

Leveraging Coordinate Momentum in SignSGD and Muon: Memory-Optimized Zero-Order LLM Fine-Tuning

Egor Petrov¹, Grigoriy Evseev¹, Aleksey Antonov^{1, 2}, Andrey Veprikov¹, Pavel Plyusnin², Nikolay Bushkov^{1, 2}, Stanislav Moiseev², Aleksandr Beznosikov¹

¹Basic Research of Artificial Intelligence Laboratory (BRAIn Lab), ²T-Technologies

Introduction

Fine-tuning pre-trained Large Language Models (LLMs) has become the standard technique in modern natural language processing, enabling rapid adaptation to diverse downstream tasks with minimal labeled data. The fine-tuning setup can be considered as a stochastic unconstrained optimization problem of the form

$$f^* := \min_{x \in \mathbb{R}^d} \left\{ f(x) := \mathbb{E}_{\xi \sim \mathcal{D}} \left[f(x, \xi) \right] \right\}, \tag{1}$$

where x are parameters of the fine-tuned LLM, \mathcal{D} is the data distribution available for training, and $f(x,\xi)$ is the loss on data point ξ .

The most memory-efficient methods are based on the Zero-Order (ZO) optimization technique, which avoids backpropagation entirely by estimating gradients using only forward passes. To estimate gradients, authors use finite differences:

$$\nabla f(x,\xi) \approx \frac{f(x+\tau e,\xi) - f(x-\tau e,\xi)}{2\tau}e,\tag{2}$$

Our key contributions are as follows:

- We provide the first convergence analysis in the stochastic non-convex setting for zero-order SignSGD with momentum (Algorithm 1 and Theorem 1), requiring only 2d + 1 parameters and $\mathcal{O}(1)$ ZO oracle calls per iteration.
- We extend our memory-efficient momentum method to the Muon algorithm (Algorithm 2), introducing the first zero-order variant of Muon that preserves memory efficiency. We also establish its convergence rate in the stochastic non-convex setting.
- We empirically evaluate the proposed zero-order methods on challenging LLM fine-tuning benchmarks, demonstrating their effectiveness and practical relevance.

Theoretical Foundations

Assumption 1 (Smoothness)

The functions $f(x,\xi)$ are $L(\xi)$ -smooth on the \mathbb{R}^d with respect to the Euclidean norm $\|\cdot\|$, i.e., for all $x,y\in\mathbb{R}^d$ it holds that $\|\nabla f(x,\xi) - \nabla f(y,\xi)\|_{2} \le L(\xi)\|x - y\|_{2}$. We also assume that exists constant $L^2 := \mathbb{E}\left[L(\xi)^2\right]$.

Assumption 2 (Bounded variance)

The variance of the $\nabla f(x,\xi)$ is bounded with respect to the Euclidean norm, i.e., there exists $\sigma > 0$, such that for all $x \in \mathbb{R}^d$ it holds that $\mathbb{E}\left[\|\nabla f(x,\xi) - \nabla f(x)\|_2^2\right] \leq \sigma^2$.

Assumption 3 (Bounded oracle noise)

The noise in the oracle is bounded with respect to the Euclidean norm, i.e., there exists $\Delta > 0$, such that for all $x \in \mathbb{R}^d$ it holds that $\mathbb{E}\left|\left|\hat{f}(x,\xi) - f(x,\xi)\right|^2\right| \leq \Delta^2$.

