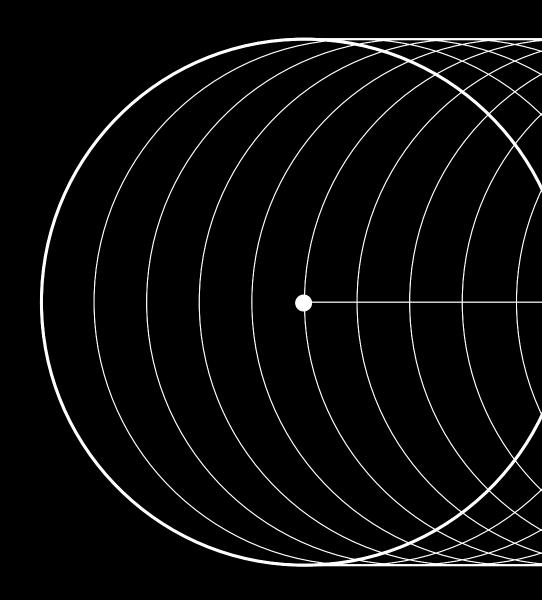
Yandex Research

From Noise to Narrative: The Evolution of Visual Generative Models

Sergey Kastryulin

Research Scientist



Agenda

O1 An overview of conditioning

02 Multi-modal generative models

- 03 (Open) questions
- 04 Inference-time compute scaling

Visual Generative Modeling

```
012345
012345
012345
012345
```

Unconditional

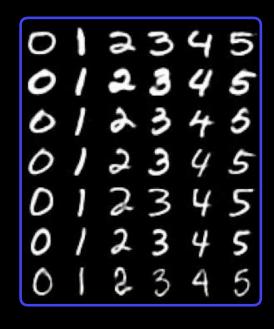
Visual Generative Modeling

```
012345
012345
012345
012345
```

