Change point detection: how to make it work for
event sequences?
Alexey Zaytsev

LARSS lab, Al Center, Skoltech
Risk department, Sber
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Change Point is a moment of change in the probability distribution
of data

Break Variance increase Trend turn

Examples of evident change points in time series

Change point detection (CPD): identify the change moment with high quality
It is close to anomaly detection problem, but they are different:
* CPD focuses on the change moment instead on the fact of the change

* The regime switches to an «abnormal» distribution for some time

Skoltech

e CPDis only about sequential data




Skoltech

Applications & challenges

Real-world data challenges:

* High correlations

Costly mark-up

Multiple CPs of different types

High dimensionality

Complex nature

Our focus, Neural CPD

Well’s rock density [3] Event sequences [14]

1.0

Event times
— N(t)
-~~~ Change point

i

'« i
*‘/'(\J'W‘"J\'!L L \ /ﬂ ‘M_"L'VJ Mﬂo

Cumulative number of events N(t)

Time t

Surveillance video [5] Hallucination detection [15]

User Input

&

LLM Response

=

Real-world needs for CPD applications

Can you recommend a delicious recipe for
dinner?

Yes, here is a delicious recipe for lunch. So
how about fried chicken with mashed
potatoes? In addition, fomatoes are also an
excellent pairing for this dish as they are
rich in calcium. Enjoy this steakl
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Existing solutions e
L change point at time t )
Classical methods: CUSUM [1], A
Shiryaev-Roberts [2] [ Teststatistic |
Pros: strong theoretical foundations y Aevaluaﬂon Ay
Cons: require assumptions on the p Ha\y
structure of the input; low expressive [ e adel G ]
power N A A
Deep representation learning 2 :
methods: VAE-CP [3], TS-CP2 [4], §
COCPD [9] = |
Pros: high expressive power; no need for el SRS .
additional assumptions t .
Cons: no theoretical justification, limited Time
performance for complex problems Fig. 2. General representation learning-based

change point detection framework




Episode #1:
Spectral normalization for CPD-aimed
representation Learning
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Spectral Normalization preserves CPD

The idea: to apply Spectral Normalization (SN) to neural networks trained in the self-supervised learning
(SSL) paradigm.

Consider a Resnet-like network G of the form G(X) = h o g(X), where g(X)
is a linear layer, h(X) = X + 6 (WX + B) is a composition of residual blocks.

Spectral Normalization: (1) evaluate spectral norm A = ||[W/||,, (2) normalize m
weights on it. -evanuanon

Motivation. The usage of SN ensures bi-Lipschitzness of the G [6]: +s,,ect,a. N

L[| X = X2 < [[R(X) = (X[l < Lo[|X = X v, M,\f/

Here, h: X’ = H is a hidden mapping, X, X' € X 2are two inputs.
Past, X, Future, X

Feature

SN ensures that the transition into the latent space:

1. for kernel-based tests — preserves type Il error Tlme
convergence rate; Figure 4. We suggest applying Spectral

2. for likelihood ratio-based tests — preserves test power. Normalization for task-specific
representation-based CPD.

A. Bazarova, E. Romanenkova and A. Zaytsev, Normalizing Self-Supervised Learning for Provably Reliable Change Point Detection, ICDM, 2024
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SN improves SSL-based CPD

We obtain representations from spectral normalized Tab/{'e 1.F1 mes-*;”esgé” different d‘;teg“"’” margé’”’sfo’
the proposed SN-TS2Vec approach VS existing CPD
general SSL methods for temporal data: prop methsgs 9
1. TS2Vec [7] - hierarchical contrasting; Dataset Model pDetection margin_
2. BYOL [8] - self-distillation process. TSCP2 064 081 0843
KL-CPD 0.579 0.576 0.544
B | A ESPRESSO 0.224  0.340 0.4442
aselines: _ TS-BYOL 0.5 0706  0.768
) Yahoo SN-TS-BYOL  0.694 0766  0.789
1.TS-CP2 [9] — contrastive DL-based method; TS2Vec 0.688 0788  0.816
2.KL-CPD [10] — deep trainable kernels for SN-TS2Vee, MMD | 0692 081 0831
StatiSticaI teStS; TS-CP2 Olggd- 025?27 04523
3.ESPRESSO [11] — statistical + temporal KL-CPD 0743 0718 0632
. f CPD ESPRESSO 0.633 0.833 0.833
properties for - USC.HAD TS-BYOL 0.5 079 0933
SN-TS-BYOL 0.5 0.636 0.722
. TS2Vec 0.873 0.97 0.952
Main results: SN-TS2Vec, cos | 0.736  0.909 1
1. The application of SN improves results for all SISz MM 0509 0300 1
. TS-CP2 0.4 0.438 0.632
base mOdeIs' KL-CPD 0479 0473 0.467
- - — _ ESPRESSO 0.288 0.423 0.693
2. SN-TS2Vec outperforms other state-of-the-art e SPRESSC 0288 043 06
methods on USC-HAD and Yahoo datasets and SN-TS-BYOL 0403 0416 0418
. TS2Vec 0476  0.467 0.444
achieves top-2 results on the HASC dataset. SN-TS2Vec, cos | 0476 0306 0663

