
Color Conditional Generation with Sliced Wasserstein
Guidance

Alexander Lobashev†, Maria Larchenko⋆, Dmitry Guskov†,

†Glam AI, San Francisco, US
⋆Magicly AI, Dubai, UAE

NeurIPS 2025, spotlight

25 October 2025

1 / 29

Outline

1 Color-conditional Image Generation
2 Distribution-conditional Image Generation
3 Solving Non-linear Inverse Problems using Diffusion Models
4 Measuring Distances between Probability Distributions
5 Wasserstein Distance
6 Sliced Wasserstein Distance
7 Generalized Sliced Wasserstein Distance
8 Baselines and Evaluation Metrics
9 Experimental Results
10 Conclusion and Discussion

2 / 29

Color-conditional Image Generation

For a given image, there is an associated color distribution. One might
want to generate an image based on a text description while
maintaining a fixed color distribution.

3 / 29

Distribution-conditional Image Generation

In a more general case, there might be a distribution associated with a
given image, such as the distribution of VGG activations computed for
different image patches. One could also request text-based image
generation where the associated distribution is fixed.

Vector-conditional

condition y ∈ Rd is a vector

noise z

Generator image

Distribution-conditional

condition µ ∈ P(Rd) is a prob. measure

noise z

Generator image

4 / 29

Solving Non-linear Inverse Problems using Diffusion
Models

General inverse problem may be formulated as finding a vector x from
a prior distribution p(x) that is consistent with the observations y:

y = A(x) + n, (1)

where A is an observation operator and n is a Gaussian noise.
Conditional score could be expressed as:

∇x log p(x|y) = ∇x log p(y|x) +∇x log p(x) (2)

The likelihood term then becomes

p(y|x) = e
− 1

σ2
n

d(y,A(x))
(3)

and the gradient of log-likelihood is

∇x log p(y|x) = − 1
σ2

n

∇xd(y, A(x)), (4)

where we need a distance d(y, A(x)) which compares observations A(x)
with the target observations y.

5 / 29

Solving Non-linear Inverse Problems using Diffusion
Models

Consider a simplified algorithm:

Algorithm 1 Conditional Generation with Guidance
1: Initialize latent vector xT ∼ N (0, I) and target y
2: for t = T to 1 do
3: Get prediction of x0(xt)← DDIM(t, xt)
4: Compute loss L ← L(x0(xt), y)
5: Update latent x∗

t ← xt −∇xtL
6: Get next latent xt ← DDIM(t, x∗

t)
7: end for

6 / 29

Solving Non-linear Inverse Problems using Diffusion
Models

Algorithm 2 Conditional generation with guidance using control vector
1: Initialize latent vector xT ∼ N (0, I) and target y
2: for t = T to 1 do
3: u← 0 ▷ Initialize control vector
4: for j = 1 to M do
5: x̂t ← xt + u
6: Get prediction of x0 ← DDIM(t, x̂t)
7: Compute loss L ← L(x0, y)
8: end for
9: Update control vector u← u−∇uL(u)

10: end for
11: Update latent x∗

t ← xt + u
12: Get next latent xt ← DDIM(t, x∗

t)
13:

7 / 29

Measuring Distances between Probability Distributions

Given a two probability measures µ and ν on Rn one can introduce a
mapping ρ : P(Rn)× P(Rn) −→ R≥0 which satisfies the following
properties

1 (symmetry): ρ(µ, ν) = ρ(ν, µ)
2 (identity of indiscernibles): ρ(µ, ν) = 0 if and only if µ = ν almost

everywhere.
3 (triangle inequality) ρ(µ, ν) + ρ(ν, σ) ≥ ρ(µ, σ)
4 (weak convergence) The numerical sequence satisfies

limn→∞ ρ(µn, µ) = 0 if and only if there is weak-* convergence of
probability measures µn −→ µ.

The weak convergence property ensures that if we use ρ as our loss
function, then minimizing the loss will result in the trained model
capturing the true data distribution.

8 / 29

Wasserstein Distance

A common metric for measuring the distance between two probability
distributions is the Wasserstein distance, rooted in optimal transport
theory.
The Wasserstein distance of order p is defined as follows:

Wp(π0, π1) =
(

inf
π∈Π(π0,π1)

∫
X0×X1

d(x, y)p dπ(x, y)
)1/p

, (5)

where Π(π0, π1) represents the set of all possible couplings between π0
and π1, and d is a chosen metric.

