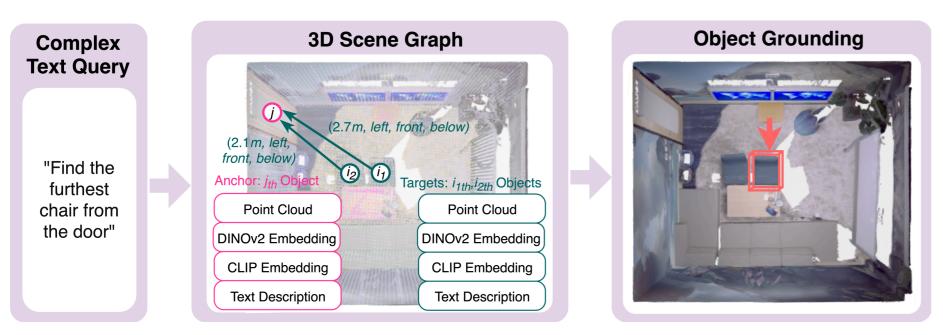
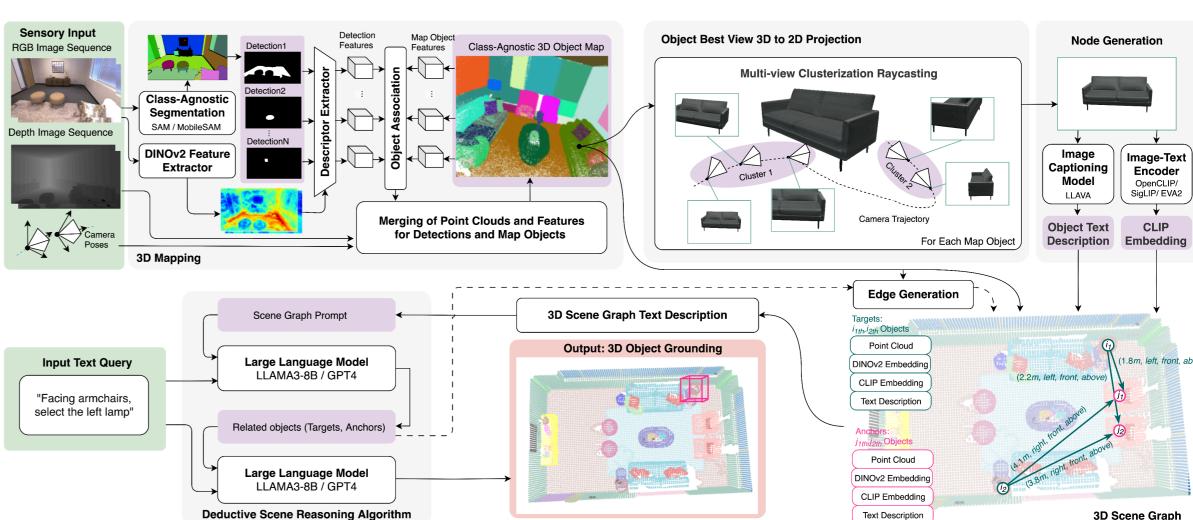

Beyond Bare Queries: Open-Vocabulary Object Grounding with 3D Scene Graph

¹Center for Cognitive Modeling, Moscow Institute of Physics and Technology, Dolgoprudny, Russia

² AIRI, Moscow, Russia

³ Sberbank of Russia, Robotics Center, Moscow, Russia




group contact: linok.sa@phystech.edu

Problem Definition

Research Question: How to represent 3DEnv for multi-hop open-vocabulary references? Our Solution: 3D scene graph

BBQ Overview

Our contributions:

- · DINO features are great for 2.5D spatial scene understanding and can be applied for object aggregation.
- · Aggregated mask, projected onto the best view, are sufficient to describe the object.
- With a carefully selected models and our design choices we can achieve close to realtime performance for 3D object mapping on the real robot.
- · For spatial multi-hop reasoning, metric edges are a "cheap" source of valuable relations.
- · Semantic spatial relations help to discern view-dependent relations based on the user's query.
- The results on the Sr3D+, Nr3D, and ScanRefer datasets demonstrate the effectiveness of the BBQ modular method.