SN-TS2Vec, MMD | 0476 0467  0.444

A. Bazarova, E. Romanenkova and A. Zaytsev, Normalizing Self-Supervised Learning for Provably Reliable Change Point Detection, ICDM, 2024




Episode #2:
A principled loss function to CPD
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InDiD (Instant Disorder Detection via a Principled Neural Network):
classic CPD criteria

Motivation: Scarcity of principled methods for CPD on high-dimensional data [13—17]

Classic criteria: we want to minimize the detection delay and maximize the time to false alarm [17]:

L(T) — min, where L(T) =Eg(r — 0)t — cEy(7| 7 < 0).

Here, T - an estimated change point,8 € {1, ..., T, o} - a true change point,
pg — the corresponding data distribution.

1.2 1.2
True signal Detection Delay Time to false alarm
1.0 _  Predicted change 1.0
probabilities
08 Real Change| _ ik 4 W o " 08 T | ™ [ o~ o
— ; . g my - «  True signa " N m
] Point ol L ek T L vy
506 o 0o \ﬂf.‘-‘_- -~ 506 Predicted change ek
7] ‘w [} " probabilities Predicted Change
04 ’ 0.4 Point
e Swi’s | o .
she M ARty  Xped Foa % Py B AR R, T W A
0.2 ‘M‘MM AT ¥t /| Predicted Change 02! F LR W R UNLA & e S A e o
- an/y e ey AW " ¢ . - ok ST S AT TS T R S .
. | LR 4 4% 1 Point 2 A% I NN g e 1ot
. ", .
0.0 0.0l—2== i S -
0 20 40 60 80 100 0 20 40 60 80 100
Time step Time step

Figure 6. Detection Delay (left) and Time to False Alarm (right)

Romanenkova E. et al. “InDiD: Instant Disorder Detection via a Principled Neural Network”, ACM MM, 2022
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InDiD is a differentiable and accurate approximation of the exact loss

All supplementary lemmas lead to the main theorem, which proves that our InDiD loss
L o (P, Xiy03) — cLpa(fw. X5, 0;)

delay
is a lower bound for the conventional criteria
Eo(r — 0) — cBo(r| T < 0).
The first term is a lower bound for the expected value of detection delay:

igelay(fwﬂ Xi, 62) = Z?:@f (t_gi)p; Z_:IGZ (1_p§€>+(h+1_91) Hllzzai (1_pi;)=

The second term is the expected time to false alarm: )
r Ti ; t—1 ; - Ti 1
Here, pi = f,(X*T) — model's output; h, T; are hyperparameters.

Theorem. (informal) Under A1 and A2, the loss function L"(fw, X;, c)

(1) is a lower bound for a Lagrangian for L(T);
(2) is differentiable with respect to p}, and, thus, model’s fy parameters w;

(3) is an asymptotically tight lower bound with respect to q from A1 with a power-law convergence rate.

Romanenkova E. et al. “InDiD: Instant Disorder Detection via a Principled Neural Network”, ACM MM, 2022
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InDiID: a new theoretically grounded loss function

We use our loss to train a representation-based NN model on semi-structured data:

Five datasets with different dimensionality: from more simple human activity recognition to video surveillance

(our new markup);

Our model works in an online fashion, detects multiple changes, and doesn't need a lot of labeled data;
InDID forces models to react to changes faster: embeddings of moments after the changes are further from
normal data compared to the method that does not consider CPD criteria.

