

1. Motivation

- Structured matrices are a promising way for model compression.
- Weights of pretrained models can't be accurately represented by structured matrices without fine-tuning;
- To improve compressibility of the layers, we utilize the fact that LLM output is invariant under certain orthogonal transformations of the weights.

2. Structured matrices

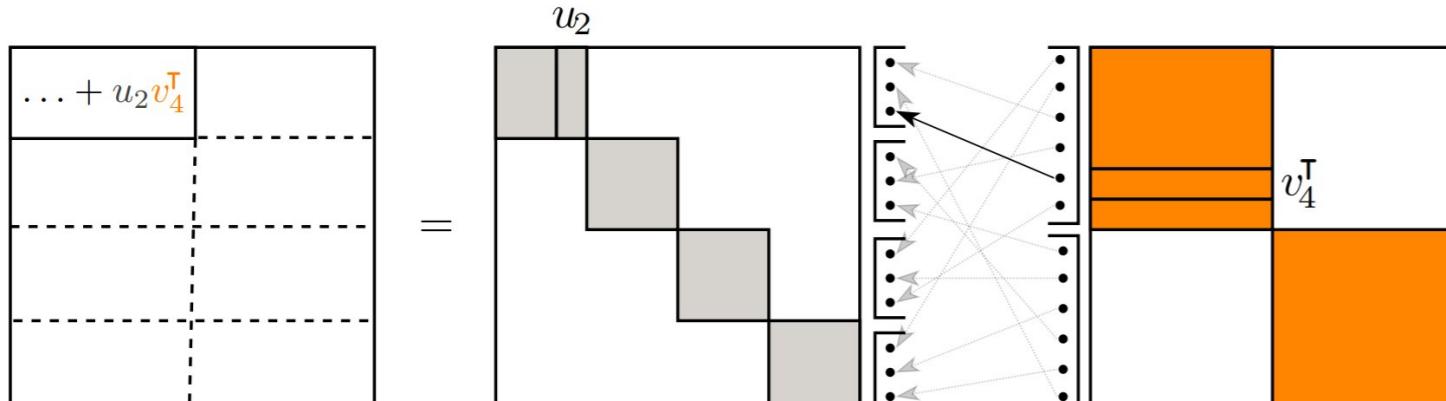
Definition. Given matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times q}$, the Kronecker product $A \otimes B$ is the $pm \times qn$ block matrix:

$$A \otimes B = \begin{bmatrix} a_{11}B & \dots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \dots & a_{mn}B \end{bmatrix}$$

The model's weights can be compressed with the sum of Kronecker products:

$$\left\| W - \sum_{i=1}^r A_i \otimes B_i \right\|_F^2 \rightarrow \min_{A_i, B_i}.$$

Definition. Group-and-Shuffle [4] (\mathcal{GS}) are matrices that can be represented in the form $P_L(LPR)P_R$, where L, R are block-diagonal matrices and P_L, P, P_R are permutation matrices. \mathcal{GS} -matrices include Monarch matrices [2] as a special case.



3. Orthogonal invariance

LLM output is invariant to certain orthogonal transformations of the weights [1]. Let Q be an orthogonal matrix: $QQ^T = I$.

Multiplication by orthogonal matrix Q does not change the output of RMSNorm:

$$\text{RMSNorm}(x) = \frac{x}{\|x\|} = \frac{xQQ^T}{\|xQ\|}.$$

The weights of transformer can be multiplied by Q without changing its output:

$$\left(\frac{X_{out}W_{out} + X_{skip}}{\|X_{out}W_{out} + X_{skip}\|_2} \right) W_{in} = \left(\frac{X_{out}W_{out}Q + X_{skip}Q}{\|X_{out}W_{out}Q + X_{skip}Q\|_2} \right) (Q^T W_{in}).$$

This insight can be leveraged to identify transformations that significantly improve the compressibility of weights within the structured classes.

