometry

Theorem 3.0.24. Let � : X → Y be a dominant morphism of irreducible algebraic
varieties. Then �(X) contains an open subset of Y .

Theorem 3.0.25. Let X be an irreducible variety and Y ⊆ X a closed subvariety
such that dimX = dimY . Then X = Y .

Theorem 3.0.26. Let � : X → Y be a morphism of irreducible algebraic varieties.
Then there is a non-empty open subset U ⊂ Y such that for any y0 ∈ U ∩�(X) any
irreducible component of the �ber �−1(y0) has dimension dimX−dimY . Moreover,
any irreducible component of any non-empty �ber �−1(y), y ∈ Y , has dimension
≥ dimX − dimY .

Theorem 3.0.27. Assume that charK = 0 and � : X → Y is a bijective morphism
between normal (e.g., smooth) varieties. Then � is an isomorphism.

Theorem 3.0.28 (Factorization of a morphism). Assume that charK = 0, and
X, Y , Z are irreducible varieties with given dominant morphisms � : X → Y ,
 : X → Z such that there is a non-empty open subset U ⊂ X with the following
property: �(x) = �(x′) implies  (x) =  (x′) for any x; x′ ∈ U . Then there exists a
rational (dominant) morphism � : Y → Z such that the diagram

X
 

ÃÃ@
@@

@@
@@�

~~~~
~~

~~
~

Y � // Z
is commutative.

Corollary 3.0.29. In notations of Theorem 3.0.28, assume that Z = A1, Y is
normal and codimY (Y \ �(X)0) ≥ 2 (here �(X)0 is the maximal open subset in
�(X)):

X
 

!!B
BB

BB
BB

B
�

ÄÄ~~
~~

~~
~~

Y � // A1:
If  ∈ O(X), then there exists � ∈ O(Y ) with �∗(�) =  .

Theorem 3.0.30. [Hu75, Th. 4.5] Let � : X → Y be a dominant morphism of
irreducible varieties, r = dimX − dimY . Assume that for each closed irreducible
subset Z ⊆ Y all components of �−1(Z) have dimension r + dimZ. Then the
morphism � is open.

Theorem 3.0.31. [Hu75, Th. 4.3] Let � : X → Y be a dominant morphism of
irreducible varieties, r = dimX − dimY . Then Y has a non-empty open subset U
such that:

(i) U ⊆ �(X);
(ii) if W ⊆ Y is an irreducible closed set which meets U , and if Z is a compo-

nent of �−1(W ) which meets �−1(U), then dimZ = dimW + r.

Theorem 3.0.32. (cf.[PV94, p. 187]) Let � : X → Y be a dominant morphism of
irreducible varieties such that the dimension of any component of any �ber equals
dimX − dimY . Assume that Y is normal. Then � is an open morphism.
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Theorem 3.0.33. Let � : X → Y be a dominant morphism between irreducible
varieties. Then, for any x ∈ X,

Tx(�−1 ◦ �)(x) ⊆ Ker dx�;
and there is a non-empty open subset U ⊆ X such that the equality takes place for
any x ∈ U .
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4. Appendix Two: Some Facts on Lie Algebras

In this Appendix all Lie algebras are supposed to be �nite-dimensional. We refer
to [Hu72] for a detailed exposition of the subject.
De�nition 4.0.34. A Lie algebra g is called simple if it is not commutative and
has no proper ideals.
De�nition 4.0.35. The commutant [g; g] of a Lie algebra g is the linear span of
[x; y], x; y ∈ g.
Clearly, [g; g] is an ideal of g. This de�nition leads to the notion of a solvable Lie
algebra.
Remark 4.0.36. If g is simple, then [g; g] = g.
De�nition 4.0.37. The radical r(g) of a Lie algebra g is the largest solvable ideal
of g.
De�nition 4.0.38. A Lie algebra g is called semisimple if r(g) = 0.
Theorem 4.0.39. A Lie algebra g is semisimple if and only if it is isomorphic to
a direct sum of simple Lie algebras:

g = g1 ⊕ · · · ⊕ gk:
Corollary 4.0.40. If g is semisimple, then [g; g] = g.
Theorem 4.0.41 (G. Weyl). Any �nite-dimensional representation of a semisim-
ple Lie algebra is completely reducible.
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5. Hints and Solutions to Exercises
1.1.10. aij = eTi Aej = eTi Bej = bij :
1.1.11. Let e1; : : : ; en be an orthogonal basis. Set A1 = E and A2(e1) = −e1, A2(ei) =

ei, i > 1.
1.1.12. SO(2) =

��
a −b
b a

�
: a2 + b2 = 1

�
: For O(2), take

�−1 0
0 1

�
and

�
0 1
1 0

�
:

1.1.13. q(v1; v2) = vT1 Qv2, where Q is symmetric non-degenerate, so there is a non-
degenerate S with STQS = E, or Q = (S−1)TS−1. Then

A ∈ O(q) ⇐⇒ ATQA = Q ⇐⇒ AT (S−1)TS−1A = (S−1)TS−1 ⇐⇒
⇐⇒ STAT (S−1)TS−1AS = E ⇐⇒ S−1AS ∈ O(n):

Similarly, any bilinear skew-symmetric non-degenerate form is equivalent to the
standard one.

1.1.14. (charK = 0) A ∈ Sp(2n) if and only if A preserves ! ∈ V2 V ∗. Then A
preserves ∧n! ∈ V2n V ∗ = 〈det〉. Since ! is non-degenerate, ∧n! is a non-zero
multiple of det. This proves that det(Av1; : : : ; Av2n) = det(v1; : : : ; v2n) for any
v1; : : : ; v2n ∈ V , so detA = 1.

In arbitrary characteristic, one may prove that Sp(2n) is generated by sym-
plectic transections:

�u;a : V → V; �u;a(v) = v + a!(v; u)v; u ∈ V; a ∈ K;
see (L.C. Grove, Classical Groups and Geometric Algebras, Grad. Studies in
Math. 39, AMS, 2002) for details.

1.1.15. For K2, det coincides with the standard bilinear skew-symmetric non-degenerate
form. For n > 1, E + E13 ∈ SL(2n) \ Sp(2n).

1.1.16. The intersection of GL(n;R) with the subvariety of scalar matrices is not closed
in Zariski topology.

1.1.17. For n > 1 〈SL(n)〉 = Mat(n × n), because E;E + Eij (i 6= j), and E − Eii +
Eij − Eji belong to SL(n).

1.1.18. If A commutes with all matrices of a linear group G, then A commutes with
all matrices of the linear span of G. But if A commutes with all Eij , then it is
scalar, so Z(GL(n)) = {�E : � ∈ K×}, Z(SL(n)) = {�E : �n = 1}. Similarly,
Z(B(n)) = {�E : � ∈ K×} and Z(U(n)) = {E + aE1n : a ∈ K}.

1.1.19. dimD(n) = n, dimB(n) = n(n+1)
2 , dimU(n) = n(n−1)

2 .
1.1.20. There are in�nitely many elements � ∈ K× with �N = 1 for some N . If charK =

0, then 0 is the only element of �nite order in Ga. If charK = p > 0, then any
non-zero element of Ga has order p.

1.1.21. No, if n > 1. For n = 2 consider the re
ections
�

1 0
0 −1

�
and

�
1 −2
0 −1

�
:

1.1.22.
diag(t1; : : : ; tk;

�
1 a1
0 1

�
; : : : ;

�
1 as
0 1

�
):

1.1.23. Let e1; : : : ; en be a basis of A and ◦ be the (bilinear) multiplication. Clearly, an
invertible linear map � : A→ A is an isomorphism if and only if �(ei) ◦ �(ej) =
�(ei ◦ ej) for any i; j = 1; : : : ; n. Set �(ei) = P

l aliel and ei ◦ ej = P
k ckijek,

where ckij are structural constants of the algebra A. Then

(
X

l
aliel) ◦ (

X
s
asjes) =

X

k
ckij(
X
r
arker)

is a system on polynomial equations on aij .
1.1.24. (charK = 0) Consider � : G×G→ G×G, �(g1; g2) = (g1; g1g2). This morphism

is bijective, thus it is an isomorphism, and �−1(h1; h2) = (h1; h−1
1 h2). Then

i(g) = p2(�−1(g; e)), where p2 : G×G→ G, p2(g1; g2) = g2.