Table 3. Mean performance ranks of considered
methods averaged over five datasets. Our
approach outperforms SOTA methods.

| Y

£ & -4

Methods AUC F1 Cover - ¢
KL-CPD [10] 417 417 3.50 oﬂ\‘-f‘.:
TSCP [9] 4.67 3.83 4.66 5
BCE [5] 3 217 217 e
InDID (ours) 15 167 15

BCE + InDiD (ours) 167 2 2 iy

Romanenkova E. et al. “InDiD: Instant Disorder Detection via a Principled Neural Network”, ACM MM, 2022

Normal data
Time after change < 20
Time after change > 20

0 25 50 75 100

60

40

20

-20

-40

-60

- 38

Normal data

Time after change < 20
Time after change > 20

-60

-40

-20

0 20 40 60

Figure 7. tSNE for embeddings obtained via model with BCE
loss (left) and our InDID loss (right).
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Episode #3:
Building a Reliable Predictor with CPD-aware
Model Ensembling

!

&fﬁ'l/’lﬂl!ll!(ﬂﬂmuf m

. ) '““”Hm
o mm mumn ]
!m mn“mm ‘l ‘|I il ‘lll’ w | h | | ” l t l

P m/m‘// A1




Make Ensembles of deep CPD better

Motivation. No deep CPD ensembles, no task-specific ensemble output aggregations. Intuitively, CPD should

benefit from the inconsistency of base learners, similar to anomaly detection.

We consider an ensemble of different deep seq-to-seq CPD models.
Each model outputs CP scores for each time step.

Instead of naive aggregation, we suggest calculating the Wasserstein
distance between subsequent segments of outputs.

Data stream

2 2 A “ [ 18 l - . Sliding-window Wasserstein aggregation
1
Calibrated ensemble True Change.
~ - Point
ve Change Current,
o time i
e} ;
8§ O
Singee mooes: o
T [a 2 )
~~ O Single models: [)
Sliding-window Mean: /4
Wasserstein Wasserstein: U) —
N 5 i
g e =) . 2
CP prediction h/ f, t 0 Time

Figure 8. Our approach includes an ensemble of deep CPD models, post-
hoc calibration of outputs, and task-specific output aggregation WWAggr.

Algorithm 1: WWAggr for ensemble CPD

Input : {gw, }_, — an ensemble of trained and
calibrated CPD models;
X1.7 — a multivariate time series;
d(-,-) — a probabilistic distance function;
w — a window size; h — an alarm threshold.
Output : 7 — change point prediction.
/* get ensemble predictions x/
Compute pgk% = gw, (X1.7)fork=1,..., K.
/* aggregate ensemble predictions %/
Setw; =...=wy, =0.
fort =2w+1toT do
1) Obtain “future” F; = p;—,.¢ of size w x K.

2) Obtain “history” H; = pPt—2w:t—w Of size w X K.

3) Flatten F; and H; into the vectors f; and h; of
size 1 X wK.
4) Compute w; = d(ft, hy).
end
/* get the final CP estimate */
ifVte1,T: w, <h
| =T
else
| 7=min{t: w > h}
return 7

Stepikin A., Romanenkova E., Zaytsev A. WWAggr: A Window Wasserstein-based Aggregation for Ensemble Change Point Detection, ICDM 2025
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WWAggr simplifies CPD

Main insights:
Deep ensembles are better than standalone neural
networks;

Count

WWAggr improves CPD quality over naive aggregations (up

to 20%) especially for video data;

WWAggr is model-agnostic;

With a proper model calibration, WWAggr works well
enough with 1—5 universal thresholds.

12.5

10.0

7.5

5.0

2.5

0.0

Before calibration After TS calibration After Beta calibration
10 401
8
30
W, = 0.5473 6 W, = 0.5937 20 W, = 0.6681
4
2 104
0 0
02 04 06 08 02 04 06 08 0.00 025 050 075 1.00
CP score CP score CP score
Normal CP score distribution Abnormal CP score distribution

Figure 9. Histograms of the mean predicted “normal”
and “abnormal” CP scores for ensembles of supervised
BCE models trained on the Explosions dataset.

Table 4. Detection F1-scores for the ensembles of

supervised and unsupervised CPD mode.