Theorem: Wp(π0, π1) satisfies properties (1)-(4): symmetry,
identity of indiscernibles, triangle inequality, weak convergence.

9 / 29

Wasserstein Distance. Illustrations

10 / 29

Wasserstein Distance. Illustrations

11 / 29

Sliced Wasserstein Distance

However, the computational cost of the Wasserstein distance,
particularly in high dimensions, can be prohibitive.
To address these limitations, the sliced Wasserstein distance was
introduced. It simplifies the computation by projecting
high-dimensional distributions onto lower-dimensional subspaces,
where the Wasserstein distance can be more easily computed.

Formally, sliced p-Wasserstein distance is defined as:

SWp(π0, π1) =
(∫

Sd−1
W p

p (Pθπ0, Pθπ1) dθ

)1/p

, (6)

where Sd−1 is the unit sphere in Rd with
∫
Sd−1 dθ = 1 and Pθ is the

linear projection onto a one-dimensional subspace defined by a vector
unit θ.

12 / 29

Sliced Wasserstein Guidance

For two probability distributions π0 and π1 on R , with respective CDFs
Fπ0(x) and Fπ1(x), the Wasserstein distance W1(π0, π1) is given by:

W1(π0, π1) =
∫ ∞

−∞
|Fπ0(x)− Fπ1(x)| dx, (7)

which represents the integral of the absolute difference between two
CDFs over the real line.

13 / 29

Algorithm Overview
Algorithm 3 Color-Conditional Generation with Sliced Wasserstein
1: Initialize latent vector xT ∼ N (0, I)
2: for t = T to 1 do
3: u← 0 ▷ Initialize control vector
4: for j = 1 to M do
5: x̂t ← xt + u
6: Get prediction of last latent x0 ← DDIM(t, x̂t)
7: Compute x̂0 ← VAE(x0) ▷ Decode latent to image
8: for k = 1 to K do ▷ Sliced Wasserstein
9: Rotate distributions with random matrix R

10: Update loss L ← L+
∑
|cdfx − cdfy|

11: end for
12: Update control vector u← u−∇uL(u)
13: end for
14: Update latent x∗

t ← xt + u
15: Get next latent xt ← DDIM(t, x∗

t)
16: end for

14 / 29

Computing the CDF and Sliced Wasserstein Distance

Given a set of sorted samples {x(i)}ni=1, the CDF value for each
sample x(i) is computed as:

CDF(x(i)) = i

n
,

this approach provides a CDF which is differentiable with respect
to input samples x(i) and can be used in optimization.
For two probability distributions π0 and π1, with respective CDFs
Fπ0(x) and Fπ1(x) the Wasserstein distance W1(π0, π1) is given by:

W1(π0, π1) =
∫ ∞

−∞
|Fπ0(x)− Fπ1(x)| dx

15 / 29

Evaluation Metrics

We compare our algorithm with other methods using three different
metrics.

1 To measure a stylizing strength we calculate Wasserstein-2
distance between color distributions.

2 CLIP-T, is a cosine similarity between CLIP representations of a
text prompt and an image generated from this prompt. In other
words, CLIP-T score indicates whether a modified sampling
process still follows an initial text prompt.

3 CLIP-IQA, a cosine similarity between a generated image and
pre-selected anchor vectors, defining a “good-looking” pictures.
CLIP-IQA measures an overall quality of pictures.

The experiments are conducted on a set of 1000 images generated with
Dreamshaper-8, a StableDiffusion-based model, from a set of prompts
taken from ContraStyles dataset.

16 / 29

Baselines

Generate a text conditional image and perform color transfer. Color
transfer baselines

Histogram matching
PhotoWCT2
Monge Kantorovich Linear (MKL)
WCT2
PhotoNAS
Modulated Flows

Color conditional ControlNet
ControlNet Colorcanny

Style Transfer baselines
IP-Adapter
InstantStyle
RB-Modulation

17 / 29

Experimental Results: qualitative evaluation for SDXL

18 / 29

Experimental Results: qualitative evaluation for SD-1.5

19 / 29

SW-Guidance is compatible with ControlNets

20 / 29

SW-Guidance is compatible with ControlNets

21 / 29

Comparison with Stylization Methods

Compared to stylizers, SW-Guidance achieves tighter palette matching
without importing unwanted semantic/style patterns.

22 / 29

Comparison with Stylization Methods

Compared to stylizers, SW-Guidance achieves tighter palette matching
without importing unwanted semantic/style patterns.