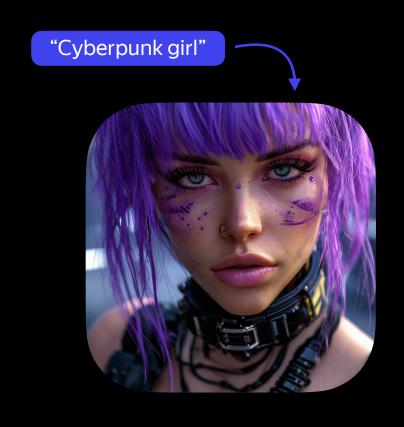
Unconditional

Class-conditional

Visual Generative Modeling



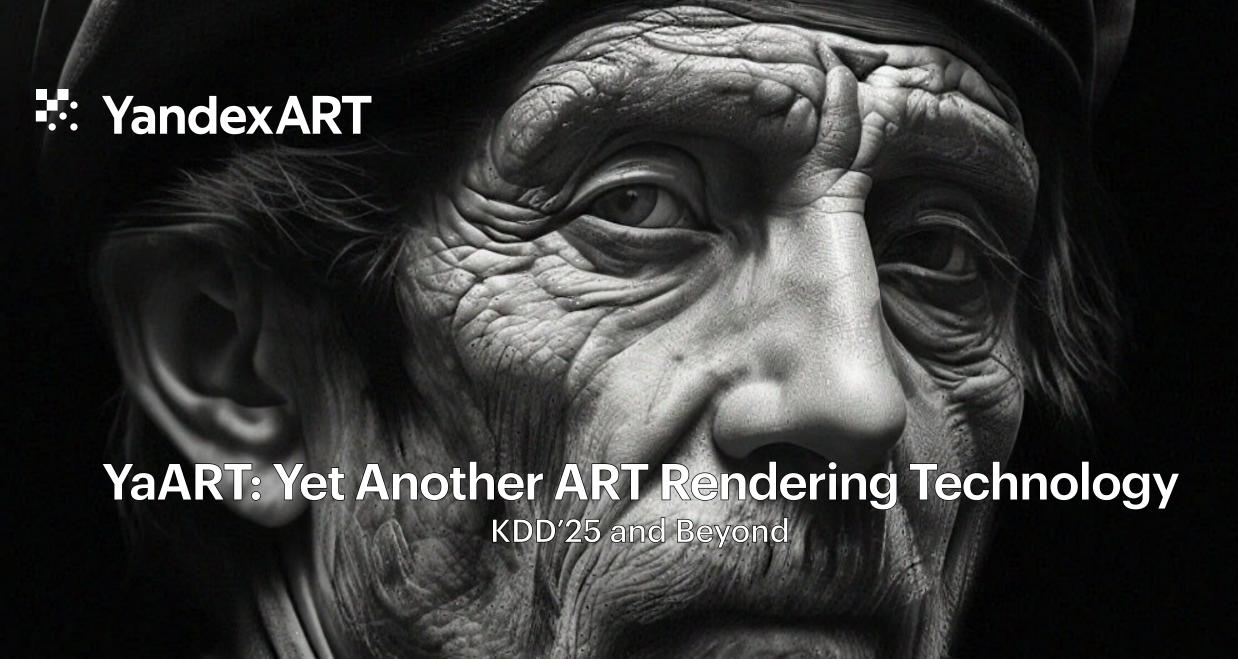


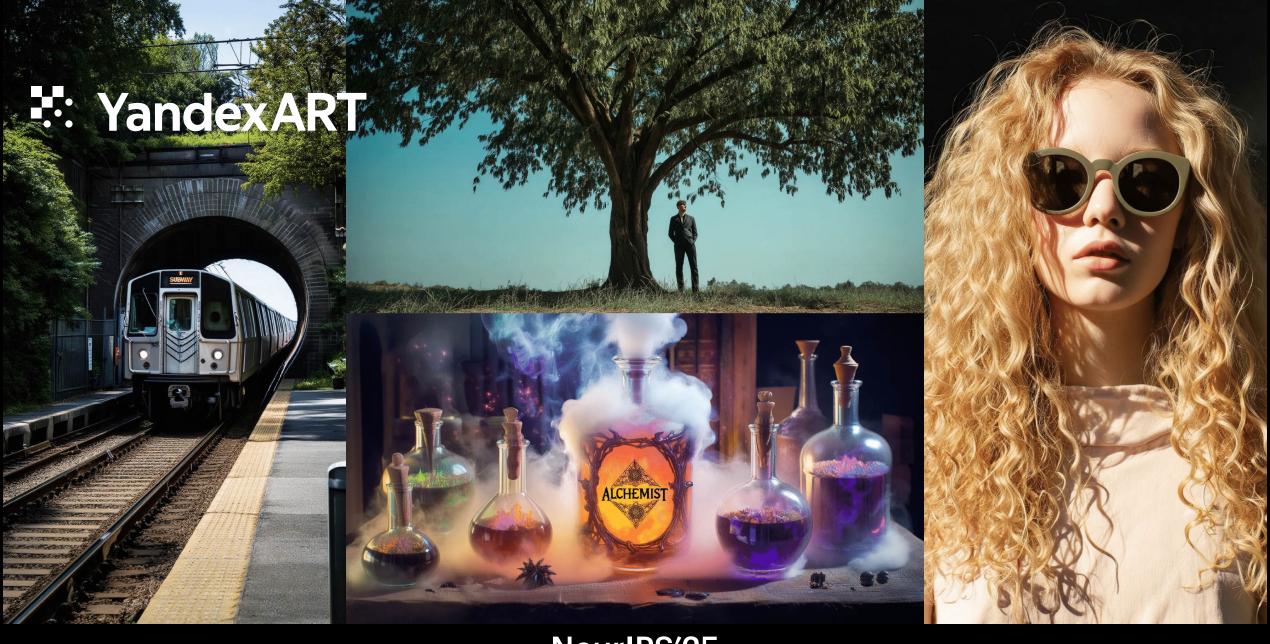


Unconditional

Class-conditional

Text-conditional

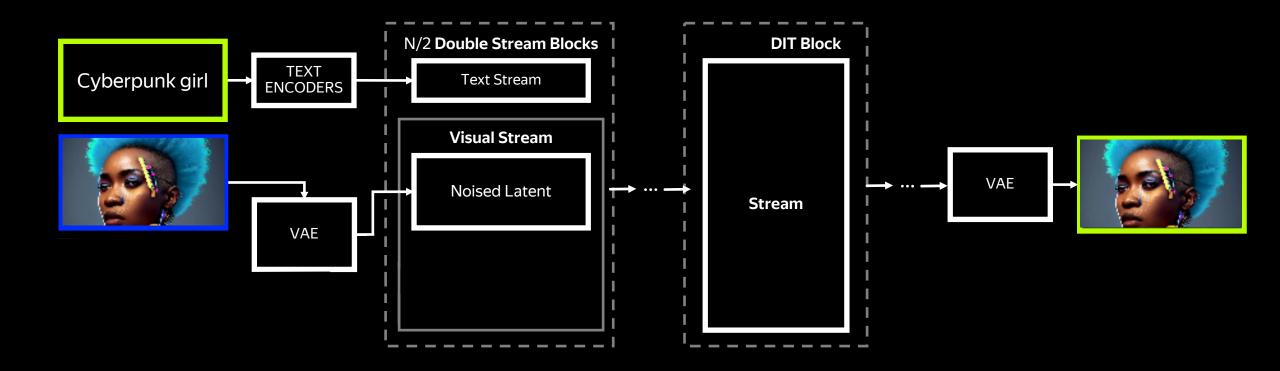




NeurIPS'25 Fall into ML — 16:00, poster #39)

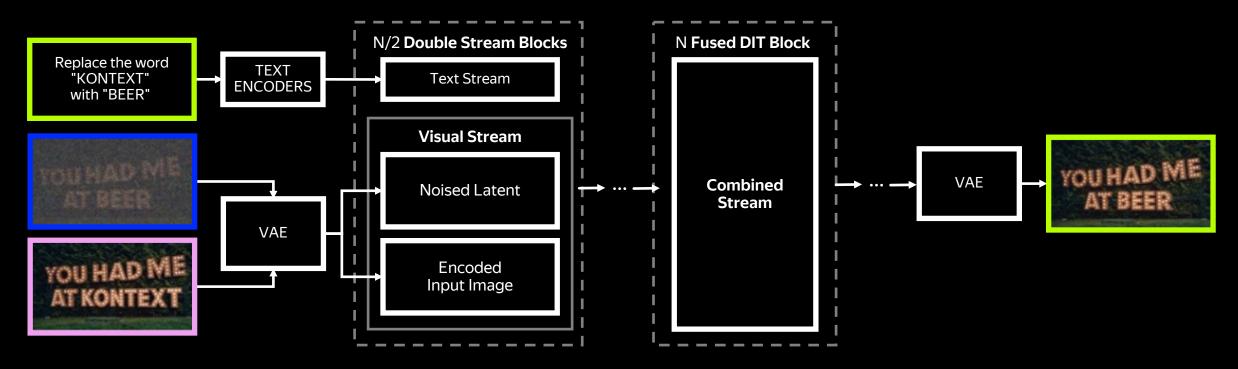
Conditioning on text

In general

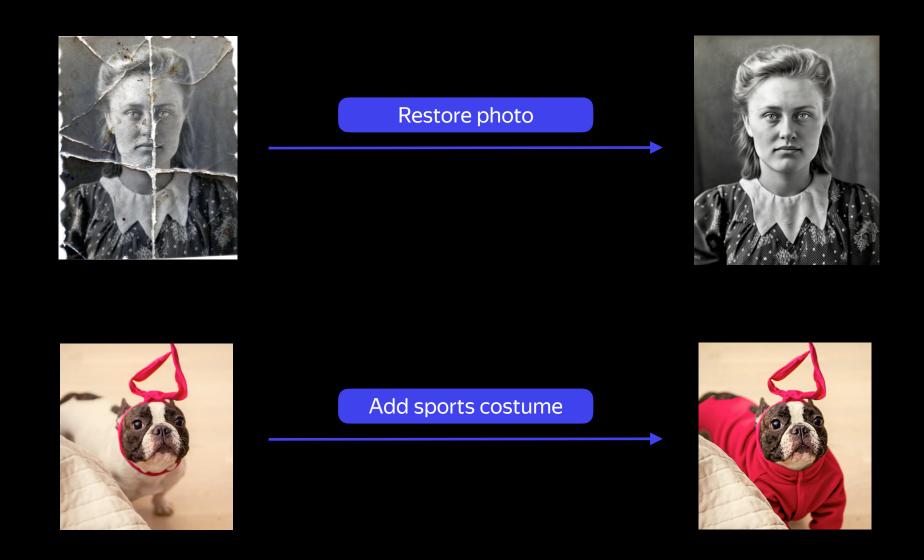


Conditioning on text and image

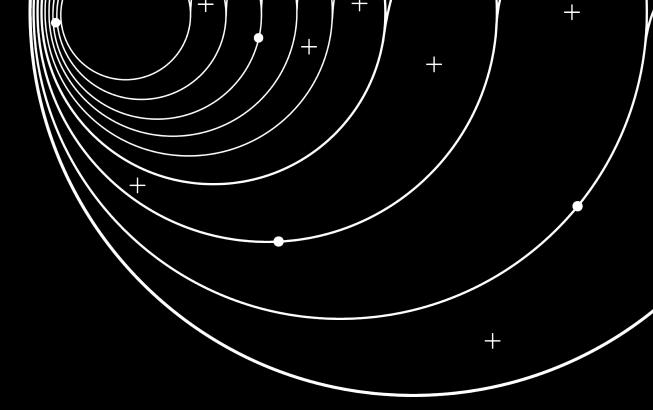
Flux.1 Kontext



Conditioning on text and image



Yandex Research



In reality, we want a dialog

In reality we want a dialog

Why?

01 Generate new content

02 Edit existing content

03 Ask questions

04 Work with several images

05 Support context

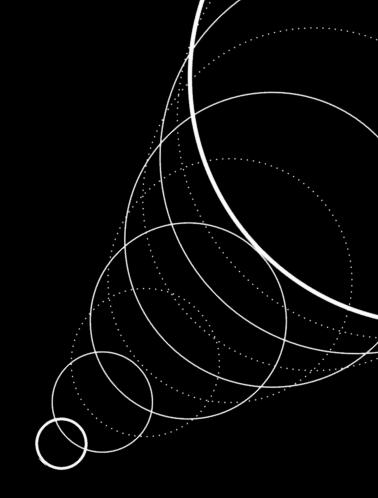
O6 Bonuses from different modalities*

^{*} J. Zhang et. al., "Are Unified Vision-Language Models Necessary: Generalization Across Understanding and Generation", 2025

Dialog means unification

Unify two main generative worlds

- Inherently continuous (visual): images, video, 3D
- Inherently discrete (textual): text, code, math



