

Source code

Evaluating robustness of tabular models under meta-features based shifts

Irina Deeva, Nargiza Amerkhanova, Alena Kropacheva

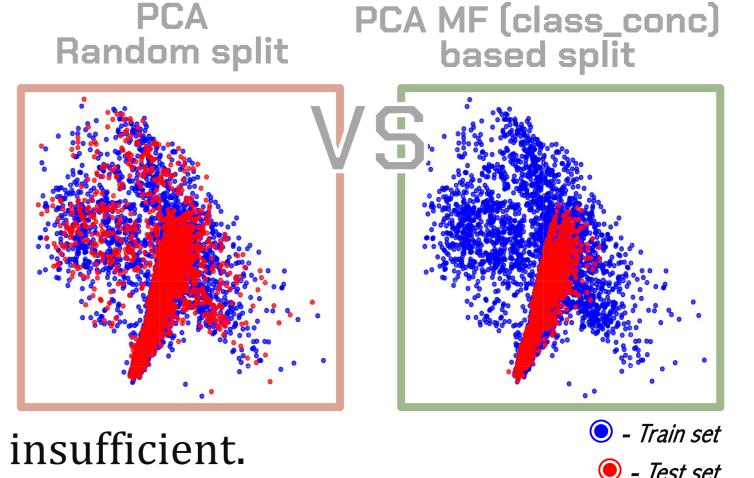
AI Institute, ITMO University Saint-Petersburg, Russia

Introduction

Problem: Standard random train-test splits fail to capture *realistic distribution shifts*, leading to overoptimistic performance estimates.

Hypothesis: We can create more challenging and realistic validation sets by explicitly optimizing distributional differences through meta-features (MFs).

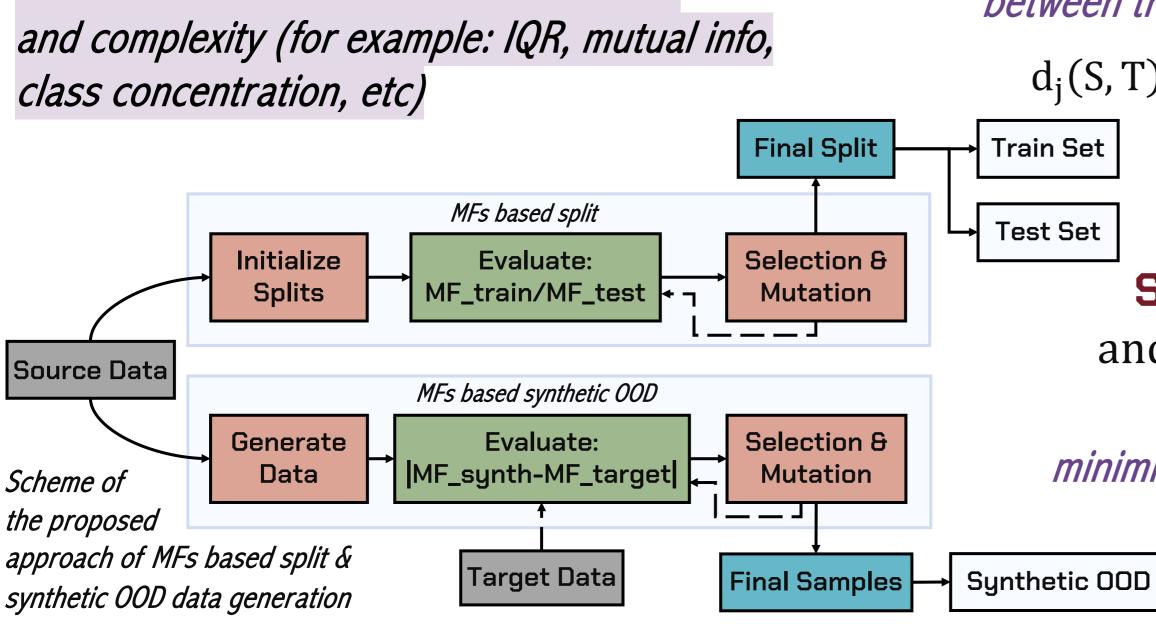
Contribution: Evolutionary algorithm for optimizing meta-feature based data splits; Synthetic OOD generation method when splits are insufficient.