GT ConceptGraphs OpenFusion Conceptfusion

Results

3D open-vocabulary semantic segmentation benchmark

	Methods	mAcc†	Replica mIoU↑	fmIoU↑		ScanNet mIoU↑	fmIoU	LLM	Edge	Recall@1 (Overall)	Recall@1 (View Independent)	Recall@1 (View Dependent)
Privileged	OpenFusion	0.41	0.30	0.58	0.67	0.53	0.64	Llama3-8B Llama3-8B Llama3-8B Llama3-8B	- Metric Semantic Metric+Semantic	36.1 <u>43.8</u> 41.4 45.5	36.1 <u>43.0</u> 37.8 43.3	36.0 46.3 53.0 <u>52.4</u>
Zero-Shot	ConceptFusion OpenMask3D ConceptGraphs BBQ-CLIP	0.29 - 0.36 0.38	0.11 - 0.18 0.27	0.14 - 0.15 0.48	0.49 0.34 0.52 0.56	0.26 0.18 0.26 0.34	0.31 0.20 0.29 0.36	GPT-40 GPT-40 GPT-40 GPT-40	- Metric Semantic Metric+Semantic	61.8 68.6 50.5 <u>68.4</u>	67.8 73.9 49.2 <u>70.3</u>	43.7 52.4 <u>54.9</u> 62.1

Grounding accuracy on Sr3D+/Nr3D dataset

					Sr3I	D+				
	Overa	all	Easy	y	Har	d	View I	Эер.	View Ir	ndep.
Methods	A@0.1	A@0.	25 A@0.1	A@0.25	A@0.1	A@0.25	A@0.1	A@0.25	A@0.1	A@0.25
OpenFusion	12.6	2.4	14.0	2.4	1.3	1.3	3.8	2.5	13.7	2.4
BBQ-CLIP	14.4	8.8	15.4	9.0	6.7	6.7	11.4	5.1	14.4	8.8
ConceptGraphs	13.3	6.2	13.0	6.8	16.0	1.3	15.2	5.1	13.1	6.4
BBQ	34.2	22.7	34.3	22.7	33.3	22.7	32.9	20.3	34.4	23.0
					Nr3	5D				
	Overa	all	Easy	y	Har	d	View I	Эер.	View Ir	ndep.
Methods	A@0.1	A@0.	25 A@0.1	A@0.25	A@0.1	A@0.25	A@0.1	A@0.25	A@0.1	A@0.25
OpenFusion	10.7	1.4	12.9	1.4	5.1	1.5	8.5	0.0	11.4	1.9

8.1

9.1

22.8

Grounding accuracy on ScanRefer dataset

11.0

9.2

21.3

Methods	A@0.25	A@0.5	
LERF	4.4	0.3	
OpenScene	13.0	5.1	
LLM-Grounder	17.1	5.3	
BBQ	19.4	11.6	

Literature

BBQ-CLIP

BBQ

ConceptGraphs 16.0

9.4

7.2

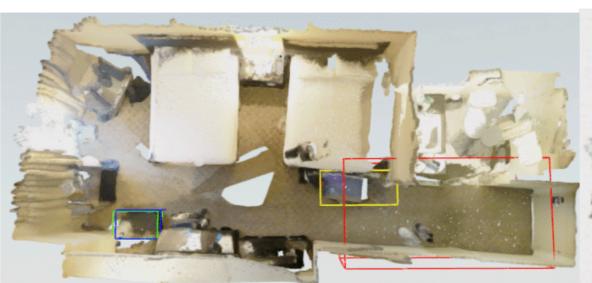
19.0

15.3

28.3

18.1

18.7


30.5

Linok, S., Zemskova, T., Ladanova, S., Titkov, R., Yudin, D., Monastyrny, M., & Valenkov, A. (2024). Beyond Bare Queries: Open-Vocabulary Object Grounding with 3D Scene Graph. arXiv preprint arXiv:2406.07113.

Graph edges ablation study on Nr3D dataset (GT objects)

Llama3-8B Llama3-8B	- Metric	36.1 43.8	36.1 43.0	36.0 46.3
Llama3-8B	Semantic	$\overline{41.4}$	37.8	53.0
Llama3-8B	Metric+Semantic	45.5	43.3	<u>52.4</u>
GPT-4o	-	61.8	67.8	43.7
GPT-4o	Metric	68.6	73.9	52.4
	Semantic	50.5	49.2	<u>54.9</u>
GPT-4o	Schlantic			

OpenFusion — ConceptGraphs

a) Query: "Object used to transport clothes while traveling, found on the right of the TV"

ground truth — BBQ —

b) Query: "Select the bed that is near the backpack"

Conclusion

17.2

17.0

29.8

8.1

12.7

23.6

6.1

4.2

18.2

5.6

2.0

13.2

10.5

19.3

8.1

- · With BBQ, we advance the limits of 3D scene perception by integrating language models with general world knowledge and our scene-specific graph representation.
- · Results on Nr3D, Sr3D, ScanRefer, and real-world data demonstrate that leveraging metric and semantic scene edges enables more comprehensive and flexible 3D scene understanding.
- · We hope our efficient code will support BBQ in real-world robotics, bridging communication between humans and autonomous agents.
- · It should be noted that our method assumes static, room-sized environments; in larger spaces, 3D scene graphs may not capture spatial relations accurately.
- · Conducted experiments highlight that our 3D object-centric map construction method is limited in its ability to successfully distinguish tiny objects in the image. Therefore, BBQ requires more scene exploration where the camera is placed closer to objects of interest to successfully map such instances.