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The Sequential Inference Problem

Large Language Models face a fundamental

bottleneck: they generate tokens sequentially

despite having access to powerful parallel hard-

ware. This creates significant latency for com-

plex reasoning tasks that require long chains

of thought. Existing parallel approaches like

Self-Consistency and Skeleton-of-Thought rely

on rigid, pre-defined collaboration patterns

that cannot adapt dynamically during problem-

solving.

Our Solution: Hogwild! Inference

We introduce a novel parallel inference en-

gine where multiple LLM workers generate to-

kens concurrently through a shared attention

cache. This enables real-time collaboration

without any fine-tuning, working with modern

reasoning-capable LLMs out-of-the-box. Our

approach achieves up to 2.8x speedup with 4

workers while maintaining or even improving

accuracy across diverse benchmarks.

Core Technical Innovation

Hogwild! Inference enables concurrent atten-

tion through shared Key-Value memory, allow-

ing multiple LLM instances to run in parallel

while seeing each other’s tokens immediately.

Instead of re-computing KV representations, we

efficiently stitch them together by adjusting po-

sitional embeddings via RoPE rotation.

LLM.forward()

Common Cache

Task: compute x2 + x4 for x in {1, 2, 3}.

Workers history:

Alice [1]: Hey! Let's decide how we should
collaborate. 

Bob [1]: Hi, Alice! Let me suggest that I do x=1
and x=3, and you will do x=2. What do you think?

Alice [2]: Okay, let's go with that plan.

[Alice] Current Cache
Alice [3]: For x=2: ...

[Bob] Current Cache
Bob [2]: Perfect. Starting with x=1: ...
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Figure 1. Hogwild! Inference with 2 workers and 3

shared cache blocks. Workers see common prompts and

each other’s tokens through rotated positional

embeddings.

Emergent Collaborative Behaviors

Modern reasoning-capable LLMs naturally

coordinate without pre-defined frameworks.

Workers organically develop divide-and-

conquer strategies, perform real-time error

correction, and dynamically re-plan when initial

approaches fail. GPT-4o analysis confirms that

token-wise synchronization enables signifi-

cantly better collaboration.

Efficient Implementation

Our key technical innovation is query rotation

instead of KV cache rotation. Instead of rotat-

ing all cached keys (inefficient for long contexts),

we rotate only the current token queries. This

leverages RoPE properties to maintain atten-

tion consistency with minimal overhead, avoid-

ing O(n³) recomputation complexity.

Implementation
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Figure 2. Inference scheme with query rotation. Instead

of rotating cache blocks, we rotate current token

queries to equivalent angles, enabling efficient real-time

synchronization.

The implementation uses custom GPU kernels

based on Flash-Decoding principles, gather-

ing each KV cache block in contiguous mem-

ory buffers. This approach provides near-linear

scaling with worker count while maintaining

minimal constant latency overhead compared

to baseline sequential inference.

LIMO Mathematical Reasoning
Results

On the challenging LIMO mathematical rea-

soning benchmark, Hogwild! Inference main-

tains reasoning quality while providing substan-

tial speedup. With 2 workers, it achieves bet-

ter accuracy with the same token budget and

consistently outperforms Self-Consistency and

Skeleton-of-Thought baselines.
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Figure 3. Hogwild! Inference converges faster to correct

solutions on LIMO dataset with QwQ-32B,

demonstrating effective collaboration on complex

mathematical problems.

Evaluation across multiple model families in-

cluding QwQ-32B, Qwen3, and Phi-4 shows

consistent improvements. Workers naturally

identify opportunities for parallel sub-task ex-

ecution and error correction, often achieving

higher final accuracy than single-worker base-

lines.

LiveCodeBench Programming
Evaluation

Hogwild! Inference proves effective beyond

mathematical reasoning, demonstrating strong

performance on LiveCodeBench programming

tasks. The method improves Pass@1 across

multiple model families while maintaining code

quality.
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Figure 4. LiveCodeBench results showing Hogwild!

improves Pass@1 across model families with 2 workers,

demonstrating versatility for code generation tasks.

Workers naturally divide coding responsibili-

ties, cross-verify implementations, and collabo-

ratively debug solutions. This emergent collab-

oration results in more robust and correct code

generation compared to sequential approaches.

Performance & Scalability

Hogwild! Inference demonstrates near-linear

scaling with worker count while maintaining

minimal overhead. Performance benchmarks

show consistent improvements across different

context lengths.
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Figure 5. Single forward pass duration for

QwQ-32B-AWQ shows near-linear scaling with worker

count, with 2 workers providing 1.8-2.0x improvement

and 4 workers achieving 3.2-3.6x.

Key Performance Metrics:

2 workers: 1.8-2.0x tokens/second

improvement

4 workers: 3.2-3.6x tokens/second

improvement

GPU utilization increases from 25% to 72%

Works with QwQ, DeepSeek-R1, Qwen3,

Phi-4 out-of-the-box

No fine-tuning required

Code:

https://github.com/eqimp/hogwild_llm
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https://github.com/eqimp/hogwild_llm
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