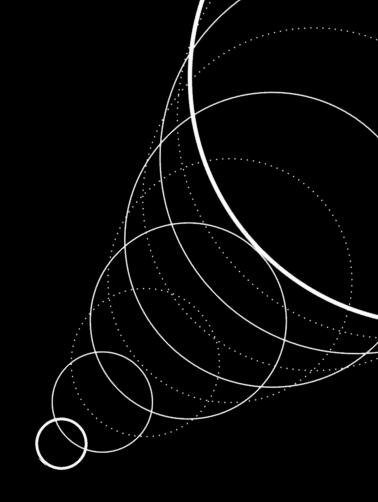
Dialog means unification

Unify two main generative worlds

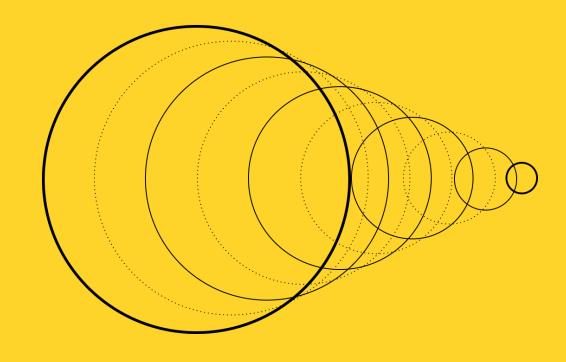
- Inherently continuous (visual): images, video, 3D
- Inherently discrete (textual): text, code, math

Currently we can model

- text-to-text LLM
- text-to-image all we discussed above
- image-to-text VLM
- text+image-to-image Editing

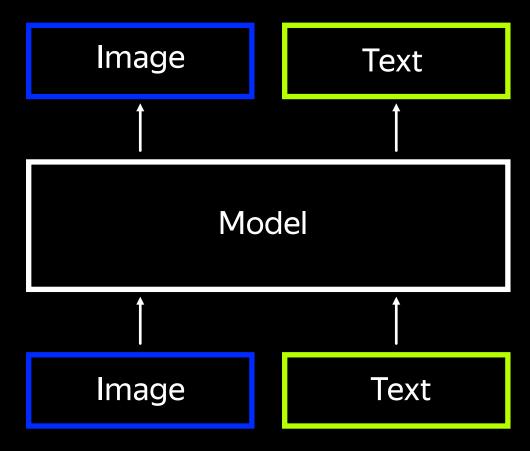


Yandex Research

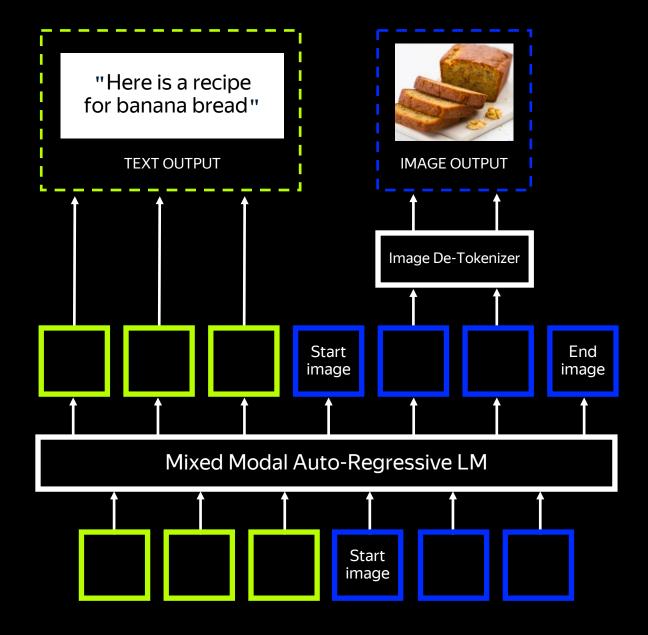


Towards Unified Generative Models

What kind of model would help us?



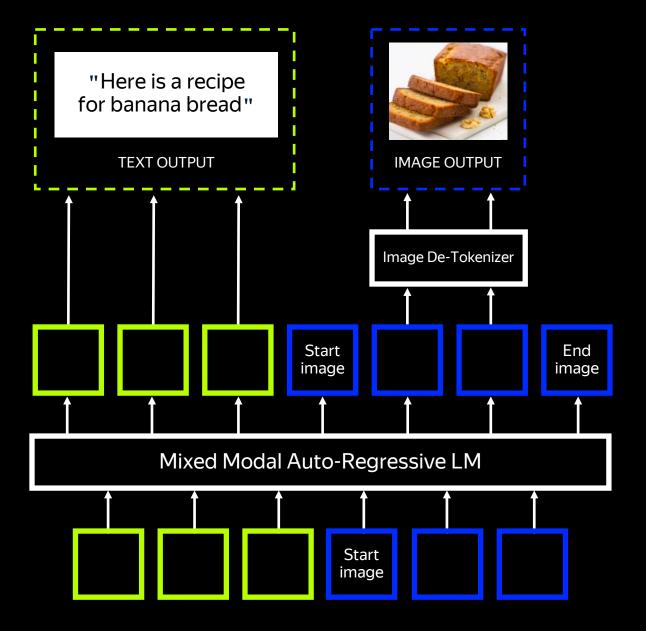
Naive approach



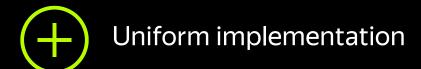
Naive approach

Raster order is not native to images

Discretisation ruins image quality

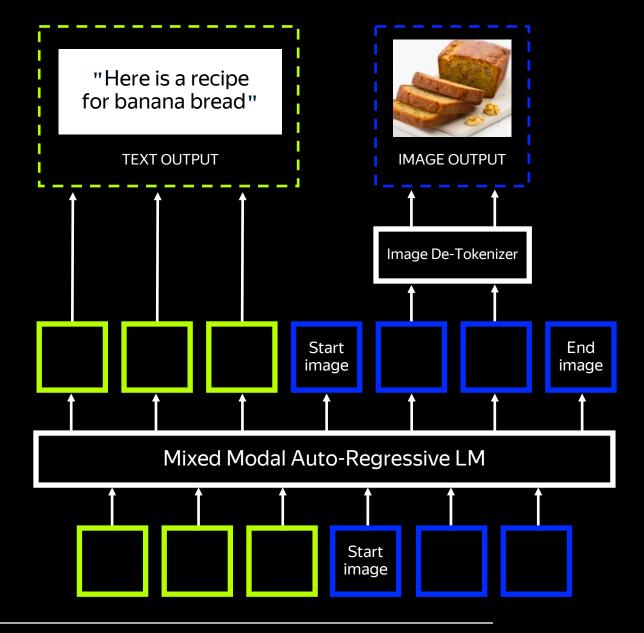


Naive approach



Discretisation ruins image quality

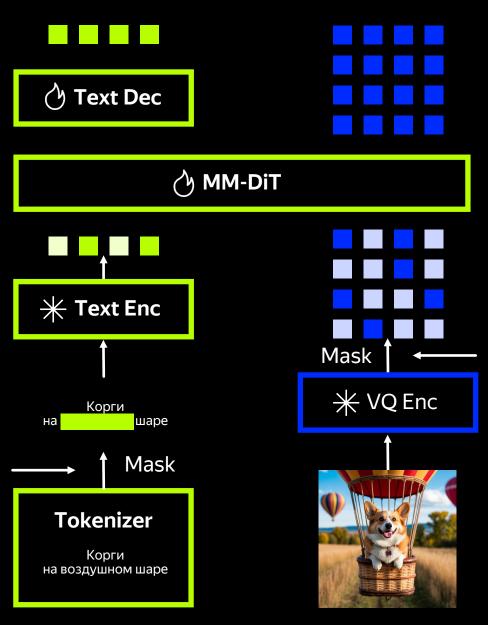
sic!