• Test set

Proposed Approach

MFs are measurable properties of datasets that describe their structure



MFs Based Split: Given source dataset the NSGA-II evo algo finds Pareto-optimal *splits that maximize the directed distributional differences* between train subset S and test subset T across meta-features

 $d_j(S,T) = \frac{m_j(test)}{m_i(train)}$ while preserving class balance o_{imb} . Train Set Thus, our multi-objective fitness function is: $f(T) = (d_1(S, T), ..., d_p(S, T), o_{imh}(S, T)).$ **Test Set**

Synthetic OOD Generation: Given source data and target MFs m_i* the NSGA-III evo algo generates

synthetic dataset S' matching target meta-features by minimizing the L2-distances between their MFs and target MFs.

> Thus, our multi-objective fitness function is: $f(S') = (\|m_1(S') - m_1^*\|_2, ..., \|m_p(S') - m_p^*\|_2).$

Experiments

We tested 5 MFs: (i) mut_inf, (ii) class_conc, (iii) joint_ent, (iv) iq_range and (v) attr_ent. Splitting by *mut_inf, class_conc and joint_ent* consistently degraded performance across all models (LR, XGB, IRM, DRO), as these capture concept shift - changes in featuretarget relationships. In contrast, *iq_range* and attr_ent splits showed minimal impact, reflecting only covariate shift without affecting model generalization.

All models - including robust architectures proved vulnerable to MFs-based splits.

For datasets where MFs splits poorly matched real OOD (electricity, california), we applied synthetic data generation, which strongly correlated with actual OOD performance, validating synthetic data as a viable testing approach.

Split	Dataset	LR	XGB	IRM	DRO
Random	electricity	0.798 (20%)	0.832 (20%)	0.813 (16%)	0.814 (17%)
(ID)	taxi	0.752 (6%)	0.778 (12%)	0.790 (15%)	0.712 (6%)
	income	0.678 (38%)	0.716 (23%)	0.618 (38%)	0.514 (10%)
	california	0.823 (8%)	0.869 (13%)	0.693 (10%)	0.821 (12%)
	acs_accidents	0.719 (16%)	0.863 (13%)	0.867 (45%)	0.702 (22%)
MFs	electricity	0.735 (14%)	0.749 (12%)	0.795 (14%)	0.766 (12%)
(ID)	taxi	0.526 (4%)	0.592 (6%)	0.773 (14%)	0.505 (4%)
	income	0.600 (30%)	0.605 (12%)	0.535 (30%)	0.381 (1%)
	california	0.776 (3%)	0.831 (9%)	0.837 (4%)	0.786 (8%)
	acs_accidents	0.461 (0%)	0.725 (0%)	0.716 (30%)	0.630 (15%)
MMD	electricity	0.419 (18%)	0.335 (30%)	0.435 (22%)	0.355 (29%)
(ID)	taxi	0.703 (2%)	0.564 (9%)	0.690 (5%)	0.448 (21%)
	income	0.629 (33%)	0.622 (13%)	0.644 (40%)	0.650 (23%)
	california	0.828 (9%)	0.829 (9%)	0.890 (10%)	0.855 (15%)
	acs_accidents	0.459 (10%)	0.673 (6%)	0.583 (17%)	0.468 (1%)
Target	electricity	0.596	0.633	0.655	0.646
(OOD)	taxi	0.687	0.655	0.637	0.654
	income	0.297	0.488	0.240	0.418
	california	0.742	0.738	0.795	0.705
	acs_accidents	0.563	0.730	0.413	0.479

F1-scores (% = gap to target) where ID = trained/tested on subsets from source, OOD = trained on source/tested on real OOD, Random/MMD = performance with % showing gaps to real 00D, MFs = worst-case across all tested MFs with % - closest gap to real 00D among all MFs; Bold F1 - the largest performance drops; bold % - the closest overall gaps to OOD metrics; colors in MFs rows indicate which specific meta-feature achieved best performance for that case.

	Dataset	Meta-features	LK	XGB	DKO	IRM
	electricity	mut_inf, class_conc, iq_range	0.613 ± 0.08	0.641 ± 0.09	0.587 ± 0.08	0.613 ± 0.08
		mut_inf, class_conc	0.611 ± 0.01	0.625 ± 0.01	0.589 ± 0.01	0.632 ± 0.02
	california	mut_inf, class_conc, iq_range	0.636 ± 0.05	0.692 ± 0.02	0.661 ± 0.02	0.561 ± 0.11
		mut_inf, class_conc	0.679 ± 0.07	0.713 ± 0.03	0.628 ± 0.10	0.682 ± 0.05
	F1-scores	for models tested on synthet	ric OOD data us	ina MFs (mut	inf class con	c ia rangel