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The Sequential Inference Problem

Large Language Models face a fundamental
bottleneck: they generate tokens sequentially
despite having access to powerful parallel hard-
ware. This creates significant latency for com-
plex reasoning tasks that require long chains
of thought. Existing parallel approaches like
Self-Consistency and Skeleton-of-Thought rely
on rigid, pre-defined collaboration patterns
that cannot adapt dynamically during problem-
solving.

Our Solution: Hogwild! Inference

We introduce a novel parallel inference en-
gine where multiple LLM workers generate to-
kens concurrently through a shared attention
cache. This enables real-time collaboration
without any fine-tuning, working with modern
reasoning-capable LLMs out-of-the-box. Our
approach achieves up to 2.8x speedup with 4
workers while maintaining or even improving
accuracy across diverse benchmarks.

Core Technical Innovation

Hogwild! Inference enables concurrent atten-
tion through shared Key-Value memory, allow-
ing multiple LLM instances to run in parallel
while seeing each other’s tokens immediately.
Instead of re-computing KV representations, we
efficiently stitch them together by adjusting po-
sitional embeddings via RoPE rotation.

Alice [1]: Hey! Let's decide how we should
collaborate.

Bob [1]: Hi, Alice! Let me suggest that | do x=1
and x=3, and you will do x=2. What do you think?

Alice [2]: Okay, let's go with that plan. Alice view 5 Bob view 1

[Alice] Current Cache / LLM.forward() /
Alice [3]: For x=2: .4
[Bob] Current Cache ﬁ

Bob [2]: Perfect. Starting with x=1: .. e——————

Common Cache Cache Blocks
Task: compute X2 + x4 for x in {1, 2, 3}. .

Common Alice Bob
Workers history:

Figure 1. Hogwild! Inference with 2 workers and 3
shared cache blocks. Workers see common prompts and
each other’s tokens through rotated positional
embeddings.

Emergent Collaborative Behaviors

Modern reasoning-capable LLMs naturally
coordinate without pre-defined frameworks.
Workers organically develop divide-and-
conquer strategies, perform real-time error
correction, and dynamically re-plan when initial
approaches fail. GPT-40 analysis confirms that
token-wise synchronization enables signifi-
cantly better collaboration.
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Efficient Implementation

Our key technical innovation is query rotation
instead of KV cache rotation. Instead of rotat-
ing all cached keys (inefficient for long contexts),
we rotate only the current token queries. This
leverages RoPE properties to maintain atten-
tion consistency with minimal overhead, avoid-
ing O(n®) recomputation complexity.

Alice View Implementation
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Figure 2. Inference scheme with query rotation. Instead
of rotating cache blocks, we rotate current token
queries to equivalent angles, enabling efficient real-time
synchronization.

Bob View

The implementation uses custom GPU kernels
based on Flash-Decoding principles, gather-
ing each KV cache block in contiguous mem-
ory buffers. This approach provides near-linear
scaling with worker count while maintaining
minimal constant latency overhead compared
to baseline sequential inference.

LIMO Mathematical Reasoning
Results

On the challenging LIMO mathematical rea-
soning benchmark, Hogwild! Inference main-
tains reasoning quality while providing substan-
tial speedup. With 2 workers, it achieves bet-
ter accuracy with the same token budget and
consistently outperforms Self-Consistency and
Skeleton-of-Thought baselines.
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Figure 3. Hogwild! Inference converges faster to correct
solutions on LIMQO dataset with QwQ-328B,
demonstrating effective collaboration on complex
mathematical problems.

Evaluation across multiple model families in-
cluding QwQ-32B, Qwen3, and Phi-4 shows
consistent improvements.  Workers naturally
identify opportunities for parallel sub-task ex-
ecution and error correction, often achieving
higher final accuracy than single-worker base-
lines.
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LiveCodeBench Programming
Evaluation

Hogwild! Inference proves effective beyond
mathematical reasoning, demonstrating strong
performance on LiveCodeBench programming
tasks. The method improves Pass@1 across
multiple model families while maintaining code
quality.
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Figure 4. LiveCodeBench results showing Hogwild!
improves Pass@1 across model families with 2 workers,
demonstrating versatility for code generation tasks.

Workers naturally divide coding responsibili-
ties, cross-verify implementations, and collabo-
ratively debug solutions. This emergent collab-
oration results in more robust and correct code
generation compared to sequential approaches.

Performance & Scalability

Hogwild! Inference demonstrates near-linear
scaling with worker count while maintaining
minimal overhead. Performance benchmarks
show consistent improvements across different
context lengths.
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Figure 5. Single forward pass duration for
QwQ-32B-AWQ shows near-linear scaling with worker
count, with 2 workers providing 1.8-2.0x improvement
and 4 workers achieving 3.2-3.6x.

Key Performance Metrics:

= ) workers: 1.8-2.0x tokens/second
Improvement

= 4 workers: 3.2-3.6x tokens/second
Improvement

= GPU utilization increases from 25% to 72%

= Works with QwQ), DeepSeek-R1, Qwen3,
Phi-4 out-of-the-box

= No fine-tuning required

Code:
https://github.com/eqimp/hogwild 11lm



https://github.com/eqimp/hogwild_llm
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