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Introduction

Aim of the research is to explore the benefits of integrating hyperbolic geometry into the architectures of
neural recommender systems with manifold regularization.
Our hypothesis is that, while we retain the standard architecture, we get an increase in the metric by
taking into account hyperbolic geometry in the embedding space for problems with a strong hierarchy.
Contribution:

1) We extend the manifold regularization problem to handle sequences;

2) We use manifold regularization for single interaction probability and top-k prediction problem
statements for several architectures: dense NN and SASRec;

3) The manifold regularization is considered a soft geometry constraint in contrast to the direct
embedding geometry.

Proposed Approach

Scheme of the proposed approach of manifold learning
in comparison of SASRec case and classical approach

The embedding generator is usually replaced with a pre- o
INPUT: Items Indices

defined hyperbolic manifold, thus influences a whole machine

learning model architecture. RECMAN impose geometric . Ge00
: . . . . Euclidean - eoOpt
constraints more softly by introducing a regularizing termin a To embedding | || o S v
. = C 0 2 .
loss function. T = v = ® | Hyperbolic
S 3 Model £
L , , g2 ode o & | embedding
Regularization process with defined ) _ n & v = ¥
. . . f*= min L(f) + AR Output > 2 Model
iInput and output distances: fEH}, T & ¥
= * Output
Regularizer R defines the Poincare ball distance to render the = = | Euclidean
. . . . . . - @© .
hierarchical structure of the items; A the dispersion ratio of the |8 =~ embiddmg
combined loss (hyperparameter for Sobol analysis or grid cZ% i-s" Model +| A-dist_loss
o0 \
search). o Output
Experiments -~ .
Explicit Implicit
Binary
MSE accuracy HR@10  NDCG@10 Evaluation results and relative improvements for
() ‘.!".-l.:. . 2 NCF 0.0322 0.6878 0.722 0.547 SASRec architecture
'g @ 9 'I'.._@ <  NCF+geoopt | 0.0324  0.6840 | 0.563 0.318
OOy E £ HyperML[21] | n/a n/a 0.739 0.528 HR@10 MRR@10 NDCG@10 COV@10
b fF - .I:'E.J: '] = RECMAN(ours) | 0.0320 0.6927 | 0.741 0.531 SASRec 0.058 0.029 0.036 0.657
oe=g. w =+ ° £ Z NCF n/a n/a 0.834 0502 2 HypSASRec 0.053 0.027 0.033 0.656
3l } .‘.j“).. E NCF+g€OOpt n/a n/a 0.825 0.478 < RECMAN(UH?‘S) 0.059 0.029 0.036 0.374
n @_—: g2 = RECMAN(ours) | n/a n/a 0.836 0.505 best vs SASRec ~ +27% +0% +0% +0%
NCF model variants performance _ SASRec 0.044  0.020 0.025 0.602
_..§ HypSASRec 0.044 0.021 0.026 0.601
o . o ] . %ﬂ RECMAN(ours)  0.048 0.020 0.027 0.383
Explicit and implicit feedback on MovieLens1M and Pinterest best vs SASRec  +9% +7% +5% +0%
for NCF architecture demonstrate the advantage of manifold .. SASRec 0123 0.063 0.077 0.523
. . . . 5" HypSASRec 0.065 0.028 0.037 0.261
regularization with hyperbolic geometry. % RECMAN(ours) 0.129  0.066 0.080 0.437
— best vs SASRec +5% +5% +5% +0%
. . . . & SASR 0.154 0.056 0.079 0.669
For SASRec manifold regularization improves HR, NDCG, and £ HyoSASRec 0151 0055 0078 D.675
MRR by reinforcing confident rankings among frequently g RECMAN(ours) 0155 0.057 0.080 0.658
] ] . ] = best vs SASRec +1% +1% +1% +1%
Interacted |tgms clustered in dense regions of the learned S ASRec o ooo oo A
geometry. This focus reduces catalog coverage (COV), asless & HypSASRec 0060 0033 0.039 0.512
o RECMAN((ours) 0.064 0.035 0.043 0.498

frequent or geometrically isolated items are underrepresented.

HypSASRec also has the same tendency.
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