1.1.25. I have only topological arguments: SL(2;C) is homotopy-equivalent to the real

sphere S2.
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1.2.15. (Ga)3 and U(3).
1.2.16. Denote X = A1 \ {0; 1}. It is su�cient to prove that the automorphism group

Aut(X) of the varietyX does not act transitively on X. SinceO(X) = K[T; 1
T ; 1

T−1 ],
any automorphism � ∈ Aut(X) de�nes an automorphism of the �eld K(T ). But
the automorphism group of K(T ) is isomorphic to PGL(2), or Aut(P1). Our �
should preserve {0; 1;∞} ⊂ P1. But any automorphism of P1 that �xes 0, 1 and
∞ is the identity, so Aut(X) is �nite. (In fact, Aut(X) ∼= �3.)

1.2.17. SO(2) → Gm,
�
a −b
b a

�
→ a + bi, i2 = −1. For the second component,

�
a b
b −a

�2
= E.

1.2.18. If H ∩G0 is a proper (closed) subgroup, then
dimH = dimH0 = dimH ∩G0 < dimG0 = dimG:

1.2.19. G = O(2).
1.2.20. G = {

�
t 0
0 t−1

�
∪
�

0 −s
s−1 0

�
: t; s ∈ K×} : there are no elements of order

two in the second component.
1.2.21. One may assume that K is algebraically closed. Corollary 1.2.7 implies that the

hypersurface de�ned by det(aij)−1 is irreducible. In order to see that det(aij)−1
is not a proper power, consider the leading term of det(aij)− 1 with respect to
a monomial order.

1.2.22. Clearly, [GL(n);GL(n)] ⊆ SL(n) and [B(n); B(n)] ⊆ U(n). On the other hand,
(E+Eij)(E+(t−1)Eii+(t−1−1)Ejj)(E−Eij)(E+(t−1−1)Eii+(t−1)Ejj) = E+(1−t2)Eij :

Thus [GL(n);GL(n)] = [SL(n); SL(n)] = SL(n) and [B(n); B(n)] = U(n).
If j > i+ 1, then

(E + Eii+1)(E + Ei+1j)(E − Eii+1)(E − Ei+1j) = E + Eij :
This implies that [U(n); U(n)] is de�ned in U(n) by a12 = a23 = · · · = an−1n = 0.

1.2.23. Let g ∈ G \ Z(G). The map �g : G → G, �g(h) = ghg−1h−1 has an irreducible
image which is not equal to {e}. Thus �g(G) is not contained in Z(G), and
gZ(G) =∈ Z(G=Z(G)).

In the disconnected case the statement is not true: one may take a �nite
group G, say, a non-commutative group of order 8.

1.2.24. Consider the subgroup H generated by xyx−1y−1; x ∈ G0; y ∈ G. It is gener-
ated by subsets �y(G0), where �y(x) = xyx−1y−1, thus is closed and connected
(Proposition 1.2.6). So it is su�cient to check that H has a �nite index in [G;G].
Since g1[g; h]g−1

1 = [g1gg−1
1 ; g1hg−1

1 ] for any g; g1 ∈ G, h ∈ G0, the subgroup H
is normal in G. Further, [gH; hH] = [g; h]H = H, and G0=H is contained in the
center Z(G=H). This shows that Z(G=H) has a �nite index in G=H, and the
group [G=H;G=H] is �nite. But [G;G]=H ⊆ [G=H;G=H], and H has a �nite
index in [G;G].

1.2.25. Let G1 be (R;+) and G2 a compact torus (R2;+)=Z2. Consider a homomorphism
�(a) = (a;

√
2a)+Z2. Check that the intersection of Im(�) with the circle x1 ∈ Z

in G2 is an in�nite countable set.
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1.3.24. Note that {B ∈ Mat(n×n) : AB = BA} is a subspace, and its intersection with
an open subset GL(n) is irreducible. For SL(2), take A =

�
1 1
0 1

�
:

1.3.25. For any x ∈ A, g ∈ NG(A) if and only if f(gxg−1) = 0 for all f ∈ I(A).
1.3.26. If V is a rational G-module, then G×V → V , (g; v) → �(g)v is a morphism. Con-

versely, suppose that G×V → V is a morphism. By assumption, (g; v) → �(g)v,
where �(g) is a linear operator on V . Fixing a basis {ei} in V and restricting
the action to G× {ei} → V , we get that �(g) depends on g algebraically.

1.3.27. (a) n > 1: {0} and Kn \ {0} (any non-zero vector may be included into a
unimodular basis); (b) 2n orbits (�x zero coordinates); (c) n+ 1 orbits (�x a
place of the last non-zero coordinate); (d) (x1; : : : ; xn) and (y1; : : : ; yn) are in
the same orbits ⇐⇒ ∃ k: xk = · · · = xn = yk = · · · = yn = 0, xk−1 = yk−1 6= 0
(set formally xn+1 = yn+1 = 0, x0 = y0 = 1); (e) and (f) n > 2: non-zero
vectors v1 and v2 are in the same orbit ⇐⇒ q(v1; v1) = q(v2; v2). If q(v; v) 6= 0,
then v may be included in an orthogonal basis. If q(v; v) = 0 then there is
e ∈ Kn with q(e; e) = 1, q(e; v) = 1, so q(e; v − e) = 0, q(v − e; v − e) = −1, and
we may include e and v − e in an orthogonal basis. For n = 2, the conditions
q(v; v) = 0; v 6= 0 de�ne two SO(2)-orbits that are permuted by O(2). (g) {0}
and K2n \ {0} (any non-zero vector may be included into a symplectic basis).

1.3.28. dim Sp(2n) = (2n)2 − 2n(2n−1)
2 = 2n2 + n.

1.3.29. We know that SO(2) ∼= K×, Sp(2) = SL(2) are connected. Further, � : SO(n) →
Sn−1, where Sn−1 = {(x1; : : : ; xn) : x2

1 + · · · + x2
n = 1} is irreducible, and

�(g) = g · e1. Any �ber of � is isomorphic to SO(n− 1), thus is connected. This
shows that SO(n) is connected. Similarly,  : Sp(2n) → K2n \ {0},  (g) = g · e1,
and any �ber of  is isomorphic to Sp(2n− 2)×K2n−1.

Remark. If an orbit Gx and the stabilizer Gx are connected, then G is con-
nected. Indeed, the stabilizer Gx is contained in G0 and di�erent connected
components of G correspond to di�erent G0-orbits in Gx. Such orbits are closed
and have empty intersections, a contradiction with connectedness of Gx.

1.3.30. In all cases it is su�cient to construct a homomorphism with kernel of order two
(use Theorem 1.2.12 and compare dimensions). (a) SL(2) : {M ∈ Mat(2× 2) :
tr(M) = 0}, A ·M := AMA−1, the action preserves det; (b) SL(2) × SL(2) :
Mat(2×2), (A;B) ·M := AMB−1, the action preserves det; (d) SL(4) : V2K4,
the action preserves q(w1; w2) = w1 ∧ w2; (c) Sp(4) : V , where V is a 5-
dimensional complement to an invariant line in V2K4.

1.3.31. It is su�cient to prove that the hypersurface det(aij) = 0 is irreducible. But
this hypersurface contains a dense GL(n)×GL(n)-orbit, where GL(n)×GL(n) :
Mat(n× n), (A;B) ·M = AMB−1.

1.3.32. Note that F(V ) is a closed G-invariant subvariety in

P(V )× P(∧2V )× · · · × P(∧n−1V );

where n = dimV .
1.3.33. Take a line with a double point and the Z2-action permuting the glueing lines.
1.3.34. Ga : Kn, a · v = v + a(1; 1; : : : ; 1) { no �xed points.
1.3.35. The linear span of any orbit is �nite-dimensional and any representation of a

�nite group is algebraic.
1.3.36. Take G = Gm, X = K1. Prove that dim〈 1

tx+1 : t ∈ Gm〉 = ∞.
1.3.37. Suppose A′ ⊂ O(Y ) is a �nitely generated subalgebra de�ning an embedding

of Y as a dense open subvariety of an a�ne variety X ′ := Spec(A′). By
Theorem 1.3.16, a generating set of A′ is contained in a �nite-dimensional G-
invariant subspace. Hence the subalgebra A′ is contained in a �nitely generated
G-invariant subalgebra A ⊂ O(Y ). Put X := Spec(A). There is a commutative
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diagram of dominant morphisms:
Y

!!B
BB

BB
BB

B
J