Base model Aggregation I Dalas?t -
= [ Yahoo Road Accidents Explosions
Supervised models
BCE single - 0.895 + 0.038 0.336 + 0.024 0.695 + 0.058
_____________ Mean | 0.892 4+ 0029 = 0354 £ 0007 ~ 0.701 + 0.052 ~
Min 0.872 + 0.043 0.337 4 0.031 0.679 + 0.047
BCE ensemble Max 0.901 + 0.028  0.353 +0.031  0.735 #+ 0.050
Median 0.908 + 0.019 0.351 =+ 0.009 0.709 + 0.038
WWAger 0.901 + 0.027 0.383 + 0.024 0.773 + 0.011
InDiD single - 0.871 =+ 0.023 0.319 £ 0.032 0.560 + 0.070
_____________ Mean | 0.873 + 0025 ~ 0317 £ 0023  0.588 + 0019
Min 0.867 =+ 0.036 0.302 + 0.028 0.568 + 0.087
InDiD ensemble Max 0.888 + 0.023 0.317 + 0.020 0.593 + 0.027
Median 0.878 + 0.023 0.337 + 0.028 0.559 + 0.029
WWAgger 0.882 + 0.026 0.407 + 0.007 0.621 + 0.043

Unsupervised models

TS-CP? single

TS-CP? ensemble

Max
Median

0.855 + 0.034
0.872 & 0.011
0.851 + 0.018
0.865 + 0.005
0.873 + 0.004
0.891 + 0.021

0.359 + 0.017
0.381 + 0.014
0.354 =+ 0.008
0.364 + 0.031
0.378 £ 0.011
0.391 + 0.022

0.498 + 0.080
0.587 + 0.044
0.574 £ 0.019
0.565 =+ 0.047
0.582 + 0.014
0.618 -+ 0.036

SN-TS2Vec single

SN-TS2Vec ensemble

WWAger

Max
Median
WWAger

0.774 £ 0.033
0.765 + 0.022
0.753 + 0.008
0.738 + 0.025
0.765 + 0.047
0.785 + 0.016

0.361 =+ 0.020
0379 * 0.009
0.354 + 0.008
0.364 + 0.031
0.378 + 0.011
0.384 + 0.039

0.535 £ 0.053
0.563 + 0.026
0.564 + 0.061
0.563 + 0.031
0.563 + 0.017
0.564 + 0.052

Stepikin A., Romanenkova E., Zaytsev A. WWAggr: A Window Wasserstein-based Aggregation for Ensemble Change Point Detection, ICDM 2025
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Special Episode #Fall into ML:
Selecting best representations for financial
transactions data
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Self-Supervised CPD: A Generative or Contrastive Approach?

Table 2. The detection delay for two different

We explored representations from two methods , :
representation learning methods

illustrating two different approaches to self- Lower is better.
supervised Iearning: Model Detection delay
1. Autoencoder (AE): generative approach ColES 119
2. CoLES [12]: contrastive approach AE 1.7
1.0

The overall evaluation pipeline is the following:
1. On top of embeddings from CoLES or AE, run a
special Change Point Detection model (PELT);
2. Evaluate the percentage of hits predicted CP in
the true CP neighborhood (accuracy) and the

0.8

Accuracy
°
(3]

o
=

detection delay. 0.2

—— CoLES accuracy curve

) . . 0.0 AE accuracy curve

AE reacts faster to changes, indicating better CPD
. 0 20 40 60 80 100 120
properties than CoLES Margin
Figure 5. Accuracy of change point detection depending on the size
of the true Change Point neighborhood (Margin).
AE model provides better embedding for CPD.
A. Bazarova et al. Learning transactions representations for information management in banks: Mastering local, global, and external knowledge, International Journal of 7

Information Management Data Insights. 2025
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CoLES vs AE: reaction to change

We also evaluate the models’ ability to detect user
behavior change. For better experiment control, we

first utilize data with artificial change.

Experiment: “A poor man won the lottery”.

User 1 00000000000
User 2 00000000000
\_Y—I

ﬂ

Augmented
Augmented 0C00@e@@@®@@00O0
User 1

User 2 0000000000

Figure. Augmentation procedure. User 1 transactions

were replaced with User 2 transactions.
We compare User 2 to the augmented User 1.

0.20

Distance
= =
s -

o
o
)

0.00

Embedding during the “augmented” area are close to

each other and far during other timestamps.

I —— CoLES cosine distances
| —— AE cosine distances

Change Point starts

0 10 20 30 40 50 60 70
Timestamps

Figure. Cosine distance between embeddings obtained from raw users and
augmented ones. Snapshot near the Change Point

A. Bazarova et al. Learning transactions representations for information
management in banks: Mastering local, global, and external knowledge,
International Journal of Information Management Data Insights. 2025




Bonus Episode: Hallucination detection —a
CPD or not?
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Attention map = graph

e Scaled dot-product attention:

Attention(Q, K, V) ft (QKT) V
ention(Q), K, = softmax .
Vd

We explore the so-called attention maps:

W = softmax (Qj(;>

Each attention map can be interpreted as a

graph, where edges represent the relationships
between the tokens.