Muddit

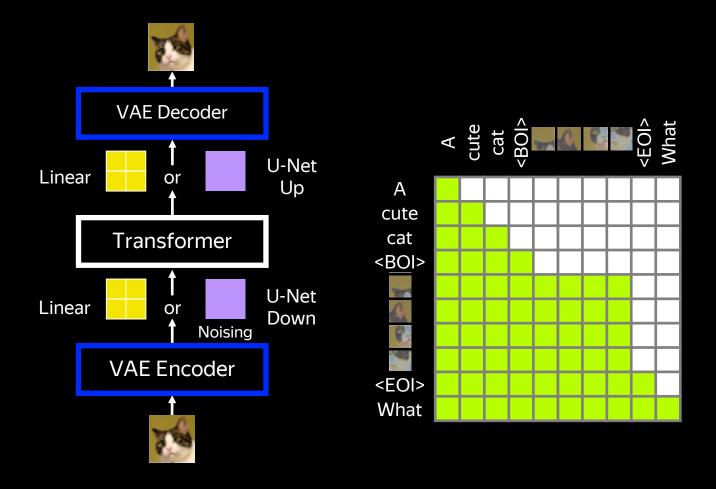
Discrete diffusion for text data*

Discrete tokens for image data



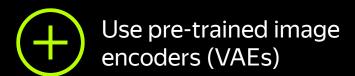
Transfusion

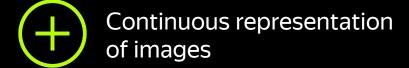
- Unified representation in a single transformer
- Causal attn for text, bidirectional for images
- Continuous encoding of images

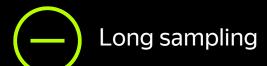


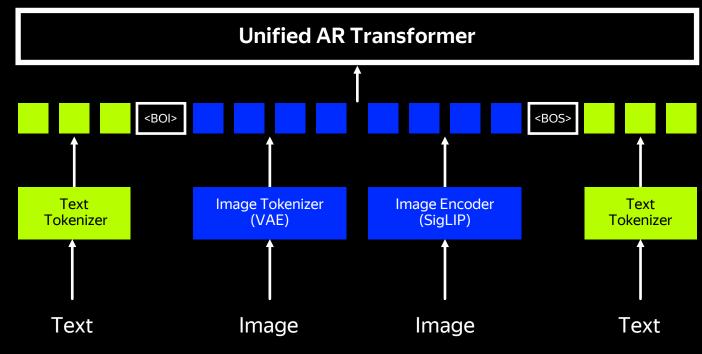
$$\mathcal{L}_{Transfusion} = \mathcal{L}_{LM} + \lambda \times \mathcal{L}_{DDPM}$$

MAR, (Uni)Fluid







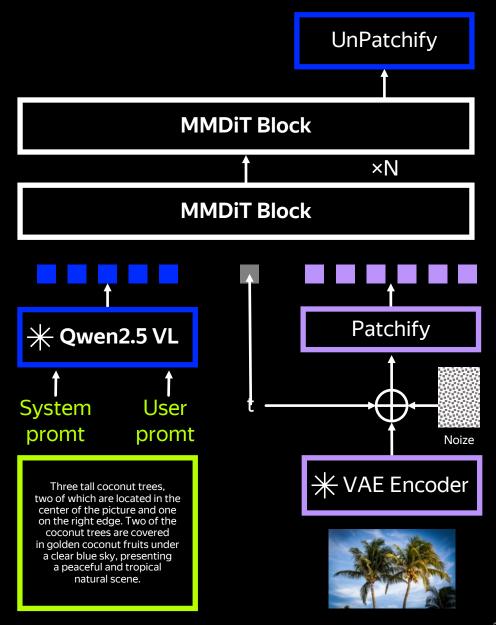


NexusGen | Qwen Image



Should be cheaper to train, right?*

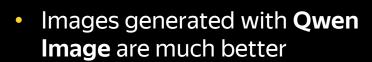
Hard to align with good quality



How hard is it to train the connector?

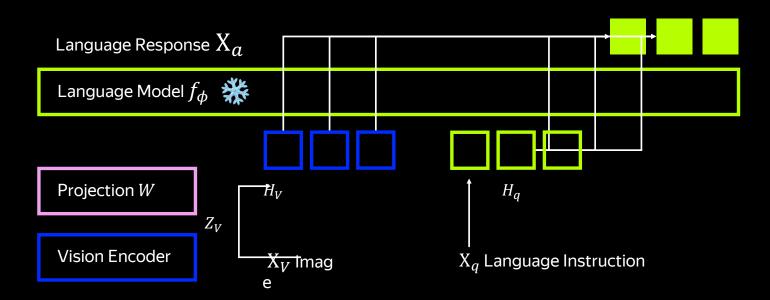
"a pair of cherries, dressed in a delicate ballerina outfit"