Results

Algorithm 1: JAGUAR SignSGD

- 1: Parameters: stepsize γ , momentum β , gradient approximation parameter τ , number of iterations T.
- 2: Initialization: choose $x^0 \in \mathbb{R}^d$ and $m^{-1} = \mathbf{0} \in \mathbb{R}^d$.
- 3: **for** $t = 0, 1, 2, \dots, T$ **do**
- Sample $i_t \sim \text{Uniform}(1, d)$
- Set one-hot vector e^t with 1 in the i_t coordinate
- Sample stochastic variable $\xi^t \sim \mathcal{D}$
- Compute $\widetilde{\nabla}_{i_t} f(X^t, \xi^t) := \frac{f_+ f_-}{2\tau} \in \mathbb{R}$,
- 8: where $f_{+} = \hat{f}(X^{t} + \tau E^{t}, \xi^{t}), \quad f_{-} = \hat{f}(X^{t} \tau E^{t}, \xi^{t})$ Set $m_{i_t}^t = \beta m_{i_t}^{t-1} + (1 - \beta) \widetilde{\nabla}_{i_t} f(x^t, \xi^t)$
- and $m_{i \neq i_t}^t = m_{i \neq i_t}^{t-1}$ for all $i \in \overline{1, d}$ Set $x^{t+1} = x^t \gamma \cdot \operatorname{sign}(m^t)$
- 12: end for
- 13: **Return:** $x^{N(T)}$, where $N(T) \sim \text{Uniform}(\overline{1,T})$.

Theorem 1

Consider Assumptions 1, 2 and 3. Then JAGUAR SignSGD (Algorithm 1) has the following convergence rate:

$$\mathbb{E}\left[\left\|\nabla f\left(x^{N(T)}\right)\right\|_{1}\right] = \mathcal{O}\left[\frac{\delta_{0}}{\gamma T} + \frac{d\left\|\nabla f(x^{0})\right\|_{2}}{T\sqrt{1-\beta}}\right] + \frac{d^{2}L\gamma}{1-\beta} + \sqrt{1-\beta}d\sigma + dL\tau + \frac{d\Delta}{\tau},$$

where we used a notation $\delta_0 := f(x^0) - f^*$.

Algorithm 2: JAGUAR Muon

- 1: Parameters: γ (stepsize), β (momentum), τ (grad. approx.),
- ns_steps (Newton-Schulz steps), T (iterations).
- 3: **Init:** $X^0 \in \mathbb{R}^{m \times n}$, $M^{-1} = \mathbf{0}_{m \times n}$.
- 4: for t = 0 to T do
- Sample $i_t \sim U(\overline{1,m}), j_t \sim U(\overline{1,n})$
- $E^t \leftarrow \text{one-hot}(i_t, j_t)$
- Sample $\xi^t \sim \mathcal{D}$
- $\widetilde{\nabla}_{i_t,j_t} f(X^t,\xi^t) \leftarrow \frac{f_+ f_-}{2\tau}$, where:
- $f_{+} = \hat{f}(X^{t} + \tau E^{t}, \xi^{t}), f_{-} = \hat{f}(X^{t} \tau E^{t}, \xi^{t})$
- $$\begin{split} & M_{i_t,j_t}^t \leftarrow \beta M_{i_t,j_t}^{t-1} + (1-\beta) \widetilde{\nabla}_{i_t,j_t} f(x^t,\xi^t) \\ & M_{i\neq i_t,j\neq j_t}^t \leftarrow M_{i\neq i_t,j\neq j_t}^{t-1} \\ & X^{t+1} \leftarrow X^t \gamma \cdot \texttt{Newton_Schulz}(M^t,K = \texttt{ns_steps}) \end{split}$$
- 13: end for
- 14: Return: $X^{N(T)}$, $N(T) \sim U(\overline{1,T})$.
- 1: Subroutine Newton_Schulz($A \in \mathbb{R}^{m \times n}, K = 10$):
- 2: $A^0 \leftarrow A/\|A\|_F$
- for k = 0 to K do
- $A^{k+1} \leftarrow \frac{3}{2}A^k \frac{1}{2}A^k(A^k)^T A^k$
- end for
- Return $A^K \approx U_A V_A^T$

Theorem 2

Consider Assumptions 1, 2 (with Frobenius norm) and 3. Then JAGUAR Muon (Algorithm 2) has the following convergence rate:

$$\mathbb{E}\left[\left\|\nabla f\left(X^{N(T)}\right)\right\|_{\mathcal{S}_{1}}\right] = \mathcal{O}\left[\frac{\delta_{0}}{\gamma T} + \frac{m^{1/2}n\left\|\nabla f(X^{0})\right\|_{2}}{T\sqrt{1-\beta}}\right] + \frac{m^{3/2}n^{2}\gamma}{1-\beta} + \sqrt{1-\beta}m^{1/2}n\sigma + m^{1/2}nL\tau + \frac{m^{1/2}n\Delta}{\tau}\right],$$

where we used a notation $\delta_0 := f(x^0) - f^*$. We also assume that $n \leq m$.

