

Does LLM dream of differential equation discovery?

Elizaveta Ivanchik, Timur Bavshin, Alexander Hvatov*
NSS Lab, ITMO University, Saint Petersburg, Russia

Introduction

The challenge of PDE discovery: Discovering the underlying Partial Differential Equations (PDEs) from observed physical data is a core task in scientific machine learning. It requires handling differential operators, which LLMs are not natively equipped to process from data.

The LLM opportunity: Large Language Models (LLMs) possess vast scientific knowledge from textbooks but struggle to connect this knowledge to raw, numerical physical field data. Can we bridge this gap?

Our goal: This work investigates if general-purpose LLMs, without specific fine-tuning, can effectively contribute to the PDE discovery process when physical data and the task are formatted appropriately.

Proposed Approach

Our methodology formulates PDE discovery as a **code-generation task** for LLMs and integrates them into a **meta-learning loop** with an evolutionary algorithm, EPDE. The process begins with preparing the **physical field data** for the LLM. Then data is **downsampled** to a coarse grid to fit the model's context window while preserving essential physics.

The core of our approach uses the **LLM as a hypothesis generator**. A carefully engineered prompt guides the model, containing instructions, a code snippet for evaluation, the formatted input data, and a critical experience buffer that records the performance of previously proposed equations. The LLM then **generates Python code** defining a **candidate equation**. This output is extracted, post-processed for validity, and evaluated.

EPDE then refines these **candidates** using its **mutation and crossover** operators to perform a precise numerical optimization, converging on the final equation form and coefficients.

Experiments

We evaluated our approach on three canonical PDEs — Burgers', Wave, and Korteweg–de Vries — using both clean and noisy data. Key metrics were the **discovery rate**, and the **coefficient error (10^{-4})**.

Dataset	EPDE		LLM		EPDE+LLM	
	DR	CE	DR	CE	DR	CE
Wave	0.97	7.54	0.97	657	1.00	7.54
Burgers A	0.53	0.85	0.86	3.94	0.90	0.85
Burgers B	0.50	4.55	0.53	90.5	0.90	4.55
KdV	0.10	154	0.13	192	0.37	154

Clear data performance comparison

Dataset	EPDE		LLM		EPDE+LLM	
	DR	CE	DR	CE	DR	CE
Wave	0.03	998	0.07	2546	0.20	18.2
Burgers A	0.03	576	0.80	86.1	0.23	376
Burgers B	0.03	858	0.07	4967	0.20	1206
KdV	0.03	262	0.00	-	0.30	291

Noisy data performance comparison