- Images generated with
 NexusGen have low quality
- Did not train from scratch

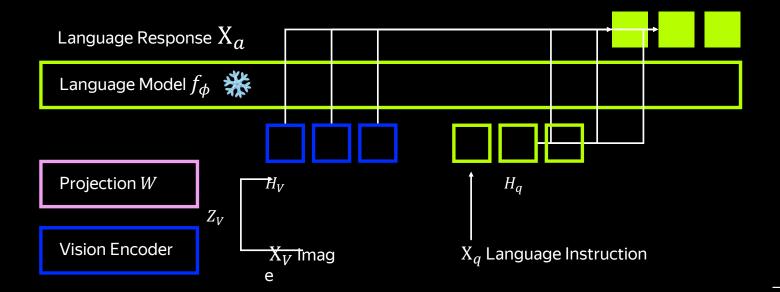


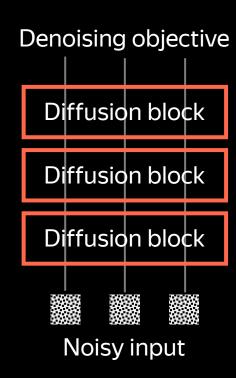
Trained from scratch

Baseline connection scheme

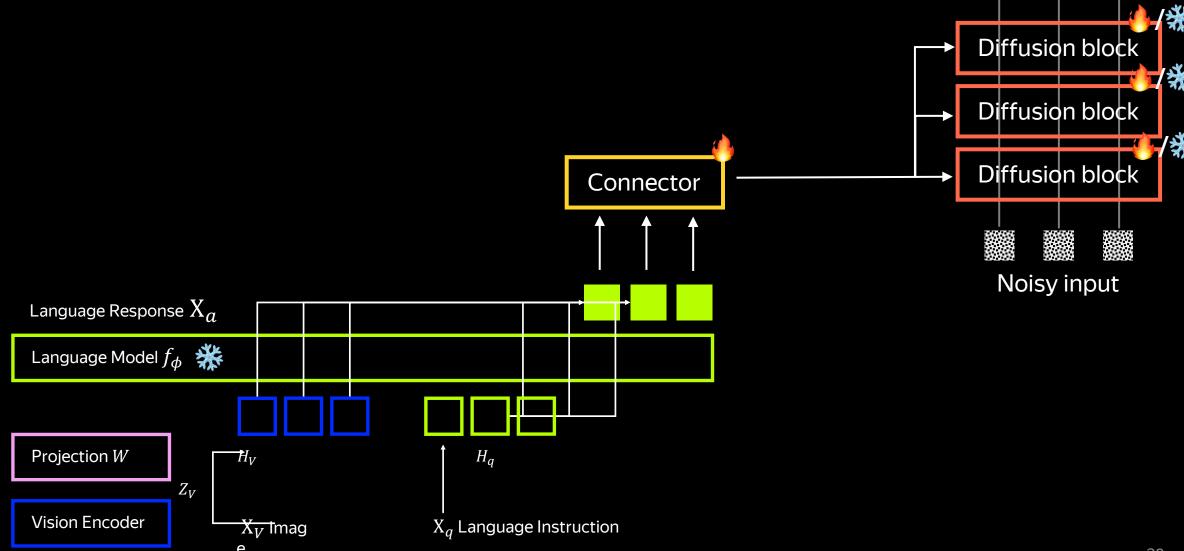


Baseline connection scheme





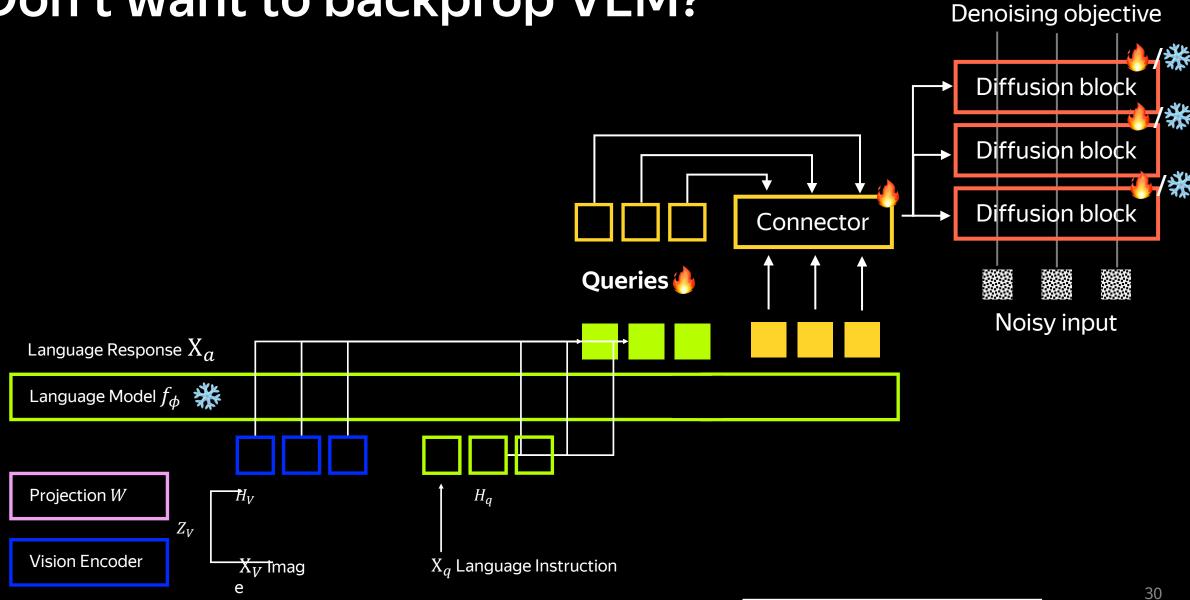
Baseline connection scheme

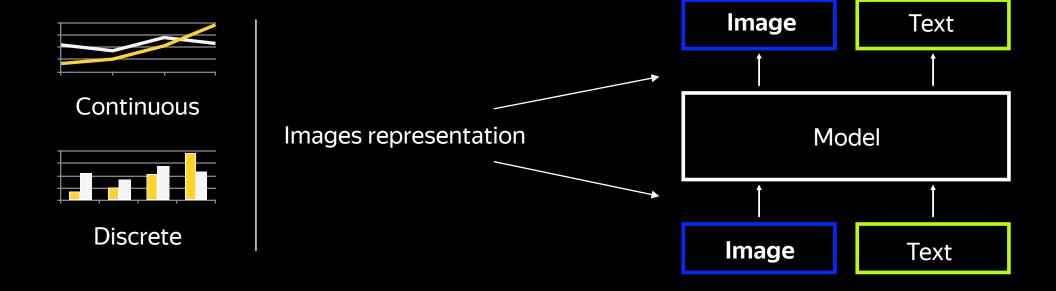


Denoising objective

Q-Former and MetaQueries Denoising objective Diffusion block Diffusion block Diffusion block Connector Noisy input Language Response X_a Language Model f_{ϕ} Projection W H_V H_q **MetaQueries** Z_V Vision Encoder X_V Imag X_a Language Instruction

Don't want to backprop VLM?





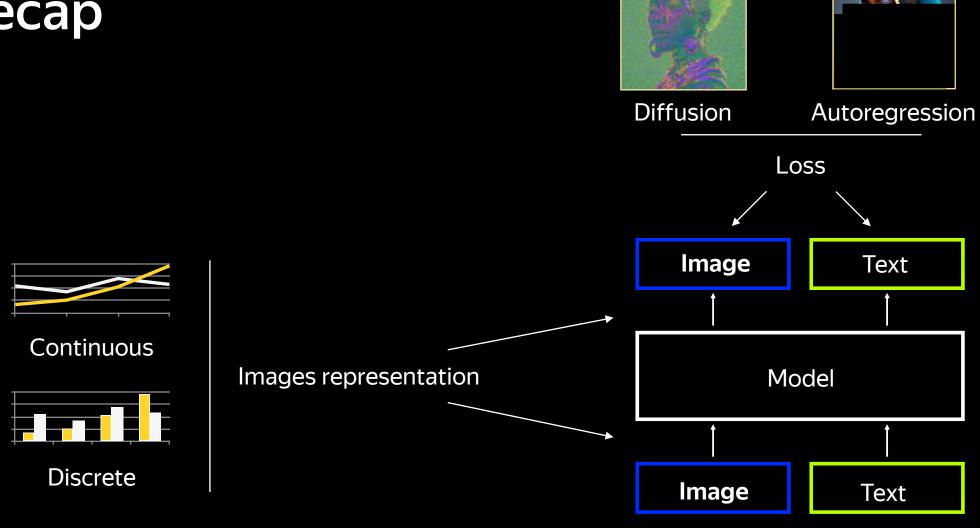
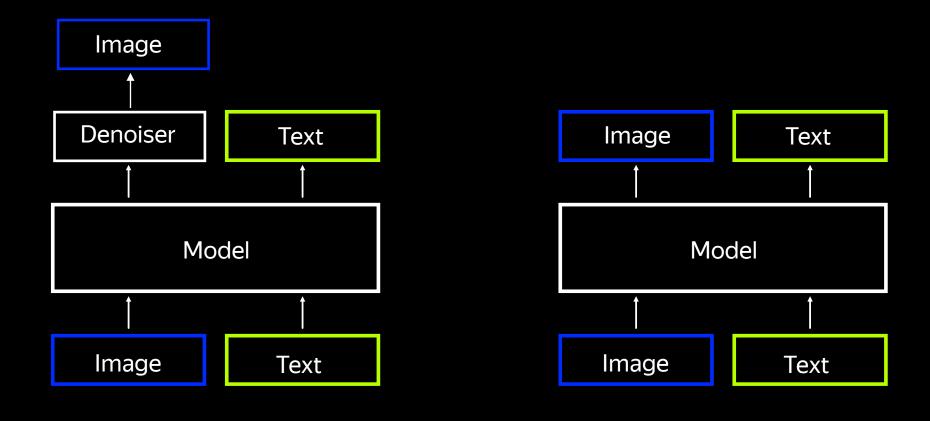
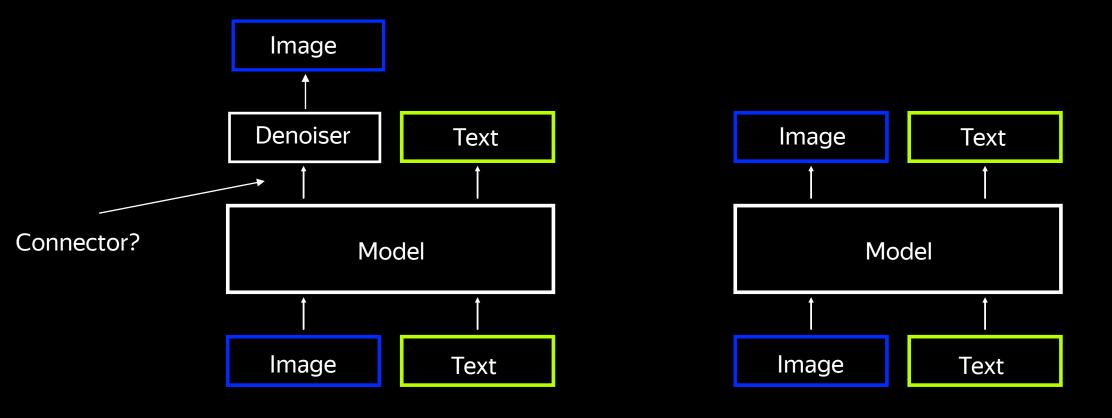


