Hessian Geometry of Latent Space in Generative Models

Alexander Lobashev, Dmitry Guskov, Maria Larchenko, Mikhail Tamm

Glam Al « Artificial Neural Computing Corp. « Magicly Al « Tallinn University

Outline

Generative models often exhibit abrupt, non-smooth changes during

latent space interpolation. We propose a novel method to analyze this
phenomenon by unifying concepts from information geometry and
statistical physics to map the geometric structure of the latent space.
m Our Goal: Reconstruct the Fisher Information Metric on the latent
space to understand its geometry, identify phase transitions, and
compute smoother interpolation paths (geodesics).
= Our Method: We approximate the posterior distribution of latent
variables given generated samples. This allows us to learn the
log-partition function log Z(t), whose Hessian defines the Fisher
metric.
m Theoretical justification of our method is given by Theorem 3.1
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Theoretical Foundation (Thm. 3.1): The posterior distribution over latent

parameters t concentrates around the true parameter t’, with a shape
defined by the Bregman divergence of the log-partition function log Z(t).
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Two-Step Workflow:
Approximate Posterior p(t|x):
= For Physics Models: Train a U-Net on microstates (e.g., spin
configurations).
= For Diffusion Models: Use a pre-trained feature extractor (CLIP) to

define a posterior based on embedding distances.
Learn the Metric from log Z(t):

= Model log Zy(t) with a neural network (MLP).

= Train by minimizing the Jensen-Shannon Divergence between the
approximated posterior and the model’s derived posterior.

= The Fisher metric is the Hessian of the learned function:
gr = V2 log Zo(t).

Table: Quantitative Comparison for Diffusion Models.

Metric Geodesic (Ours) Linear Geodesic
(Shao/Wang)
CLIP Length 72.3 + 4.0 73.6 + 3.5 73.6 4.4
Perceptual Path Length 3.12 + 0.16 3.17 £0.23 3.19 + 0.21
Mean Curvature 0.37 + 0.69 0.00 4+ 0.00 1.33 £ 0.53

Fractal Phase Boundaries in Diffusion Models

Applying our method to a 2D slice of Stable Diffusion’s latent space reveals a complex
phase diagram. The boundaries between distinct concepts (e.g., “"lion” vs. "mountain”)
are not simple lines but exhibit a self-similar, fractal structure.
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Figure: A fractal phase boundary. Zooming in reveals that the "lion” and "mountain”
phases permeate each other at increasingly fine scales. The bottom-right plot shows a
latent space variation of only 10> between adjacent images.
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Figure: (A) Geodesic interpolation (top) is perceptually smoother than linear interpolation
(bottom). (B) The latent space phase map shows distinct regions. Geodesics (red/blue
paths) curve to navigate this geometry. (C) Metric components (02 log Z/ 0f;0t;) show

sharp peaks and discontinuities precisely at phase boundaries.

Underlying Mechanism For Phase Transition

Diverging Lyapunov exponent (Proposition 4.1)
Suppose that the (target) data distribution is a A

bimodal mixture of two Gaussians, each with M

variance o4;
1 1
po(x) = EN(X | —1,0°%) + EN(X 11, 0°).

The latent distribution is the standard normal
N(x | 0,1). Consider the variance-preserving SDE

1
oX; = —BX; at + VB dW,.

Then the Lyapunov exponent of the corresponding
reverse-time ODE at x = 0 has the following form:

B 1 — 0%
=2 (1
A > + - :

and it diverges to infinity as o — 0. Then the point
x = 0 can be seen as a phase transition boundary.
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