Popular “small LLMs” (Llama-2-7b, Mistral-7B)
typically have 28-32 layers, 28-32 heads. So
each generation induces ~800-1000 graphs.

<|b_o_t|> 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Capital [28¥40.33 0.00 0.00 0.00 0.00 0.00 0.00
France
?
It 0.09 0.31 0.03 0.22 0.07 0.29 0.00 0.00
's 0.12 0.24 0.06 0.15 0.10 0.08 0.25 0.00
Paris 0.26 0.09 0.07 0.09 0.08 0.03 0.15 0.23
N N
‘K,\7 .{(O N >
o/ C//DQ (((b ]
X7
a)

Figures.

a) An attention map.

1.0

0.8

0.6

-0.2

-0.0

P R
<lb_o_tl>
| It
Capital
!ff ' IS
{ of
'\\France Paris
)
b)

b) The corresponding attention graph.

Bazarova, A., et al. "Hallucination Detection in LLMs with Topological Divergence on Attention

Graphs." arXiv preprint. 2025.

Oblovatny, R., Bazarova A., and Zaytsev A. "Attention Head Embeddings with Trainable Deep
Kernels for Hallucination Detection in LLMs." arXiv preprint. 2025.
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TOHA: the general idea

<|b_o_t|> pHIs] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 e | P | R
e Idea: distance of the prompt to the response < iR o cennmomo v s TR .
correlates with the probability of a France 027 88010030 000 000 000 000 o | Capital
hallucination  00s [ 008 022 008 000000000 1/ o
e As a hallucination score, we consider It 0.09/0:31 003 0:22 007029 0.00 0.00 [\ of
topological divergence MTop-Div(P, R) [2] = GazfiocooBsjoncocefifoco Fo2 |\ e Bare
between the prompt, including RAG context ISR CIN T, \
(P) and the response (R) tokens in the Qgﬁf PO !
attention graph. g 2) b)
e MTop-Div(R, P) = length of the MSF* <b_o_ti>
attaching R to P Copitl !
Intuition: for hallucinated samples, of °
response seems to deviate from prompt France e
more significantly than for the grounded
ones, since a novel information is ?
introduced. 0

Figure. a) An attention map. b) The

corresponding attention graph. c) The MSF under

[2] Barannikov S. et al. Manifold Topology Divergence: a Framework for Comparing Data Manifolds 1 1
/IAdvances in neural information processing systems. — 2021. — T. 34. — C. 7294-7305. CO”Slderatlon '

* minimum spanning forest




Concluding remarks
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Conclusions Links to papers

[=]

® CPD allows detection behavior drifts for

customers, if used on top of
representations.

InDID loss

e We proposed multiple approaches to boost
guality in Neural CPD problems: SN

normalization, InDID principled loss

?f;a*
S

‘el =*

function, Wasserstein-based ensembles and
local/global encoder selection.

e There are still more to discover and publish. WWAggr Local/global

ensemble

14
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Thanks
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talk and complete projects jointly with Al lab
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work on change point detection

e My lab members and co-authors: Evgenia
Romanenkova, Alexandra Bazarova,
Alexander Stepikin, llya Kuleshov, Alexander
Yugai, Maria Kovaleva
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INDiD: a data-driven model with novel loss function

We observe a dataset D = {(X; ,)}_, of sequences X; with true change points 8; € {1, ..., T, ©}.

Putting all CPD-related challenges of data processing onto the shoulders of neural network f,,, we force it to
learn proper representations (in terms of CPD) via a novel InDID loss function:

f,h(fw,Xz', ;) = Eﬁ'(:g(Ly(fWgXa@i) — CJEFA(fw- Xi, 0;).
The behavior of the model f,, is defined in accordance with several assumptions.

Let X1 = {x;}!_ be an ordered set of independent random variables with a density py supported on [0, 1]%.
Let fo : X CRY - (0,1) be an auziliary function such that for any t € N and X', it outputs p; = fo(X51),
which we consider as the estimated probability of the true change point T at the moment t.

Then:

(A1) There exist such q € (0,1) and e € (0,1) that P(p, > 1—¢q) > 1—¢ fort > 6.

(A2) There exists such T that (1 —T |t > T) ~ Geom(r), thereby implying E(p;) ~ 7.

Al means that the model is sufficiently good, and it holds after several training steps;

A2 controls the "tail“ behavior. In implementation, it is enough to set r = 1.

Romanenkova E. et al. “InDiD: Instant Disorder Detection via a Principled Neural Network”, ACM MM, 2022 9
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