Image gen module



External Integrated 33

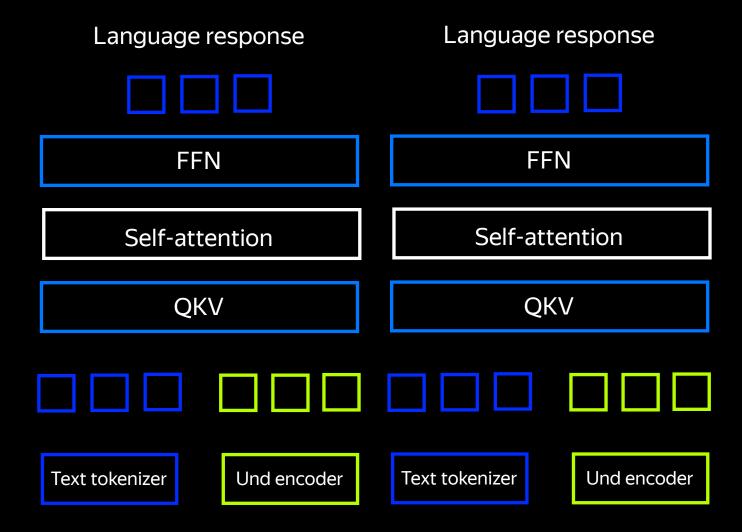
Image gen module



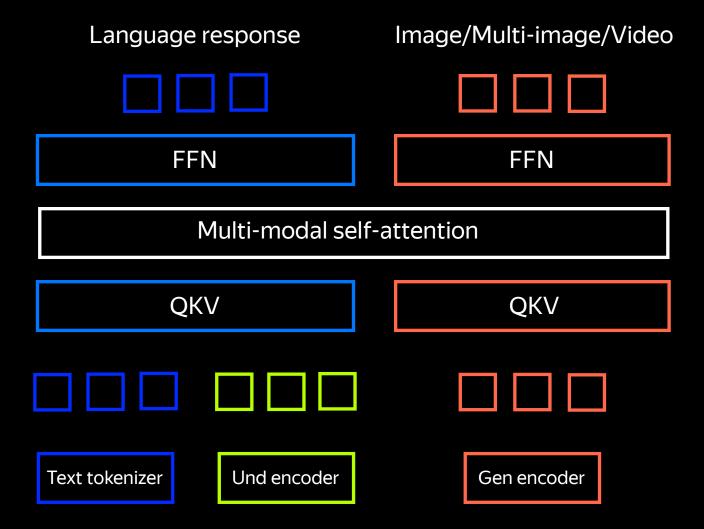
External Integrated 34

BAGEL

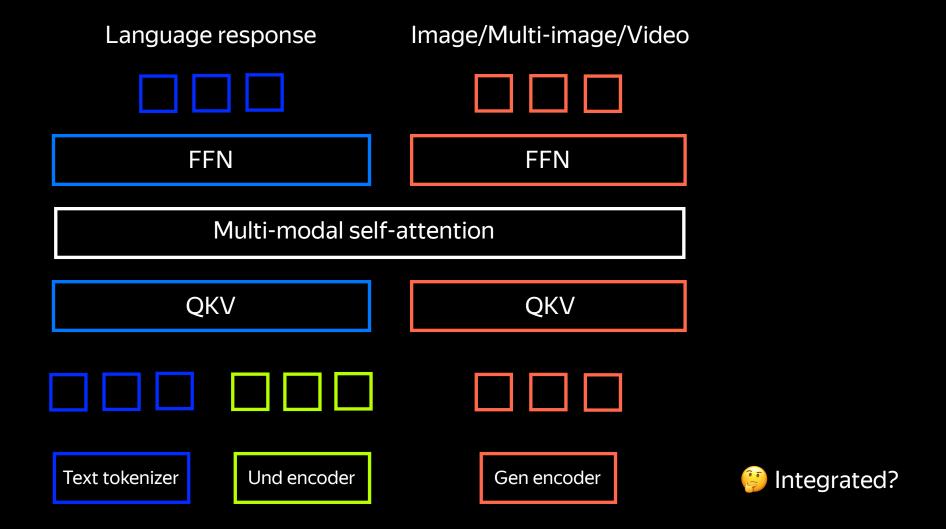
BAGEL



BAGEL

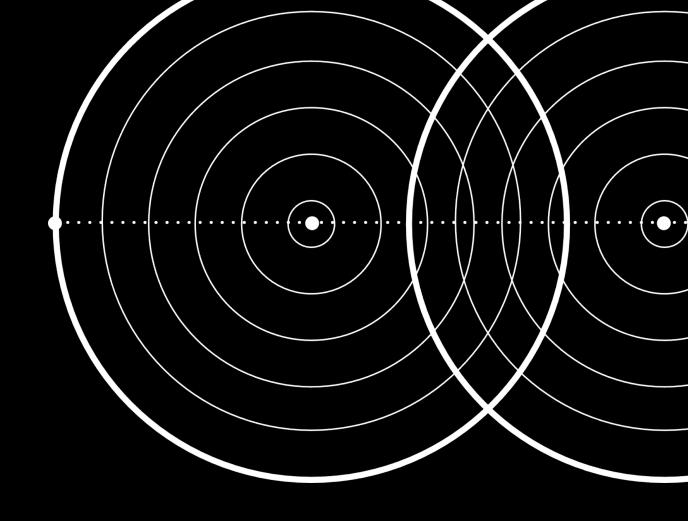


BAGEL

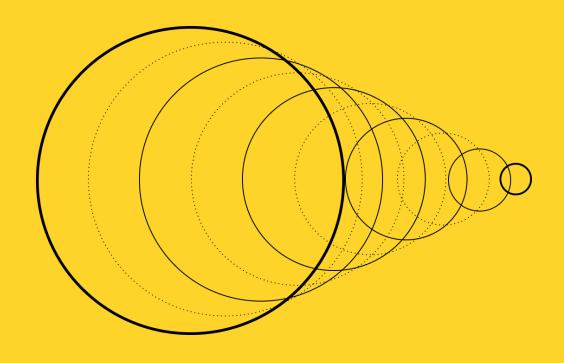


Final recap

- Plenty of options to choose
- Options have ups and downs
- There is no clear winner yet
- Many open questions



Yandex Research



(Open) Questions

How to Train

Currently, we can model

- text-to-text LLM
- text-to-image text-cond diffusion
- image-to-text VLM
- text+image-to-image text+img-cond diffusion

How to Train

Currently we can model

- text-to-text LLM
- text-to-image text-cond diffusion
- image-to-text VLM
- text+image-to-image text+img-cond diffusion

The moment you start you be like: how the hell do I combine all that?

Is there cross-modal knowledge transfer?

