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TL;DR Methodology & key ideas

We propose Sampled Maximal Marginal Relevance (SMMR), a new post- Idea #1 - Replace determinism with controlled randomness
processing reranking method that better balances relevance (showing what

users like) and diversity (exploring new options). Unlike traditional greedy Traditional MMR-based reranking selects items iteratively by solving the optimisation problem:
approaches, SMMR introduces controlled randomness, making it more
flexible and scalable for large recommendation lists.

i* = argmax(sS)) i*— item to be selected,C—~ Candidates set, D— Set of already selected items
Key benefits: ieC\D

Better trade-off between relevance & diversity S;=A-Rel(i)— (1 = A) - maxSim(i, j)
jebD Rel- relevance of item,Sim— similarity function, A— tradeoff parameter

S,— The score, which balances tradeoff between relevance and diversity

Much faster than greedy methods (logarithmic speedup)

Outperforms top baselines in real-world tests
P P The idea is to replace deterministic selection with probabilistic sampling

Open-source implementation available

. . . . exp(S;/t)
M Otlvatl on i*~P>"=1i)= t— temperature parameter (controls probability sharpness)
Y _exp(S;/t)
jeC\D J
The Problem with Current Methods No reranking MMR/DPP/SSD SMMR
etermine Random

Current reranking approaches—such as MMR, DPPs, and SSD—rely on /fDmmS‘m"a(:\x—-x\ /fmmsim“a'\x”x\
sequential greedy selection. While simple, these methods often converge to : Q Q %7 Q
suboptimal solutions, failing to effectively balance relevance and diversity, \g - 0 ! \@ v '\ ad ; ' ® \@ \ Y ;
particularly in large-scale settings with thousands of items. Additionally, their ‘ Q i ‘ Q ‘ ] ,_ DTN 0 ’
stepwise selection process requires high computational costs when applied to 9 i/‘ﬁ, 9 W ﬂ;— g N (' ﬁ:—
large candidate sets. g S e 3T - W ! 18 !
The Hidden Cost of Deterministic Selection - e
Here's the catch: while greedy algorithms seem effective for small batches These probabilities are based on MMR scores, which means they incorporate the tradeoff between relevance
our research reveals they hit a breaking point at scale! Namely, they: ' and diversity. Sampling enables better exploration and improves the retrieval diversity!

Work well for 10-20 items, successfully diversifying the retrieval - =
v Y ying Idea #2 - Batch selection The SMMR Algorithm

X Fail dramatically for larger sets, even
underperforming unreranked results! To improve efficiency over a one-by-one approach, we introduce
dynamic batch selection with exponentially increasing sizes. The

Input: Candidate set C, Candidate relevances R, Candidate
embeddings E, desired set size k
Hyperparameters: Trade-off parameter A, Temperature t,

0.6 batch growth rate is controlled by the scale factor parameter, which Scale factor s
No reranking multiplicatively expands the batch size each iteration. Output: Selected set D of size k
~ Initialize D < 0, n « 0;
0.5

Get pairwise similarity matrix Sgj, from embeddings E;
while |D| < k do

foreachi € C\ D do
\; Compute MMR score:

$(i) < A-R(i) = (1 = A) - max Sgim (i, j)
jeD

Why Exponentially Increasing Batch Sizes?

0.4

N\

Greedy reranking algorithm v Preserve early relevance - Early batches prioritize high-quality

items.

item coverage

0.3 Compute sampling probabilities with temperature:

v Encourage late-stage exploration - Later batches trade _
precision for broader diversity and speed. P(i) — eXP(S(’)/t)' . VieC\D
2irec\D €xp(S(i’) /1)
@10 @50 @100 @200 v Reduce computational cost - The algorithm requires only Set current batch size: b «— min(s™, k — |D|);
top-k cutoff O(log k) iterations instead of O(k). Sample a batch of b candidates B from C \ D using P(i);
Add sampled items to D: D <— D U B;
Incrementn «— n+1;

Our visualization proves how rigid selection backfires as candidate pools
grow. There has to be a better way... And we found it!
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