23 / 29

Experimental Results: quantitative evaluation

Wasserstein-2 distance↓

Algorithm mean ± std

SW-Guidance (ours) 0.033 ± 0.010
hm-mvgd-hm (Hahne, 2021) 0.057 ± 0.037
hm (Gonzales, 1977) 0.090 ± 0.057
PhotoWCT2 (Chiu, 2022) 0.109 ± 0.049
ModFlows (Larchenko, 2024) 0.118 ± 0.049
Colorcanny (ghoskno, 2023) 0.118 ± 0.051
MKL (Pitié, 2007) 0.127 ± 0.058
mvgd (Hahne, 2021) 0.135 ± 0.056
CT (Reinhard, 2001) 0.141 ± 0.060
WCT2 (Yoo, 2019) 0.143 ± 0.056
PhotoNAS (An, 2020) 0.172 ± 0.057
InstantStyle (Wang, 2024) 0.176 ± 0.086

24 / 29

Experimental Results: quantitative evaluation

Content scores ↓

Algorithm CLIP-IQA CLIP-T

InstantStyle Wang et al. 0.332 ± 0.082 0.238 ± 0.056
PhotoNAS An et al. 2020 0.288 ± 0.088 0.259 ± 0.049
SW-Guidance (ours) 0.222 ± 0.089 0.262 ± 0.051
hm Gonzales and Fittes 1977 0.205 ± 0.091 0.270 ± 0.050
Colorcanny ghoskno 2023 0.195 ± 0.080 0.260 ± 0.053
ModFlows Larchenko et al. 2024 0.193 ± 0.088 0.269 ± 0.050
mvgd Hahne and Aggoun 2021 0.188 ± 0.088 0.270 ± 0.051
MKL Pitié and Kokaram 2007 0.185 ± 0.087 0.270 ± 0.051
CT Reinhard et al. 2001 0.183 ± 0.087 0.271 ± 0.051
WCT2 Yoo et al. 2019 0.182 ± 0.083 0.276 ± 0.050
PhotoWCT2 Chiu and Gurari 2022 0.180 ± 0.085 0.262 ± 0.053

25 / 29

Conclusion and Discussion

We conclude that SW-Guidance achieves state-of-the-art results for
color-conditional generation.
The results show a significant improvement in color similarity to
the reference palette compared to color transfer-based and
stylization baselines, while maintaining semantic coherence and
alignment with text prompts.
The method also is applicable to general distribution-conditional
generation tasks.

26 / 29

References I

An, Jie et al. (2020). “Ultrafast photorealistic style transfer via
neural architecture search”. In: Proceedings of the AAAI Conference
on Artificial Intelligence. Vol. 34. 07, pp. 10443–10450.
Chiu, Tai-Yin and Danna Gurari (2022). “Photowct2: Compact
autoencoder for photorealistic style transfer resulting from
blockwise training and skip connections of high-frequency residuals”.
In: Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 2868–2877.
ghoskno (2023). Color-Canny ControlNet.
https://huggingface.co/datasets/ghoskno/laion-art-en-colorcanny.
Gonzales, Rafael C and BA Fittes (1977). “Gray-level
transformations for interactive image enhancement”. In: Mechanism
and Machine theory 12.1, pp. 111–122.

27 / 29

https://huggingface.co/datasets/ghoskno/laion-art-en-colorcanny

References II

Hahne, Christopher and Amar Aggoun (2021). “PlenoptiCam v1.0:
A Light-Field Imaging Framework”. In: IEEE Transactions on Image
Processing 30, pp. 6757–6771. DOI: 10.1109/TIP.2021.3095671.
Larchenko, Maria et al. (2024). “Color Style Transfer with
Modulated Flows”. In: ICML 2024 Workshop on Structured
Probabilistic Inference and Generative Modeling.
Pitié, François and Anil Kokaram (2007). “The linear
monge-kantorovitch linear colour mapping for example-based colour
transfer”. In: 4th European conference on visual media production.
IET, pp. 1–9.
Reinhard, Erik et al. (2001). “Color transfer between images”. In:
IEEE Computer graphics and applications 21.5, pp. 34–41.
Wang, Haofan et al. (2024). “InstantStyle: Free Lunch towards
Style-Preserving in Text-to-Image Generation”. In: arXiv preprint
arXiv:2404.02733.

28 / 29

https://doi.org/10.1109/TIP.2021.3095671

References III

Yoo, Jaejun et al. (2019). “Photorealistic style transfer via wavelet
transforms”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 9036–9045.

29 / 29