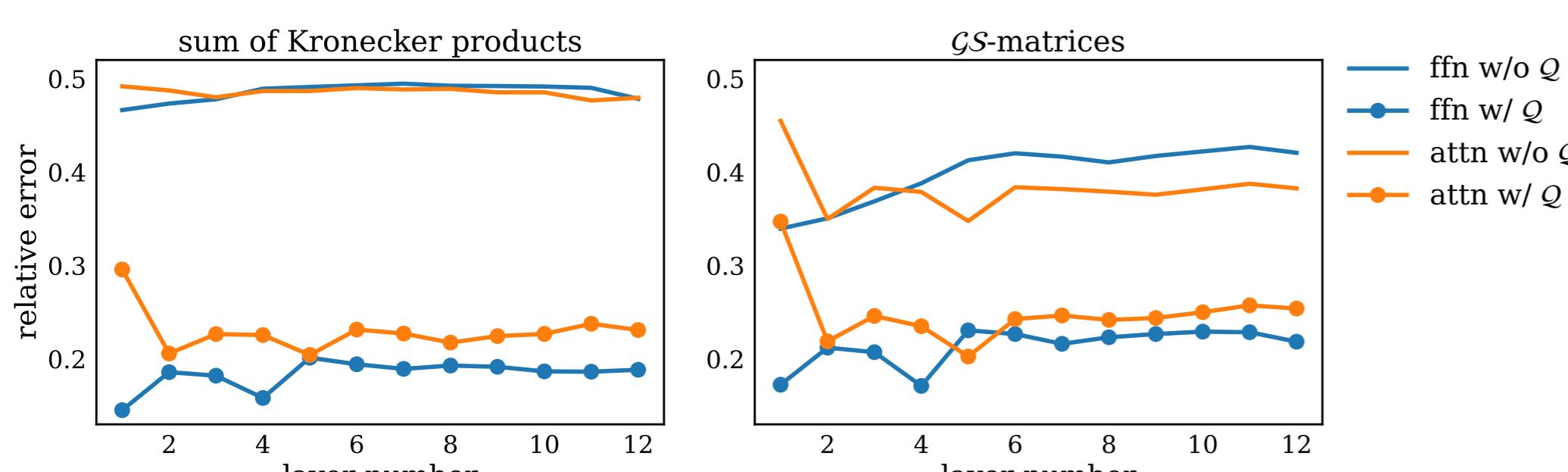


Figure: Compression of OPT-125m.

4. Procrustes problem

Given matrices A and B , find orthogonal matrix Q which most closely maps A to B .

$$\|QA - B\|_F \rightarrow \min_{Q^T Q = I}.$$

Solution [5]:

$$Q = UV^T, \text{ where } U\Sigma V^T = BA^T.$$

5. Embedding

Models are more sensitive to changes in frequent tokens. To account for this, we weigh embedding using token frequencies:

$$Q = \arg \min_{Q^T Q = I} \|\sqrt{D + I}(W_{emb}Q - \widehat{W}_{emb})\|_F^2,$$

where D is a diagonal matrix with token frequencies on its diagonal.

References:

- [1] Saleh Ashkboos et al. "SliceGPT: Compress large language models by deleting rows and columns." arXiv preprint arXiv:2401.15024, 2024.
- [2] Tri Dao et al. "Monarch: Expressive structured matrices for efficient and accurate training". International Conference on Machine Learning, 2022.
- [3] Shangjian Gao et al. "Disp-ILM: Dimension-independent structural pruning for large language models". Advances in Neural Information Processing Systems, 2024.
- [4] Mikhail Gorbunov et al. "Group and Shuffle: Efficient Structured Orthogonal Parametrization". Advances in Neural Information Processing Systems, 2024.
- [5] Peter Schönemann. "A generalized solution of the orthogonal procrustes problem". Psychometrika, 1966.
- [6] Xin Wang et al. "Svd-ILM: Truncation-aware singular value decomposition for large language model compression". arXiv preprint arXiv:2403.07378, 2024.
- [7] Jiwon Song et al. "Sleb: Streamlining LLMs through redundancy verification and elimination of transformer blocks". arXiv preprint arXiv:2402.09025, 2024.

6. How to compress the weights?

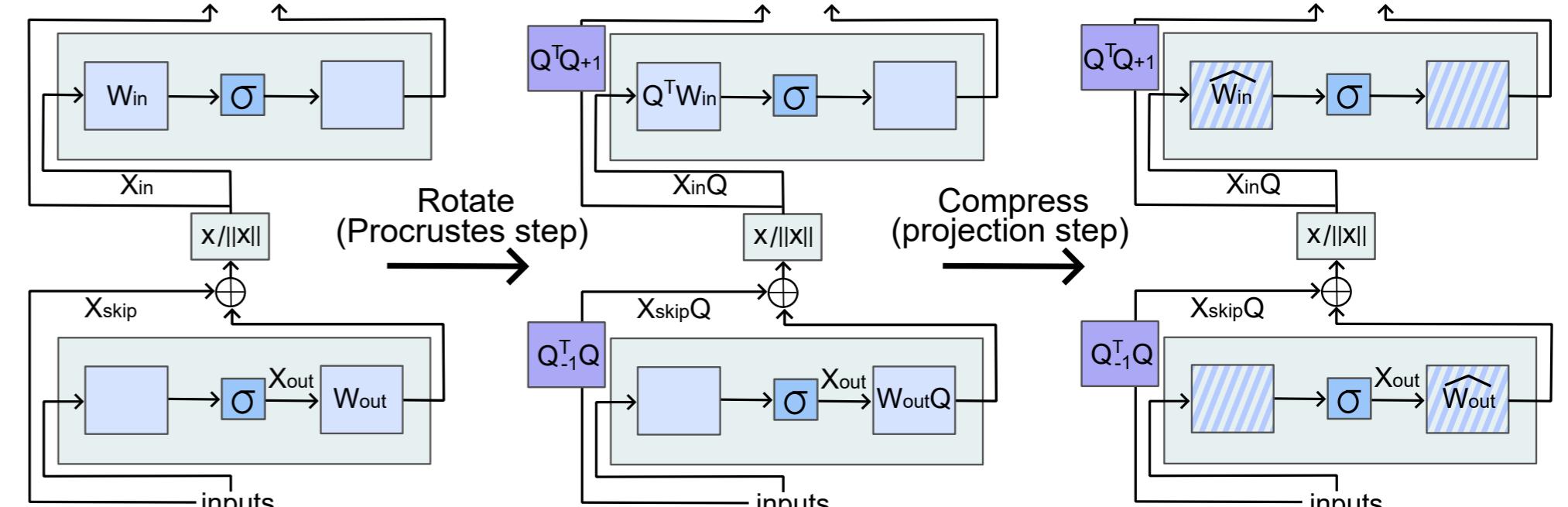


Figure: One transformer block.

