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Introduction

The challenge of PDE discovery: Discovering the underlying Partial Differential Equations (PDEs) from observed
physical data is a core task in scientific machine learning. It requires handling differential operators, which LLMs
are not natively equipped to process from data.

The LLM opportunity: Large Language Models (LLMs) possess vast scientific knowledge from textbooks but
struggle to connect this knowledge to raw, numerical physical field data. Can we bridge this gap?

Our goal: This work investigates if general-purpose LLMs, without specific fine-tuning, can effectively contribute
to the PDE discovery process when physical data and the task are formatted appropriately.
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Our methodology formulates PDE discovery as a code-
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generation task for LLMs and integrates them into a meta-
learning loop with an evolutionary algorithm, EPDE. The
process begins with preparing the physical field data for the >
LLM. Then data is downsampled to a coarse grid to fit the
model's context window while preserving essential physics.
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K -- data field and derivatives, M and N -- amount of X and T points in the grid

The core of our approach uses the LLM as a hypothesis
generator. A carefully engineered prompt guides the model,
containing instructions, a code snippet for evaluation, the
formatted input data, and a critical experience buffer that
records the performance of previously proposed equations.

The LLM then generates Python code defining a candidate -
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equation. This output is extracted, post-processed for
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EPDE then refines these candidates using its mutation and crossover operators to perform a precise numerical
optimization, converging on the final equation form and coefficients.
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We evaluated our approach on three canonical PDEs —
Burgers', Wave, and Korteweg—de Vries — using both clean
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and noisy data. Key metrics were the discovery rate, and the Y Prompt Update |
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