
Hessian Geometry of Latent Space in Generative Models
Alexander Lobashev, Dmitry Guskov, Maria Larchenko, Mikhail Tamm
Glam AI • Artificial Neural Computing Corp. • Magicly AI • Tallinn University

Outline

Generative models often exhibit abrupt, non-smooth changes during
latent space interpolation. We propose a novel method to analyze this
phenomenon by unifying concepts from information geometry and
statistical physics to map the geometric structure of the latent space.

Our Goal: Reconstruct the Fisher Information Metric on the latent
space to understand its geometry, identify phase transitions, and
compute smoother interpolation paths (geodesics).
Our Method: We approximate the posterior distribution of latent
variables given generated samples. This allows us to learn the
log-partition function log Z (t), whose Hessian defines the Fisher
metric.
Theoretical justification of our method is given by Theorem 3.1
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Theoretical Foundation (Thm. 3.1): The posterior distribution over latent
parameters t concentrates around the true parameter t ′, with a shape
defined by the Bregman divergence of the log-partition function log Z (t).

lim
N→∞ (p(t |x1, . . . , xN))

1/N ∝ e−Dlog Z (t)(t ,t ′)

Two-Step Workflow:
1 Approximate Posterior p(t |x):

For Physics Models: Train a U-Net on microstates (e.g., spin
configurations).
For Diffusion Models: Use a pre-trained feature extractor (CLIP) to
define a posterior based on embedding distances.

2 Learn the Metric from log Z (t):
Model log Zθ(t) with a neural network (MLP).
Train by minimizing the Jensen-Shannon Divergence between the
approximated posterior and the model’s derived posterior.
The Fisher metric is the Hessian of the learned function:
gF = ∇2 log Zθ(t).

Table: Quantitative Comparison for Diffusion Models.

Metric Geodesic (Ours) Linear Geodesic
(Shao/Wang)

CLIP Length 72.3 ± 4.0 73.6 ± 3.5 73.6 ± 4.4
Perceptual Path Length 3.12 ± 0.16 3.17 ± 0.23 3.19 ± 0.21
Mean Curvature 0.37 ± 0.69 0.00 ± 0.00 1.33 ± 0.53

Fractal Phase Boundaries in Diffusion Models

Applying our method to a 2D slice of Stable Diffusion’s latent space reveals a complex
phase diagram. The boundaries between distinct concepts (e.g., ”lion” vs. ”mountain”)
are not simple lines but exhibit a self-similar, fractal structure.

Figure: A fractal phase boundary. Zooming in reveals that the ”lion” and ”mountain”
phases permeate each other at increasingly fine scales. The bottom-right plot shows a
latent space variation of only 10−5 between adjacent images.

Latent Space Geometry & Geodesics

Figure: (A) Geodesic interpolation (top) is perceptually smoother than linear interpolation
(bottom). (B) The latent space phase map shows distinct regions. Geodesics (red/blue
paths) curve to navigate this geometry. (C) Metric components (∂2 log Z/∂ti∂tj) show
sharp peaks and discontinuities precisely at phase boundaries.

Underlying Mechanism For Phase Transition

Diverging Lyapunov exponent (Proposition 4.1)
Suppose that the (target) data distribution is a
bimodal mixture of two Gaussians, each with
variance σ2:

p0(x) =
1
2
N(x | −1,σ2) +

1
2
N(x | 1,σ2).

The latent distribution is the standard normal
N(x | 0, 1). Consider the variance-preserving SDE

dXt = −
1
2
βXt dt +

√
β dWt.

Then the Lyapunov exponent of the corresponding
reverse-time ODE at x = 0 has the following form:

λ =
β

2

(
1 +

1 − σ2

σ4

)
,

and it diverges to infinity as σ → 0. Then the point
x = 0 can be seen as a phase transition boundary.
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