~~~~
~~

~~
~~

X // X ′:
One may �nd f1; : : : ; fk ∈ A′ such that Y = S

iX ′
fi . Since A′ ⊆ A ⊆ O(Y ) ⊆

O(X ′
fi), all morphisms in the diagram become isomorphisms after localization

at fi. Thus J(Y ) = SiXfi is open in X.
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1.4.9. It is su�cient to check that the subspace U = 〈u1; : : : ; uk〉 ⊆ W is uniquely
de�ned by ! := u1 ∧ · · · ∧ uk. We claim that U = {w ∈W : ! ∧w = 0}. Indeed,
w ∈ U if and only if u1; : : : ; uk; w are linearly dependent.

1.4.10. � : GL(n) → GL(Mat(n× n)), A ·M := AMA−1.
1.4.11. The group G=G0 acts transitively on the set of G0-orbits in G=H, so these orbits

are closed. Hence they are irreducible components with empty intersections. It
implies that G=H is connected if such an orbit is unique, or G0eH = G.

1.4.12. If G=H is quasia�ne, use Exercise 1.3.37 and Theorem 1.3.19. Conversely, the
orbit Gv is open in the a�ne variety Gv.

1.4.13. Follows from Theorem 1.3.19.
1.4.14. No, consider Gm : K1, or SL(2) : S3K2, v = e2

1e2.