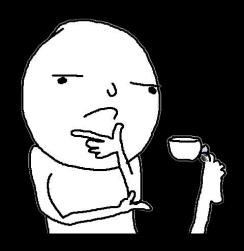
- Editing-only training collapses T2I
- Training on T2I + editing > just T2I or just editing
- Training on all 4 tasks is not worse than training on them individually

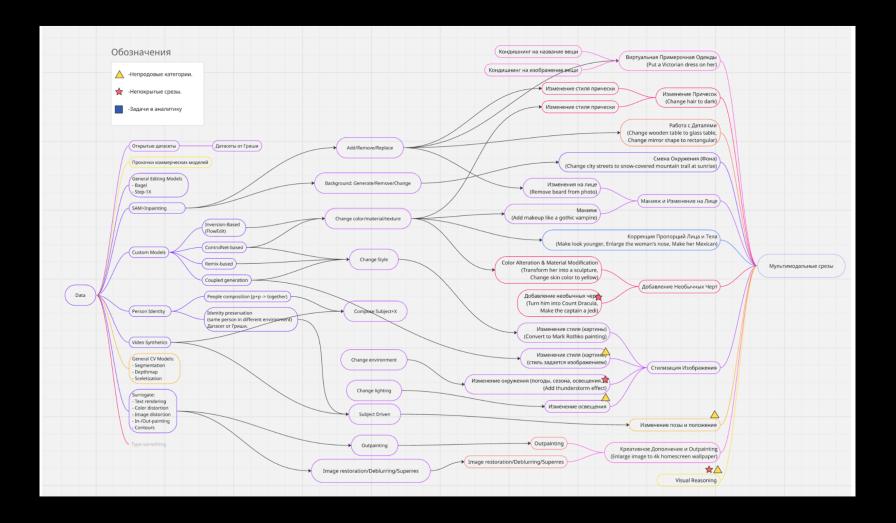
⁴³

Adapted setup does magic

⁴⁴

DATA





How to Distill

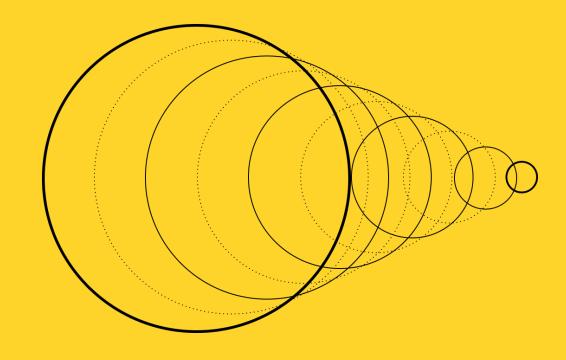
- Copy-paste from T2I does not (optimally) work
- Fun cross-task interactions:
 - LCM on editing > LCM on T2I for T2I quality

How to Distill

- For unmerged models, we can combine acceleration techniques
 - LoRA distill on the image part
 - Spec dec, KV-caching etc on the text part

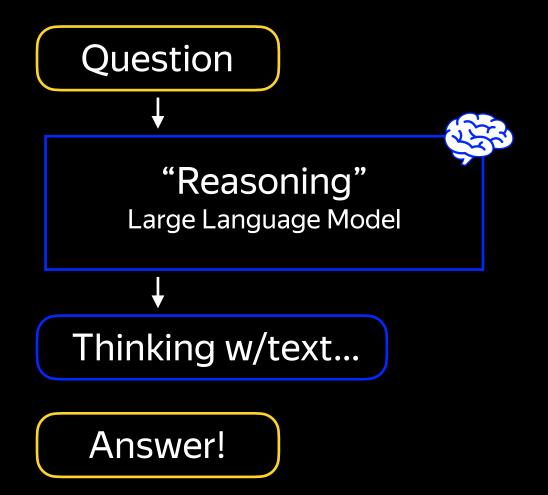
Can we use text-gen acceleration techniques on image-gen?

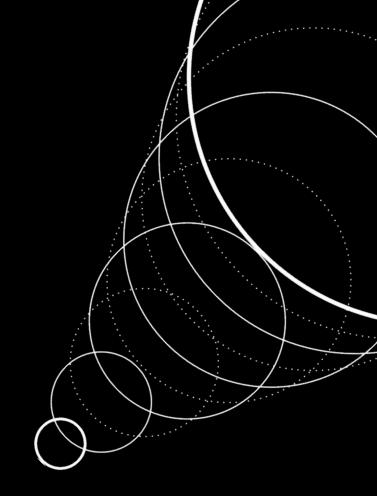
Yandex Research



Inference-time Compute Scaling

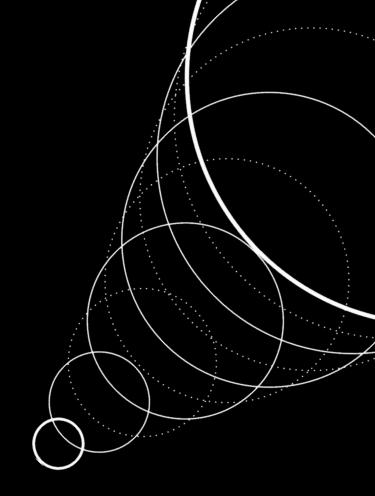
Very much known for LLMs



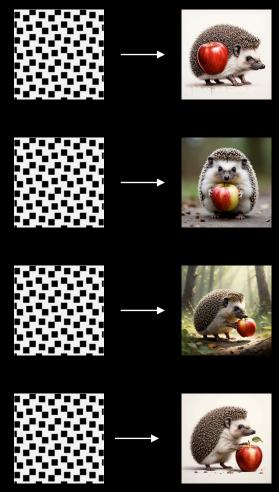


Very much known for LLMs

Question "Reasoning" Diffusion/Multi-modal model Thinking w/text+images... Answer!

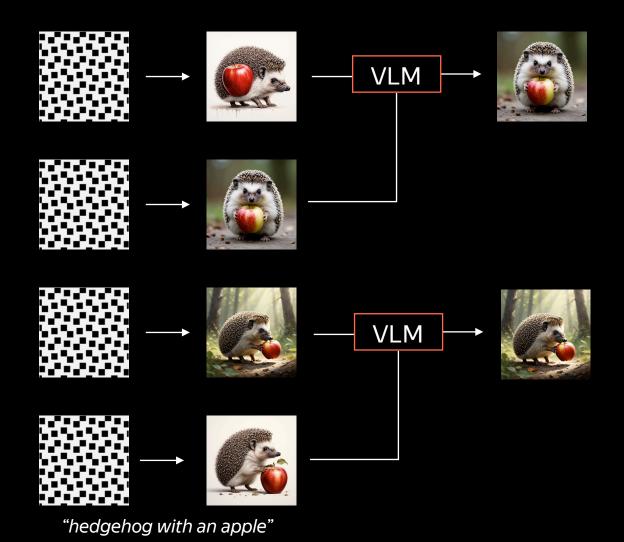


Best-on-N baseline



"hedgehog with an apple"

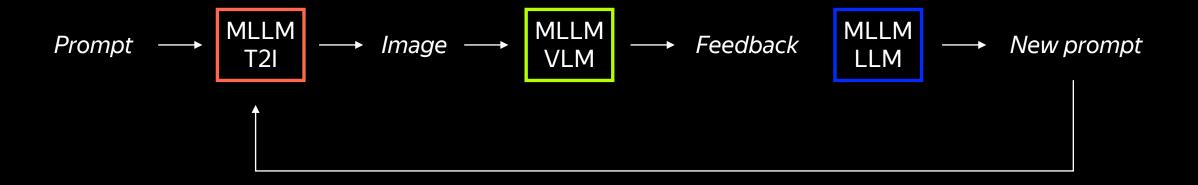
Best-on-N baseline



Best-on-N baseline

External VLM-as-judge

Can multi-modal model do all that itself?



Boosts text gen and 'many objects'

No TTS

TTS

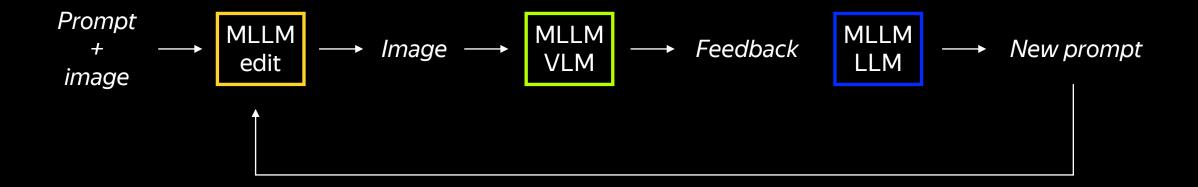
"do an inscription `rash 435`"

350.013

Rash 435

"draw 5 dogs of different colors"

Can we do the same for editing?