Ablation study

Figure 1 reports the accuracy of the JAGUAR SignSGD method on the SST-2 dataset with the RoBERTa-large model across different values of β . The method demonstrates substantially lower accuracy for small β , while attaining robust and consistently high performance around $\beta \approx 0.9$.

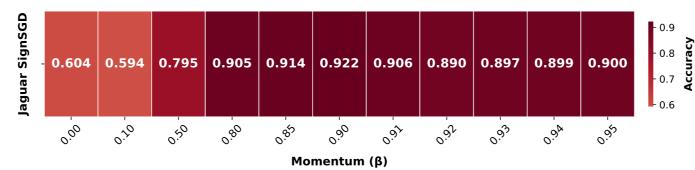


Figure 1: Test accuracy of JAGUAR SignSGD on SST-2 for RoBERTa-large with LoRA for different values of β .

Experiments

Test accuracy on SST2 for OPT-1.3B and RoBERTa-Large with FT and LoRA. Best performance among ZO methods is in **bold**. Blue indicates outperformance of all baseline ZO methods, red indicates matching or exceeding FO-SGD.

Method	OPT-1.3B		RoBERTa-Large	
	FT	LoRA	FT	LoRA
FO-SGD	91.1	93.6	91.4	91.2
Forward-Grad	90.3	90.3	90.1	89.7
ZO-SGD	90.8	90.1	89.4	90.8
Acc-ZOM	85.2	91.3	89.6	90.9
ZO-SGD-Cons	88.3	90.5	89.6	91.6
ZO-SignSGD	87.2	91.5	52.5	90.2
ZO-AdaMM	84.4	92.3	89.8	89.5
LeZO	85.1	92.3	90.4	91.8
JAGUAR SignSGD	94.0 ± 0.1	92.5 ± 0.5	92.2 ± 0.2	92.2 ± 0.4
JAGUAR Muon	84.0 ± 0.1	94.0 ± 0.1	85.0 ± 0.1	92.2 ± 0.2
ZO-Muon	86.5 ± 0.1	93.5 ± 0.1	72.0 ± 0.1	86.0 ± 0.2

Test accuracy on COPA and WinoGrande for OPT-13B and Llama2-7B with LoRA. Best performance among ZO methods is in **bold**. Blue indicates outperformance of all baseline ZO methods, red indicates matching or

exceeding FO-SGD.					
Method	OPT-13B		LLaMA2-7B		
	COPA	WinoGrande	COPA	WinoGrande	
FO-SGD	88	66.9	85	66.9	
Forward-Grad	89	62.9	82	64.3	
ZO-SGD	87	62.6	86	64.3	
ZO-SGD-Cons	88	63.3	85	64.6	
JAGUAR SignSGD	89 ± 0.3	$63.7 \pm\ 0.1$	88 ± 0.2	$64.9 \pm\ 0.1$	
JAGUAR Muon	87 ± 0.2	62.3 ± 0.2	88 ± 0.1	62.8 ± 0.2	
ZO-Muon	87 ± 0.2	61.9 ± 0.3	85 ± 0.2	61.6 ± 0.2	

GPU allocated memory (GB)					
Method	FT Memory	LoRA Memory			
FO-SGD	12.246	5.855			
ZO-SGD	4.171	4.125			
ZO-AdaMM	13.046	6.132			
JAGUAR SignSGD	4.172	4.128			
JAGUAR Muon	4.179	4.132			
ZO-Muon	4.177	4.130			

GPU allocated memory (GB)					
Model	Llama-7B	OPT-13B			
COPA					
ZO-SGD	13.219	24.710			
ZO-AdaMM	27.971	38.612			
JAGUAR SignSGD	13.219	24.712			
ZO-Muon	15.021	25.740			
JAGUAR Muon	16.032	25.880			
WinoGrande					
ZO-SGD	14.670	26.407			
ZO-AdaMM	29.440	39.872			
JAGUAR SignSGD	14.672	26.408			

16.992

17.992

27.416

27.440

ZO-Muon

JAGUAR Muon