1.4.15. Take G = SL(3) and H =

8
<
:

0
@
t1 0 a
0 t2 b
0 0 t−1

1 t−1
2

1
A
9
=
; : Here G=H ∼= P2 × P2 \�.

1.4.16. SL(3)=U(3) ∼= X \(Y ∪Z), where X;Y; Z ⊂ K6 de�ned by x1y1 +x2y2 +x3y3 = 0
x1 = x2 = x3 = 0 and y1 = y2 = y3 = 0 respectively : consider V = K3 ⊕ (K3)∗,
v = (e1; e∗3).

1.4.17. Use Theorem 3.0.28 with X = G.
1.4.18. Let G be a connected group and H a non-trivial �nite subgroup. If there is an

open U ⊆ G=H such that p−1(U) ∼= U ×H, then G contains an open reducible
subset.
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1.5.22.
@ det
@aij

|A=E=
X

�∈�n;�(i)=j
sgn(�) a1�(1) : : : ai�(i) : : : an�(n) |A=E= �ij ;

and dE(det)(X) = Pi;j �ijxij = trX.
1.5.23.

@ Aji
detA
@akm

|A=E=
@Aji
@akm detA−Aji @ detA

@akm
(detA)2 |A=E=

= −�ki�mj(1− �ij) + �ij�km(1− �ik)− �ij�km = −�ik�jm:
1.5.24. In order to prove that [x; y] = 0, consider the one-dimensional subalgebras 〈x〉

and 〈y〉.
One may be interesting in a group-theoretical analog of this statement: A group
G is commutative if and only if any its subgroup is normal. This statements is
wrong: take G = Q8 = {±1;±i;±j;±k}, where ghg−1 = ±h for any g; h ∈ G.

1.5.25. It corresponds to a subspace U in Mat(n× n) consisting of pairwise commuting
matrices together with a surjective linear map g → U .

1.5.26. Take G1 = Ga, G2 = Gm. They are not isomorphic, because Gm contains
in�nitely many elements of �nite order, but Ga { only one.

1.5.27. sp(2n) = {X ∈ Mat(2n×2n) : XT
 + 
X = 0}, where 
 is the skew-symmetric
matrix, corresponding to the standard form (follow Example 1.5.8);

Lie(D(n)) =

8
>><
>>:

0
BB@

∗ 0 : : : 0
0 ∗ : : : 0
: : : : : : : : : 0
0 0 : : : ∗

1
CCA

9
>>=
>>;
; Lie(B(n)) =

8
>><
>>:

0
BB@

∗ ∗ : : : ∗
0 ∗ : : : ∗
: : : : : : : : : ∗
0 0 : : : ∗

1
CCA

9
>>=
>>;
; Lie(U(n)) =

8
>><
>>:

0
BB@

0 ∗ : : : ∗
0 0 : : : ∗
: : : : : : : : : ∗
0 0 : : : 0

1
CCA

9
>>=
>>;

(D(n) and B(n) are open in subspaces of Mat(n × n), and U(n) is a shift of a
subspace).

1.5.28. Follows from Lemma 1.5.12 and Exercise 1.3.30.
For (a), one may get an isomorphism directly. Set e =

�
0 1
0 0

�
, h =

�
1 0
0 −1

�
, f =

�
0 0
1 0

�
. Then [h; e] = 2e, [h; f ] = −2f , [e; f ] = h. On the

other hand, in so(3) we have x12 = E12−E21, x23 = E23−E32, x13 = E13−E31
with [x12; x23] = x13, [x23; x13] = x12, [x13; x12] = x23. Calculating the eigenval-
ues of ad(x12), we get an isomorphism e→ ix23−x13, h→ 2ix12, f → ix23 +x13.

1.5.29. Any G-invariant subspace is G0-invariant. For converse, take a �nite group.
1.5.30. If H CG, then H0 CG. For converse, take a �nite group.
1.5.31. We may assume that G ⊂ GL(n) is a closed subgroup. There is a linear action

G : Mat(n× n), h ·A = hAh−1, which is the restriction of the adjoint represen-
tation for GL(n). Thus the tangent action is x · A = [x;A] for all x ∈ g. By
Proposition 1.5.16,

Lie(ZG(g)) = gg = {x ∈ g : [x; g] = 0} = {x ∈ g : gxg−1 = x} = {x ∈ g : Ad(g)x = x}:
1.5.32. If g is commutative, then Z(x) = G for any x ∈ g, because Lie(Z(x)) = z(x) = g

(Proposition 1.5.21). This means that for any g ∈ G Lie(ZG(g)) = g (Exer-
cise 1.5.31), and ZG(g) = G.

1.5.33. By de�nition, Z(G) = ∩g∈GZG(g). Using the Noether property, one may assume
that this is an intersection of �nitely many subgroups, and Lemma 1.5.13 implies

Lie(Z(G)) = {x ∈ g : Ad(g)x = x for all g ∈ g}:
If G is connected, then, by Proposition 1.5.16,

Lie(Z(G)) = {x ∈ g : ad(y)x = 0 for all y ∈ g} = z(g):

For non-connected G, consider G = O(2).
1.5.34(ii). Assume that D ∈ Lie(Aut(A)). Then D = d

dt |t=0 �(t), where �(t) is a smooth
curve in Aut(A) with �(0) = id. Fix a basis e1; : : : ; en in A. Let (
ij(t)) be
the matrix representing �(t), 
ij(0) = �ij . Then d

dt |t=0 
ij(t) = dij , where



ALGEBRAIC GROUPS AND INVARIANT THEORY 77

D = (dij). It is su�cient to check that D(eiej) = D(ei)ej + eiD(ej) for any i; j.
So,

D(eiej) = d
dt |t=0 �(t)(eiej) = d

dt |t=0 (�(t)(ei))(�(t)(ej)) =

= d
dt |t=0 (

X

k

ki(t)ek)(

X

l

lj(t)el) = d

dt |t=0 (
X

k;l

ki(t)
lj(t)ekel) =

=
X

k
dkiekej +

X

l
dljeiel = D(ei)ej + eiD(ej):

Conversely, suppose that D ∈ Der(A) (K = C). Consider the (non-algebraic)
curve

�(t) := exp(tD) = E + tD + t2D2

2! + : : :
Clearly, d

dt |t=0 �(t) = D. We have to show that exp(D) ∈ Aut(A), or

(E +D + D2

2! + : : : )(ab) = (E +D + D2

2! + : : : )(a)(E +D + D2

2! + : : : )(b):

It is easy to prove by induction the "higher Leibniz rule":

Dn(ab) =
nX

k=0

 
n
k

!
Dk(a)Dn−k(b):

Then the desired equality follows from 1
k!

