VIII Open Autumn university Students' Mathematical Competition OSAM Comp 2025 by FCS HSE

September 14th 2025, 11:00 am - 2:00 pm UTM + 3

Category II+ (2nd year bachelors and further)

- 1. Polynomials F and G with real coefficients are such that F(F(x)) > F(G(x)) > G(G(x)) for all real x. Prove that F(x) > G(x) for all real x.
- 2. For a regular n-gon M_n with side length 1, we call the outer angularity E_n the area inside its circumscribed circle but outside M_n . We call the inner angularity I_n the area inside M_n but outside its inscribed circle. Find the limit of E_n/I_n as n tends to infinity.
- 3. Does there exist a 3×3 matrix X (over \mathbb{C}) such that the following equality holds:

$$X^{2} - X \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} X = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}?$$

- 4. In the plane, two parabolas are given: the parabola Γ_0 is defined by the equation $y = -x^2$ and is fixed. Another parabola Γ_1 is initially defined by the equation $y = x^2$, thus touching the parabola Γ_0 . Γ_1 can move without slipping along the surface of the fixed parabola Γ_0 (while rotating). Find the locus of the foci of the parabola Γ_1 under such motions.
- 5. Let S be a set of points in $\mathbb{R}^{2025^{2025}}$ containing $D=2025^{2025^{2025}}$ points, and let $f:S\to\mathbb{R}$ be a mapping. Denote by Mf the median of the set of values f on the elements of S, and by \overline{f} the arithmetic mean of these values. It is known that for any positive t>0, the number of points satisfying the inequality |f(x)-Mf|>t does not exceed $e^{-8t^2}D$. Show that for any positive t>0, the number of points satisfying the inequality $|f(x)-\overline{f}|>t$ does not exceed $3e^{-t^2}D$.