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Why softmax loss:

Enables global comparison
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Large-Scale Retrieval LogQ Correction
To enable large-scale retrieval, sampled In-batch negatives introduce systemic bias:
softmax approximates denominator via
negative sampling: « Popular items appear more as negatives
4 ~ * Using biased estimate of full softmax gradient
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sampled (14 P) 5 fowp) + 3 efo(w.d) LogQ correction addresses this bias by
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Uniform sampling over @ @ v f@ (u,d) = Jo (u,d) — log Q(d)
catalog requires many s ™ - o
samples due to triviality @ X * |ntuition: manually substracting item popularity so

+ In-batch: other positives as that the model doesn’t have to
negatives; ~ unigram @ | X « Derived via importance sampling applied to full
distribution \_ Y softmax gradient

Correcting the Correction

Shortcoming of standard logQ correction:
derivation assumes positives are sampled
from Q, but they are present
deterministically.

To account for this:

Decompose full softmax gradient into
positive and negative terms

Apply importance sampling only to
negatives

Evaluation

Academic datasets, Recall@20
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Weight wy,, = sg (1 — Pg(p |u)) reflects model
confidence: small when p already scores high

Positive is excluded from softmax denominator
d ~ Q' excludes p from sampling

Lours(u, p) = —Wup log

Industrial large-scale dataset

Code & Data

Transformer models LogQ Leave-One-Out Temporal Split LogQ ROI0 R@100 R@1000
: . i , v
(SASRec / ARGUS) Correction »y ;a1 Steam ML-IM  Steam Correction [m] ™.
Sampled softmax loss , |
with mixed negative Without 0.3853 0.1470 0.2514 0.1389 Without 0.0280  0.0990  0.2992
sampling Standard ~ 0.3893 0.1694 0.2800 0.1485 Standard 0.0304 0.1211  0.4036
Improved  0.3937 0.1730 0.2792 0.1609 Improved  0.0279 0.1222 0.4345
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