1
(n−k)! =

�n
k
� 1
n! :
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1.6.21. Consider F (Y1; : : : ; Yn) as polynomial in Y2; : : : ; Yn. Then all its coe�cients are
constants.

1.6.22. Note that X(G) = X(G=[G;G]). This implies X(GL(n)) = X(T 1) ∼= Z; X(SL(n)) =
0; X(B(n)) = X(Tn) ∼= Zn (Exercise 1.2.22). Moreover, [O(2);O(2)] = SO(2)
and X(O(2)) ∼= Z2. For a quasitorus Q ∼= Tm × A, we have X(Q) ∼= Zm × A.
Finally, X(G) ∼= G=[G;G] for a �nite G.

1.6.23. Hom(Tm; Tn) = X(Tm)n.
1.6.24. Recall that A is semisimple if and only if its minimal polynomial �A(T ) has no

multiple roots. Note that �A|U (T ) divides �A(T ).
1.6.25. �A(T ) divides Tn − 1.
1.6.26. Restrict all Ai to eigenspaces V�j of A1 and use induction.

1.6.27. Consider
�

2 1
0 1

� � 1
2 1
0 1

�
.

1.6.28. The set U of matrices with pairwise di�erent eigenvalues is de�ned as Disc(PA(T )) 6=
0, where PA(T ) is the characteristic polynomial of A, and thus U is open. On
the other hand, E + tE11 is semisimple only if t = 0.

1.6.29. The �nite group G=G0 is commutative, thus G=G0 ∼= Zn1 ⊕ · · · ⊕Zns . Let ti be
a representative of the component, corresponding to a �xed generator ai ∈ Zni .
Since tnii ∈ G0 and the group G0 is divisible (i.e., for any t ∈ G0 and N ∈ N
there is h ∈ G0 with hN = t), one may assume that tnii = e. Let F be the
subgroup of G generated by ti. Check that G ∼= G0 × F .

1.6.30. Theorem 1.6.15 implies that �(Q0) is a torus. Use Exercise 1.6.29.
1.6.31. Use Theorem 1.6.15.
1.6.32. Let Ax = 0 be a system of linear equations in Km. Assume that F ⊆ K is a

sub�eld and A ∈ Mat(m ×m;F ). Since rkKA = rkFA, KerK(A) and KerF (A)
have the same dimension over K and F respectively. This proves that there is a
basis of KerK(A) with elements in Fn .

1.6.33. Let �1; : : : ; �m be the standard basis of X(Tm): �i((t1; : : : ; tm)) = ti. Then
d�i((c1; : : : ; cm)) = ci, where (c1; : : : ; cm) ∈ t and t(Z) = {(c1; : : : ; cm) : ci ∈ Z}.
On the other hand, if �((t1; : : : ; tm)) = (ta11

1 : : : ta1mm ; : : : ; tam1
1 : : : tammm ), then d�

acts in t via matrix A = (aij).
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1.7.26. Note that Lie(G) = 〈x〉, where x is either semisimple or nilpotent, and G = G(x).
1.7.27. For semisimple elements, see Lemma 1.6.12; for nilpotents, use the binomial

formula; reduce the unipotent case to the nilpotent one.
1.7.28. Yes, it contains a dense GL(n)-orbit.
1.7.29. One may reduce the questions to the case where A is nilpotent. The operator

Au restricted to any proper space of As de�nes a non-degenerate operator. Thus
As = 0, and A = 0. In the last case a decomposition is not unique.

1.7.30. By the Chinese remainder theorem there exists f(x) ∈ K[x] with
f(x) ≡ �i (mod(x− �i)ki); f(x) ≡ 0 (modx):

1.7.31. See Lemma 1.8.11.
1.7.32. AnyG(A) is a direct product of the quasitorusG(As) and the unipotent subgroup

G(Au). Elements of G(As) are diagonalizable simultaneously (Lemma 1.6.12), so
dimG(As) ≤ n. Moreover, dimG(Au) ≤ 1. But all elements of G(As) commute
with Au, and if Au 6= E, then G(As) is a proper subgroup of D(n). This proves
that dimG(A) ≤ n, and the value n is attained by Exercise 1.7.31.

1.7.33. If x ∈ Lie(G), then G(x) ⊆ G0 and thus exp(Lie(G)) ⊆ G0. By Lemma 1.7.4,
exp(Lie(G)) is a closed irreducible subvariety of G0 of the same dimension, so
exp(Lie(G)) = G0.

1.7.34. Consider a non-zero map Lie(Ga) → Lie(Gm).
1.7.35. Take G =

��
� a
0 �−1

�
: �3 = 1; a ∈ K

�
:

1.7.36. When G is connected, see the proof of Proposition 1.9.8. For arbitrary G, check
that G0 is divisible and repeat arguments of Exercise 1.6.29.

1.7.37. �
exp

�
t t
0 t

�
=
�
et tet
0 et

�
: t ∈ C

�

or
8
<
:exp

0
@
t 0 0
0 0 t
0 0 0

1
A =

0
@
et 0 0
0 1 t
0 0 1

1
A : t ∈ C

9
=
; :
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1.8.21. No, Z(B) ∼= Z2, but Z(B1) = {e}, see Exercise 1.2.23.
1.8.22. a) Z2 × Z2 acts on P1 by [x1 : x2] → [−x1 : x2] and [x1 : x2] → [x2 : x1];

b) SL(2) acts on P1 transitively;
c) G acts on G by left translations transitively.

1.8.23. Clearly, 〈e1〉 is the only line �xed by B(n). Taking V=〈e1〉 and applying induc-
tion, one checks that the standard complete 
ag is a unique B(n)-�xed point on
F(V ). Hence this point is also �xed by NGL(n)B(n).

