
ProcrustesGPT: Compressing LLMs with Structured Matrices and Orthogonal Transformations

Ekaterina Grishina, Mikhail Gorbunov, Maxim Rakhuba
HSE University

1. Motivation

• Structured matrices are a promising way for model compression.

• Weights of pretrained models can’t be accurately represented by structured matrices
without fine-tuning;

• To improve compressibility of the layers, we utilize the fact that LLM output is
invariant under certain orthogonal transformations of the weights.

2. Structured matrices

Definition. Given matrices A ∈ Rm×n and B ∈ Rp×q, the Kronecker product A⊗ B is
the pm × qn block matrix:

A⊗ B =

a11B . . . a1nB
... . . . ...

am1B . . . amnB


The model’s weights can be compressed with the sum of Kronecker products:∥∥∥∥∥W −

r∑
i=1

Ai ⊗ Bi

∥∥∥∥∥
2

F

→ min
Ai ,Bi

.

Definition. Group-and-Shuffle [4] (GS) are matrices that can be represented in the
form PL(LPR)PR , where L,R are block-diagonal matrices and PL,P ,PR are permutation
matrices. GS-matrices include Monarch matrices [2] as a special case.

3. Orthogonal invariance

LLM output is invariant to certain orthogonal transformations of the weights [1].
Let Q be an orthogonal matrix: QQT = I .
Multiplication by orthogonal matrix Q does not change the output of RMSNorm:

RMSNorm(x) =
x

∥x∥
=

xQQT

∥xQ∥
.

The weights of transformer can be multiplied by Q without changing its output:(
XoutWout + Xskip

∥XoutWout + Xskip∥2

)
Win =

(
XoutWoutQ + XskipQ

∥XoutWoutQ + XskipQ∥2

)
(QTWin).

This insight can be leveraged to identify transformations that significantly improve the
compressibility of weights within the structured classes.
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Figure: Compression of OPT-125m.

4. Procrustes problem

Given matrices A and B , find orthogonal matrix Q which most closely maps A to B .

∥QA− B∥F → min
QTQ=I

.

Solution [5]:
Q = UV T ,where UΣV T = BAT .

5. Embedding

Models are more sensitive to changes in frequent tokens. To account for this, we weigh
embedding using token frequencies:

Q = argmin
QTQ=I

∥
√
D + I (WembQ − Ŵemb)∥2F ,

where D is a diagonal matrix with token frequencies on its diagonal.
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6. How to compress the weights?
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Figure: One transformer block.

Let Wout and Win be the initial weights of linear layers before and after RMSNorm. Let
Xout and Xin be the inputs, Ŵout and Ŵin be the compressed weights. The optimization
problem is:

∥Xout(WoutQ − Ŵout)∥2F + λin∥Xin(Win − QŴin)∥2F → min
QTQ=I ,Ŵα∈Sα,

α∈{in, out}

(1)

To accelerate the compression, we search for a good initialization for the orthogonal
matrix Q:

∥WoutQ − Ŵout∥2F + ∥Win − QŴin∥2F → min
Ŵout ,Ŵin,Q

TQ=I∥∥∥[Wout,W
T
in ]Q − [Ŵout, Ŵin]

∥∥∥2
F
→ min

Ŵout ,Ŵin,Q
TQ=I

. (2)

We call (1) the weighted problem and (2) the problem in Frobenius norm. The general
compression algorithm is as follows:

1. Find good initialization Qℓ in Frobenius norm for each layer.

2. Rotate the model using Qℓ.

3. Solve the problem in weighted norm (1).

The optimization problems are solved using ALS algorithm.

7. ALS algorithm

Algorithm ALS in Frobenius norm

Input Wout,Win,Q = I .
for 1 . . . n iters do

▷ Projection step (to Kronecker product or GS)
Ŵin = argmin

W∈Sin

∥QTWin −W ∥2F

Ŵout = argmin
W∈Sout

∥WoutQ −W ∥2F

Wappr = [Ŵout, Ŵ
T
in ]

W = [Wout,W
T
in ]

▷ Solve Procrustes problem
Q = argmin

QTQ=I

∥WQ −Wappr∥2F
end for
return Q, Ŵin, Ŵout - solution to (2).

8. Parametrization of orthogonal matrix

Orthogonal d × d matrices, without -1 eigenvalues, can be represented with Cayley
transform:

Q = (I − K )(I + K )−1,

where K is skew-symmetric: K = −KT .
Weighted Procrustes problem: Parametrize Q and apply GD.

Compression of matrices in skip connections:
• Store only upper-triangular part of K , i.e. d(d−1)

2 parameters.

• To eliminate -1 eigenvalues, multiply Q by Householder matrix I − 2uuT/∥u∥2,
where u = Re(v) or Im(v), v is eigenvector of Q corresponding to -1.

9. Results

Llama2-7b Llama2-13b
Method ppl % ppl % ppl % ppl % ppl % ppl %

Dense 5.47 0 5.47 0 5.47 0 4.88 0 4.88 0 4.88 0
SVD-LLM [6] 7.86 14.44 9.73 25.00 14.39 35.58 6.34 14.64 7.53 25.36 10.08 36.09
DISP-LLM [3] 6.80 14.31 8.52 25.02 10.92 35.60 6.23 14.60 7.90 25.36 10.05 36.13
SLEB [7] 6.95 12.01 10.39 24.03 22.76 36.04 5.85 12.19 7.73 24.37 11.36 36.56

ProcrustesGPT (Kron) 6.43 14.07 8.19 25.09 19.55 36.11 5.68 14.30 6.95 25.48 16.88 36.66
ProcrustesGPT (GS) 6.65 14.08 7.97 25.08 14.20 36.12 5.94 14.30 7.02 25.48 10.85 36.66

Table: Perplexity on WikiText2. % shows the percentage of parameters compressed.

• Suitable for various decompositions, including Kronecker products and GS matrices.

• More accurate results than alternative fine-tuning-free methods at comparable
compression rates (from 14% to 36%).

• No need for fine-tuning.