Also works pretty well

"change the action of the horses to galloping"

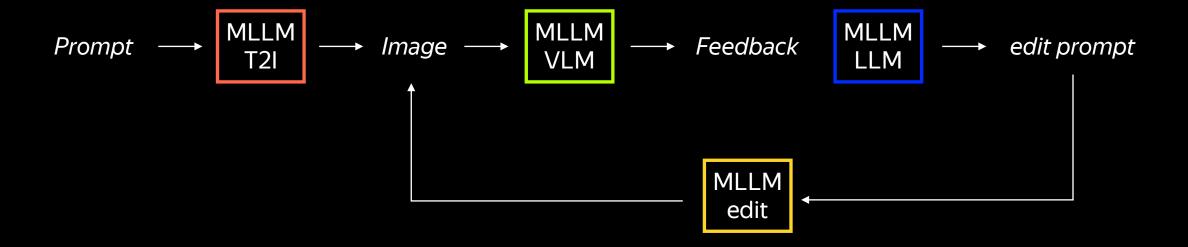
No TTS

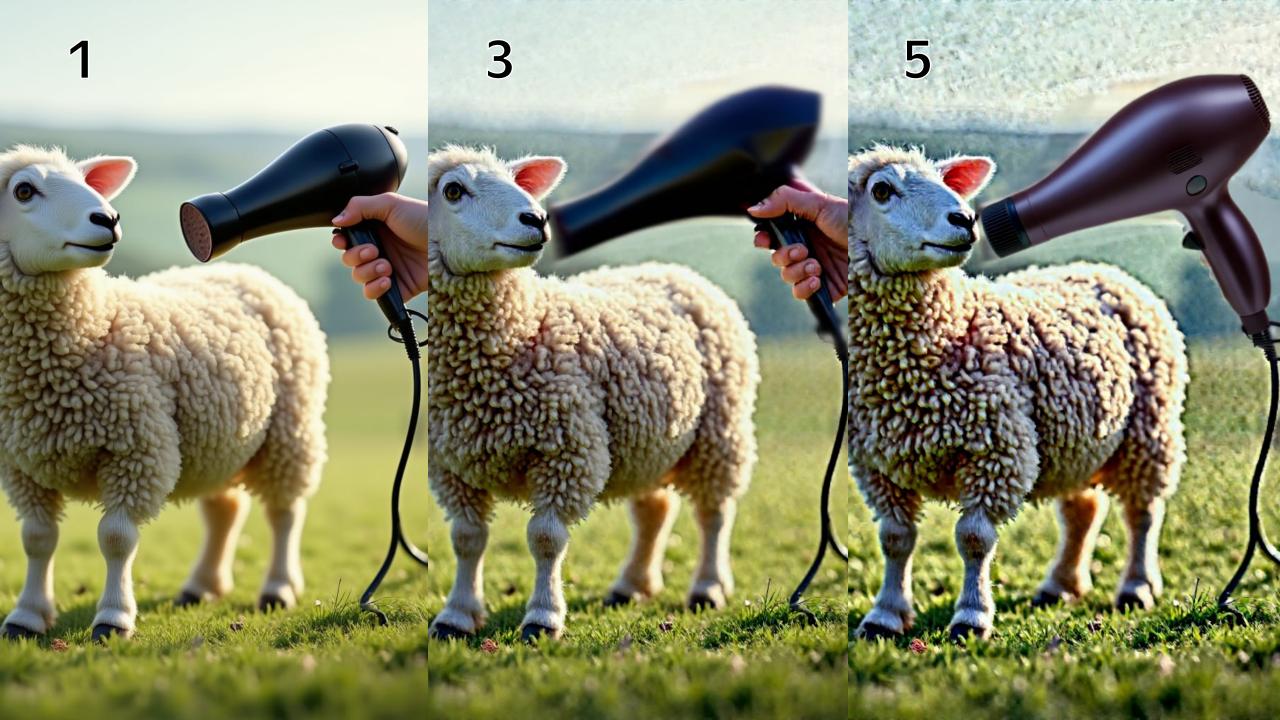
TTS

"Extract the person from the photo and dress them in a police uniform"

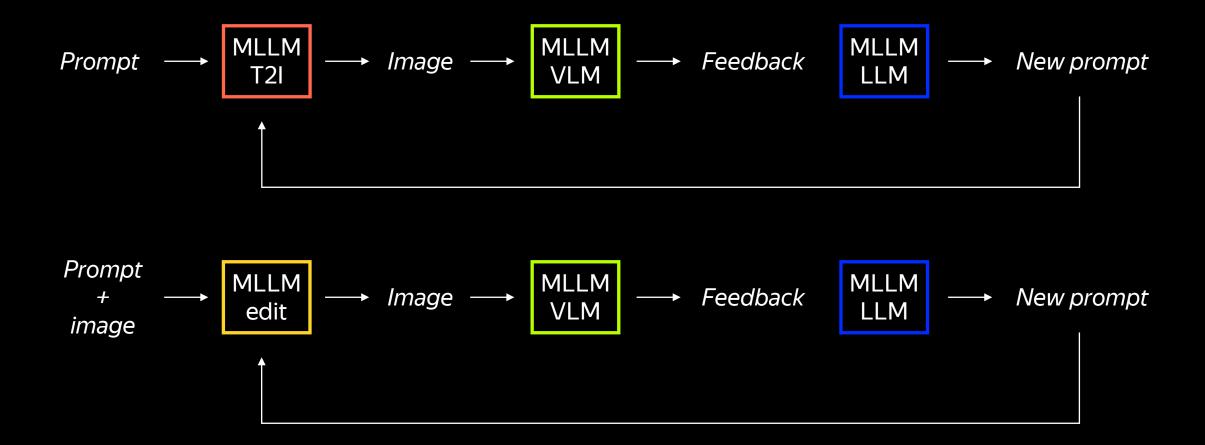
58

Use all four tasks?





Distill again?



What stops us from training a reasoner on this synthetic chains?

Instead of Conclusion

Yandex Research also works on and presents:

Poster 39

Alchemist: Turning Public Text-to-Image Data into Generative Gold

Poster 38

Inverse Bridge Matching Distillation

Poster 25

TabM: Advancing tabular deep learning with parameter-efficient ensembling

Poster 62

Leveraging
Coordinate
Momentum in
SignSGD and
Muon: MemoryOptimized Zero-

Poster 42

AutoJudge: Judge Decoding Without Manual Annotation

Poster 48

Hogwild! Inference:
Parallel LLM
Generation via
Concurrent
Attention

Poster 27

GraphLand: Evaluating Graph Machine Learning Models on Diverse Industrial Data

Poster 83

On Linear
Convergence in
Smooth ConvexConcave BilinearlyCoupled SaddlePoint Optimization:
Lower Bounds and
Optimal Algorithms

Gen Models

Tabular DL

Effective Inference

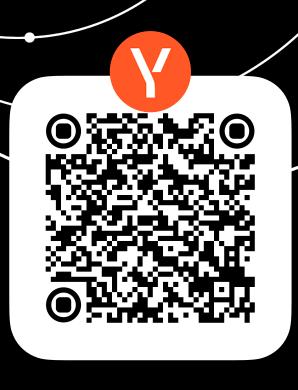
Graph ML

Optimization

Yandex Research

Read research papers

Research with us



Develop Tech with us