1.8.24. For any unipotent A ∈ G the irreducible curve {At : t ∈ K} connects A and
E, thus any unipotent element is contained in G0. We know that U is a closed
normal subgroup of G0. Since a conjugate to a unipotent element is again
unipotent, U is normal in G and G=U is a �nite extension of a torus. But it
need not be commutative !

1.8.25. Assume that for some x ∈ X the boundary Y := Gx \ Gx is non-empty. By
Theorem 1.8.5, there is a non-zero G-�xed vector f in the G-invariant ideal
I(Y )CO(Gx). But then f is a constant on Gx, a contradiction.

1.8.26. If B ⊆ P , then G=B → G=P is surjective, thus G=P is complete and by Corol-
lary 1.4.3 is projective. Conversely, if G=P is projective, then by Borel's Fixed
Point Theorem, B has a �xed point on G0=(P ∩G0).

1.8.27. Take the set I = {(12); (23); : : : ; (n − 1n)}, a subset J ⊆ I, and consider a
parabolic subgroup PJ ⊆ GL(n) de�ned by aij = 0, where i > j and {(jj +
1); : : : ; (i−1i)} is not contained in J . In particular, P∅ = B(n) and PI = GL(n).
Prove that any connected parabolic is conjugate to some PJ .

First, prove that any Lie subalgebra in gl(n) containing all diagonal matri-
ces is spanned by some Eij . Then describe subalgebras which contain Lie(B(n)).
Check that di�erent PJ are not conjugate (use Exercise 1.8.23 and Theorem 1.8.19).
Again, Exercise 1.8.23 and Theorem 1.8.19 imply that any PJ coincides with its
normalizer in GL(n), thus any parabolic subgroup is connected.

1.8.28. Consider a morphism � : G ×X → X, �(g; x) = g−1 · x. Then Z := �−1(Y ) =
{(g; x) : g−1x ∈ Y } is a closed subset. Consider the projections p : G → G=B,
p2 : G×X → X and p′2 : G=B ×X → X. There is a commutative diagram:

G×X
p2

""FF
FF

FF
FF

F
p×id

yyrrrrrrrrrr

G=B ×X
p′2 // X

Since Y is B-invariant, one has Z = (p × id)−1((p × id)(Z)). Taking nor-
malization, one may assume that X in normal. By Theorem 3.0.32, the im-
age of (G × X) \ Z is open in G=B × X, so (p × id)(Z) is closed. Further
Y ′ := p′2((p × id)(Z)) is closed in X, because G=B is complete. On the other
hand, Y ′ = p2(Z) = GY .

1.8.29. Any maximal unipotent group is solvable and coincides with the set of unipotent
elements of some Borel subgroup.

1.8.30. Check that D(n) is a maximal connected commutative subgroup of GL(n). On
the other hand, a commutative unipotent group is not conjugated to a subgroup
of D(n).

1.8.31. Prove that for q((x1; : : : ; xn); (y1; : : : ; yn)) = x1yn+· · ·+xny1 the set of diagonal
matrices in SO(q) is a maximal torus. For this and for a description of a Borel
subgroup, describe Lie(SO(q)).

Similar arguments work for Sp(!), where
!((x1; : : : ; x2n); (y1; : : : ; y2n)) = x1y2n − x2ny1 + · · ·+ xnyn+1 − xn+1yn:

1.8.32. One may assume that G is connected and H is connected (right action of a �nite
group preserves a�neness). Then G = T i U , H = T1 i U1, U1 ⊆ U and, up to
conjugation, T1 ⊆ T . In particular, any character of H may be extended to G.
There is a pair (V; v), where V is a G-module and H is the stabilizer of 〈v〉, where
H acts by a character �. Let �′ be an extension of � to G. Consider the tensor
product of V with a one-dimensional G-module corresponding to the character
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−�′. Then H is the stabilizer of V ⊗ 1, and G=H is quasia�ne. Further, there
is an open G-equivariant embedding G=H ,→ X, where X is an a�ne G-variety.
Take Y := X \ (G=H), and consider the ideal I(Y )CO(X). There is a non-zero
G-eigenvector f in I(Y ). Thus G=H = Xf .
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1.9.26. T =
��

t 0
0 t−1

�
: t ∈ K×

�
; N = T∪

�
0 −1
1 0

�
T ; Un =

��
� a
0 �−1

�
: �n = 1; a ∈ K

�
;

B =
��

t a
0 t−1

�
: t ∈ K×; a ∈ K

�
; SL(2).

First we classify algebraic Lie subalgebras g in sl(2) (and thus connected
subgroups). If g = 〈x〉, then either x is nilpotent (then it is unique up to
conjugation, and we get U = U1) or semisimple (it is unique up to conjugation
and proportionality, and we get T ). Assume that g = 〈x; y〉. If x is semisimple,
then we may set x =

�
1 0
0 −1

�
and y = aE12 + bE21. Here [x; y] = 2aE12 −

2bE21 ∈ g, hence ab = 0 and we obtain B. Finally, if x and y are nilpotent, then
G0 is unipotent, but a maximal unipotent subgroup in SL(2) is one-dimensional.

In order to describe non-connected subgroups, we need to calculate the nor-
malizers: NSL(2)U = B, NSL(2)T = N , NSL(2)B = B.

1.9.27. Denote Uk = 〈e1; : : : ; ek〉 and A(i) the operator induced by A ∈ Pk1;:::;ks on
Uki=Uki−1 . Consider H = {A ∈ Pk1;:::;ks : A(i) = id; i = 1; : : : ; s}. Clearly, H is
a closed normal unipotent subgroup in Pk1;:::;ks , and

Pk1;:::;ks=H ∼= GL(k1)×GL(k2 − k1)× · · · ×GL(ks − ks−1)

is reductive. Hence H = Ru(Pk1;:::;ks). Similar arguments show that

R(Pk1;:::;ks) = (Z(GL(k1))× · · · × Z(GL(ks − ks−1)))iH:

1.9.28. See Exercise 1.3.30 (b).
1.9.29. If p : G → G=Ru(G) and H C G=Ru(G) is a normal unipotent subgroup, then,

by Lemma 1.9.1, p−1(H) is a normal unipotent subgroup of G.
1.9.30. Take G1 = Ga and G2 = Gm.
1.9.31. IfG1 andG2 are reductive, thenG1×G2 satis�es condition (5) of Theorem 1.9.16.