Let W_{out} and W_{in} be the initial weights of linear layers before and after RMSNorm. Let X_{out} and X_{in} be the inputs, \widehat{W}_{out} and \widehat{W}_{in} be the compressed weights. The optimization problem is:

$$\|X_{out}(W_{out}Q - \widehat{W}_{out})\|_F^2 + \lambda_{in}\|X_{in}(W_{in} - Q\widehat{W}_{in})\|_F^2 \rightarrow \min_{Q^T Q = I, \widehat{W}_{\alpha} \in \mathcal{S}_{\alpha}, \alpha \in \{in, out\}}$$

To accelerate the compression, we search for a good initialization for the orthogonal matrix Q :

$$\begin{aligned} \|W_{out}Q - \widehat{W}_{out}\|_F^2 + \|W_{in} - Q\widehat{W}_{in}\|_F^2 &\rightarrow \min_{\widehat{W}_{out}, \widehat{W}_{in}, Q^T Q = I} \\ \|[W_{out}, W_{in}^T]Q - [\widehat{W}_{out}, \widehat{W}_{in}]\|_F^2 &\rightarrow \min_{\widehat{W}_{out}, \widehat{W}_{in}, Q^T Q = I}. \end{aligned} \quad (2)$$

We call (1) the weighted problem and (2) the problem in Frobenius norm. The general compression algorithm is as follows:

1. Find good initialization Q_ℓ in Frobenius norm for each layer.
2. Rotate the model using Q_ℓ .
3. Solve the problem in weighted norm (1).

The optimization problems are solved using ALS algorithm.

7. ALS algorithm

Algorithm ALS in Frobenius norm

```

Input  $W_{out}, W_{in}, Q = I$ .
for  $1 \dots n\_iters$  do
     $\triangleright$  Projection step (to Kronecker product or  $\mathcal{GS}$ )
     $\widehat{W}_{in} = \arg \min_{W \in \mathcal{S}_{in}} \|Q^T W_{in} - W\|_F^2$ 
     $\widehat{W}_{out} = \arg \min_{W \in \mathcal{S}_{out}} \|W_{out}Q - W\|_F^2$ 
     $W_{app} = [\widehat{W}_{out}, \widehat{W}_{in}^T]$ 
     $W = [W_{out}, W_{in}^T]$ 
     $\triangleright$  Solve Procrustes problem
     $Q = \arg \min_{Q^T Q = I} \|WQ - W_{app}\|_F^2$ 
end for
return  $Q, \widehat{W}_{in}, \widehat{W}_{out}$  - solution to (2).

```

8. Parametrization of orthogonal matrix

Orthogonal $d \times d$ matrices, without -1 eigenvalues, can be represented with Cayley transform:

$$Q = (I - K)(I + K)^{-1},$$

where K is skew-symmetric: $K = -K^T$.

Weighted Procrustes problem: Parametrize Q and apply GD.

Compression of matrices in skip connections:

- Store only upper-triangular part of K , i.e. $\frac{d(d-1)}{2}$ parameters.
- To eliminate -1 eigenvalues, multiply Q by Householder matrix $I - 2uu^T/\|u\|_2^2$, where $u = Re(v)$ or $Im(v)$, v is eigenvector of Q corresponding to -1.

9. Results

Method	Llama2-7b				Llama2-13b			
	ppl	%	ppl	%	ppl	%	ppl	%
Dense	5.47	0	5.47	0	5.47	0	4.88	0
SVD-LLM [6]	7.86	14.44	9.73	25.00	14.39	35.58	6.34	14.64
DISP-LLM [3]	6.80	14.31	8.52	25.02	10.92	35.60	6.23	14.60
SLEB [7]	6.95	12.01	10.39	24.03	22.76	36.04	5.85	12.19
ProcrustesGPT (Kron)	6.43	14.07	8.19	25.09	19.55	36.11	5.68	14.30
ProcrustesGPT (GS)	6.65	14.08	7.97	25.08	14.20	36.12	5.94	14.30
							7.02	25.48
								10.85
								36.66

Table: Perplexity on WikiText2. % shows the percentage of parameters compressed.

- Suitable for various decompositions, including Kronecker products and \mathcal{GS} matrices.
- More accurate results than alternative fine-tuning-free methods at comparable compression rates (from 14% to 36%).
- No need for fine-tuning.