For HCG, one has Ru(H)CG. Finally, if HCG, then any representation of G=H
may be considered as a representation of G, thus G=H satis�es Theorem 1.9.16
(4).

1.9.32. �(Ru(F )) is a normal unipotent subgroup of G. Thus Ru(F ) ⊆ Ker�, a contra-
diction with Lemma 1.6.11.

1.9.33. Consider p : G → G=R(G). Since G=R(G) is semisimple, so is its tangent
algebra, and r(g) ⊆ Ker(dp) = Lie(R(G)). Now we shall show that if R(G) is a
solvable algebraic group, then Lie(R(G)) is a solvable Lie algebra. Indeed, R(G)
contains a non-trivial closed normal commutative subgroup ACR(G); a = Lie(A)
is a commutative ideal of Lie(R(G)). Consider R(G)=A with Lie(R(G)=A) =
Lie(R(G))=a and apply induction.

1.9.34. Study the linear span of an orbit, Exercise 1.3.27.
1.9.35. Semisimple classical groups are : SL(n), O(n) (n 6= 2), SO(n) (n 6= 2) and

Sp(2n) (calculate the center using Exercise 1.9.34 and the Schur Lemma). Simple
classical groups are SL(n), O(n) (n 6= 2; 4), SO(n) (n 6= 2; 4) and Sp(2n). In
order to prove it, one should study ideals in the corresponding Lie algebra.

1.9.36. One may assume that H and N are connected. Applying Proposition 1.2.6 to
HN we get that HN is closed. Note that the group H × N acts transitively
on H ×N , (h; n) ◦ (h1; n1) = (hh1; n1n−1), on HN , (h; n) ◦ h1n1 = hh1n1n−1,
and the morphism � : H × N → HN , �(h; n) = hn is (H × N)-equivariant.
Theorem 3.0.33 implies that di�erential of � at (e; e) is surjective. But Lie(H ×
N) = Lie(H) ⊕ Lie(N) (a direct sum of vector spaces) and the di�erential of
the restriction of � on H × {e} (resp. on {e} × N) de�nes the embedding
Lie(H) ⊂ Lie(G) (resp. Lie(N) ⊂ Lie(G)).

1.9.37. If x ∈ g is nilpotent, then G(x) ⊂ G, a contradiction. Thus all elements of g

are semisimple. It is su�cient to prove that G0 is commutative. If it is not the
case, then g is not commutative (otherwise all elements of g may be diagonalized
simultaneously and G0 is contained in D(n)). Take any x ∈ g \ z(g) and let t be
a maximal commutative algebraic Lie subalgebra in g containing x. Then t is
the tangent algebra of a subtorus T ⊂ G0. The Ad(T )-module g is a direct sum
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of one-dimensional submodules. This shows that
g = t⊕

M
�∈�

g�; where g� := {x ∈ g : [y; x] = �(y)x} for all y ∈ t;

where � is a �nite set of non-zero linear functions on t. It follows from the Jacobi
Identity that [g�; g� ] ⊆ g�+� . Since � + s� =∈ � for all �; � ∈ � and su�ciently
big s, the operator ad(x) is nilpotent for any x ∈ g�. But this operator acts non-
trivially on t, thus it is non-zero. Then it can not be an image of a semisimple
element of g, a contradiction.
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2.1.9. K[x1; x1x2; x1x2
2; x1x3

2; : : : ] or 〈xi1xj2 : i ≤ √
2j〉.

2.1.10. Let p : O(X) → O(X)G be G-invariant projection. Prove that any simple G-
submodule of non-zero type in O(X) lies in Ker p.

2.1.11. By Exercise 2.1.10, it is su�cient to check that the formula

f → 1
|G|

X

g∈G
g · f

de�nes a G-invariant projection O(X) → O(X)G.
2.1.12. Clearly, O(Kn)GL(n) = K and f → f((0; : : : ; 0)) is a G-invariant map.
2.1.13. For n = 2 it is su�cient to prove that

{xk1 ; (x1 + x2)k; : : : ; (x1 + kx2)k}
is a basis in the space of homogeneous polynomials of degree k. Here one may
use the Vandermonde determinant. For n > 2 use induction.

2.1.14. Let f be a homogeneous invariant of degree k. There are linear forms l1; : : : ; lN
with f = lk1 + · · ·+ lkN . Then

f =
NX
i=1

( 1
|G|

X

g∈G
(g · li)k):

Any Pg∈G(g · li)k is a symmetric polynomial in g · li, and it may be expressed
in elementary symmetric polynomials in g · li. But these elementary symmetric
polynomials are homogeneous invariants of degree ≤ |G|.

2.1.15. (a) The invariant bilinear symmetric form q de�nes a quadratic invariant on Kn:
F (x) := q(x; x). Consider the standard orthogonal basis e1; : : : ; en, set S = 〈e1〉,
and prove that O(Kn)SO(n) = K[F ].
(b) The action Sp(2n) : K2n is transitive on the set of non-zero vectors, so
O(K2n)Sp(2n) = K.
(c) For s < n the action has open orbit and O(X)SL(n) = K. If s = n, then
de�ne F (v1; : : : ; vn) := det(v1; : : : ; vn), set S = 〈(e1; : : : ; en)〉, and prove that
O(X)SL(n) = K[F ].

2.1.16. (a) xn1 ; xn−1
1 x2; : : : ; x1xn−1

2 ; xn2 ;
(b) xn1 ; xn2 ; x1x2.

2.1.17. x1x3
3; x2

1x3
4; x2x3; x2

2x4; x1x2x2
4; x1x3x4

Prove that there exists a generating set consisting of monomials, and generating
monomials correspond to non-decomposable non-negative integer solutions of
the equation 3a1 + a2 − a3 − 2a4 = 0.
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2.2.11. Put X = SL(2) and G = U(2) with the action by right translations. Here
Spec(O(X)G) ∼= K2, but �(X) = K2 \ {0} (cf. Proposition 1.4.6 and Exam-
ple 1.4.8).

2.2.12. All semisimple elements in �−1(y) are conjugate to the same diagonal matrix,
thus form one GL(n)-orbit O′. By Corollary 1.7.12, the centralizer of a semisim-
ple element in �−1(y) has the largest dimension among centralizers of elements
in �−1(y), thus the orbit O′ has the smallest dimension.

2.2.13. Since for any f ∈ O(X) all coe�cients of the polynomial
Ff (T ) =

Y

g∈G
(T − g · f)

are G-invariants, the extension O(X)G ⊆ O(X) is integral. Moreover, any G-
orbit is closed in X.

2.2.14. Consider K× : K3, t · (x1; x2; x3) = (tx1; tx2; t−1x3).
2.2.15. Follow the proof of Theorem 2.2.7.
2.2.16. Let �1 : X → Y1 and �2 : X → Y2 be categorical quotients. Applying De�ni-

tion 2.2.5 to the G-invariant morphisms �2 : X → Y2 and �1 : X → Y1, we get
morphisms  1 and  2:

X
�1

~~}}
}}

}}
}}
�2

²²

�1

ÃÃA
AA

AA
AA

A

Y1
 1 // Y2

 2 // Y1

The uniqueness implies that  2 ◦  1 = idY1 . Similarly,  1 ◦  2 = idY2 .
2.2.17. Assume that y ∈ Y := X==G, y =∈ �(X). Take Z := Y \ {y}. Then � : X → Z

is a G-invariant morphism, and there is  : Y → Y \ {y} making the diagram
commutative:

X
�

{{xxxxxxxxx
�

²²

�

##GGGGGGGGG

Y
 // Y \ {y} i // Y:

Let i : Y \{y} → Y be the embedding. Then uniqueness implies that i◦ = idY .
But (i ◦  )(y) 6= y, a contradiction.

2.2.18. The condition O(Kn)Tm 6= K is equivalent to the existence of a non-constant
monomial xa1

1 : : : xann with a1�1 + · · ·+ an�n = 0.
2.2.19. It is su�cient to prove that �∗ : O(Y ) → O(X)G is an isomorphism. Since � is

dominant, the homomorphism �∗ is injective. Take any f ∈ O(X)G. We know,
that f is constant on a generic �ber of �. Corollary 3.0.29 guarantees that there
is � ∈ O(Y ) with �∗(�) = f .

2.2.20. For s = n, consider � : X → Sym(n), �(v1; : : : ; vn) = (q(vi; vj)). This morphism
is surjective, because any symmetric matrix S has a form ATA for some A ∈
Mat(n× n). Moreover, for a non-degenerate S the preimage �−1(S) consists of
a unique G-orbit: ATA = BTB ⇒ A = (AT )−1BTB, (AT )−1BT ∈ O(n). Now
apply Igusa's criterion. For s < n, use Lemma 2.1.5 and surjectivity of �.

2.2.21. Consider X = G as an a�ne H-variety with the right H-action. All orbits of the
action have the same dimension, thus are closed, and any �ber of the quotient
morphism � : G → G==H is an H-coset. Since � is the categorical quotient,
there is a (bijective) morphism  : G==H → G=H, which is an isomorphism.

2.2.22. If zi ∈ Gxi ∩Gxi+1, then �(xi) = �(zi) = �(xi+1).
2.2.23. It is su�cient to prove that any two points on Pn are equivalent. Renumbering,

one may assume that there is a one-parameter subgroup � : K× → Tm such that
〈�; �1〉 ≤ 〈�; �i〉 ≤ 〈�; �2〉 and 〈�; �1〉 < 〈�; �2〉. For any x ∈ Pn denote by x�j
the point [y1 : ::: : yn+1] with yi = xi for 〈�; �i〉 = 〈�; �j〉 and yi = 0 otherwise.
Check that for any x; y ∈ Pn

x ∼ x�1 ∼ (x�1 + y�2) ∼ y�2 ∼ y:
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2.3.17. Consider the diagonal action SL(2) : K2 ⊕ K2, and set Z = 〈e1〉 ⊕ 〈e1〉, X =
SL(2)Z. Here O(X)SL(2) = K, because any orbit in Z contains zero in its closure.
But X does not have open SL(2)-orbit, so K(X)SL(2) 6= K.

2.3.18. Use Proposition 2.3.6.
2.3.19. Assume that G-orbits in X are of the same dimension. Then (G1), (G2) and

(G4) follow from Theorem 2.2.2, and (G3) follows from Theorem 3.0.30. In fact,
one may remark that �(U) = �(GU) and deduces (G3) from Theorem 2.2.2 (2).

2.3.20. Follows from Exercise 2.3.19.
2.3.21. If QO(X)G = K(X)G, then elements of O(X)G separate G-orbits on the open

subset U of Corollary 2.3.14. By Lemma 2.3.13, the intersection of a generic
�ber of � with U is dense in this �ber.

Conversely, if W ⊆ X is an open subset consisting of G-orbits of maximal
dimension, then generators of O(X)G separate orbits on W ∩ �−1(V ), and thus
generate K(X)G (Proposition 2.3.16).

2.3.22. Let f1; : : : ; fm be a generating set of K(X)G. There is an open subset W ⊆ X=G
such that all fi are regular on �−1(W ). Then

f1; : : : ; fm ∈ O(�−1(W ))G = �∗(O(W )) ⊆ �∗(K(X=G)):
For a categorical quotient, consider K× : Kn, t · (x1; : : : ; xn) = (tx1; : : : ; txn).

2.3.23. If � : K2 \{0} → Y is the geometric quotient, then Y is a curve. Since any curve
is either a�ne or projective, the points y1 = �(Ge1) and y2 = �(Ge2) lies in a
common a�ne chart U ⊆ Y . There is a function f ∈ O(U) with f(y1) 6= f(y2).
Then �∗(f) is a rational invariant on K2 \ {0} that separates Ge1 and Ge2. But
K(K2 \ {0})K× = K(K2)K× = K(x1x2), a contradiction.
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