Hogwild! Inference: Parallel LLM
'4“, ~ Generation via Concurrent Attention

' Yandex |
ff@j‘ | Research |

e

The Sequential Inference Problem

Large Language Models face a fundamental
bottleneck: they generate tokens sequentially
despite having access to powerful parallel hard-
ware. This creates significant latency for com-
plex reasoning tasks that require long chains
of thought. Existing parallel approaches like
Self-Consistency and Skeleton-of-Thought rely
on rigid, pre-defined collaboration patterns
that cannot adapt dynamically during problem-
solving.

Our Solution: Hogwild! Inference

We introduce a novel parallel inference en-
gine where multiple LLM workers generate to-
kens concurrently through a shared attention
cache. This enables real-time collaboration
without any fine-tuning, working with modern
reasoning-capable LLMs out-of-the-box. Our
approach achieves up to 2.8x speedup with 4
workers while maintaining or even improving
accuracy across diverse benchmarks.

Core Technical Innovation

Hogwild! Inference enables concurrent atten-
tion through shared Key-Value memory, allow-
ing multiple LLM instances to run in parallel
while seeing each other’s tokens immediately.
Instead of re-computing KV representations, we
efficiently stitch them together by adjusting po-
sitional embeddings via RoPE rotation.

Alice [1]: Hey! Let's decide how we should
collaborate.

Bob [1]: Hi, Alice! Let me suggest that | do x=1
and x=3, and you will do x=2. What do you think?

Alice [2]: Okay, let's go with that plan. Alice view 5 Bob view 1

[Alice] Current Cache / LLM.forward() /
Alice [3]: For x=2: .4
[Bob] Current Cache ﬁ

Bob [2]: Perfect. Starting with x=1: .. e——————

Common Cache Cache Blocks
Task: compute X2 + x4 for x in {1, 2, 3}. .

Common Alice Bob
Workers history:

Figure 1. Hogwild! Inference with 2 workers and 3
shared cache blocks. Workers see common prompts and
each other’s tokens through rotated positional
embeddings.

Emergent Collaborative Behaviors

Modern reasoning-capable LLMs naturally
coordinate without pre-defined frameworks.
Workers organically develop divide-and-
conquer strategies, perform real-time error
correction, and dynamically re-plan when initial
approaches fail. GPT-40 analysis confirms that
token-wise synchronization enables signifi-
cantly better collaboration.

Gleb Rodionov 2
George Yakushev 1?2
Anton Sinitsin @

'HSE University

Denis Kuznedelev 2

2Yandex Research

Efficient Implementation

Our key technical innovation is query rotation
instead of KV cache rotation. Instead of rotat-
ing all cached keys (inefficient for long contexts),
we rotate only the current token queries. This
leverages RoPE properties to maintain atten-
tion consistency with minimal overhead, avoid-
ing O(n®) recomputation complexity.

Alice View Implementation

Positions 0 C C+B: C+B+A—> v ( \
» Alice Cache
Common Bob Cache | | Alice Cache /
cache \ J
' vf‘b ' )
*o
Positions 0. C C+A: C+A+B—> —
&
| Common
CEmTiER Alice Cache | | Bob Cache cache
cache
-

Figure 2. Inference scheme with query rotation. Instead
of rotating cache blocks, we rotate current token
queries to equivalent angles, enabling efficient real-time
synchronization.

Bob View

The implementation uses custom GPU kernels
based on Flash-Decoding principles, gather-
ing each KV cache block in contiguous mem-
ory buffers. This approach provides near-linear
scaling with worker count while maintaining
minimal constant latency overhead compared
to baseline sequential inference.

LIMO Mathematical Reasoning
Results

On the challenging LIMO mathematical rea-
soning benchmark, Hogwild! Inference main-
tains reasoning quality while providing substan-
tial speedup. With 2 workers, it achieves bet-
ter accuracy with the same token budget and
consistently outperforms Self-Consistency and
Skeleton-of-Thought baselines.

0.8 ‘

—
i
06 —
e
> / / .
=
0.4
3 o
< /
—e— Baseline (naive)
02 g —o— Baseline . o
—o— Self-Consistency
—o— SoT (unlimited)
0.0 - —o— Hogwild! 2wx |
0 1000 2000 3000 4000 5000 6000 7000 8000
Forward passes

Figure 3. Hogwild! Inference converges faster to correct
solutions on LIMQO dataset with QwQ-328B,
demonstrating effective collaboration on complex
mathematical problems.

Evaluation across multiple model families in-
cluding QwQ-32B, Qwen3, and Phi-4 shows
consistent improvements.  Workers naturally
identify opportunities for parallel sub-task ex-
ecution and error correction, often achieving
higher final accuracy than single-worker base-
lines.

NeurlPS 2025, 2-7 December 2025, San Diego, USA

Roman Garipov *2  Alina Shutova *2
Erik Schultheis 3 Vage Egiazarian 3
Dan Alistarh 3

3|ST Austria

|1S|TIA

LiveCodeBench Programming
Evaluation

Hogwild! Inference proves effective beyond
mathematical reasoning, demonstrating strong
performance on LiveCodeBench programming
tasks. The method improves Pass@1 across
multiple model families while maintaining code
quality.

o
W

\
. T
\
' \“\

N
~

e e e B o I o=
Q
s
8 0.3
151
< QwQ-32B
02 Qwen3-8B
—e— Phi-4-R+

e
—

------ Baselines
l l l

0 1000 2000 3000 4000 5000 6000 7000 8000

Forward passes

Figure 4. LiveCodeBench results showing Hogwild!
improves Pass@1 across model families with 2 workers,
demonstrating versatility for code generation tasks.

Workers naturally divide coding responsibili-
ties, cross-verify implementations, and collabo-
ratively debug solutions. This emergent collab-
oration results in more robust and correct code
generation compared to sequential approaches.

Performance & Scalability

Hogwild! Inference demonstrates near-linear
scaling with worker count while maintaining
minimal overhead. Performance benchmarks
show consistent improvements across different
context lengths.

75
70
w0 A=
L=
E 1 B
65 ——= ——
\ ”.r / /~'_
s -
m ~— __,—"
//",.h ‘/s~‘ .I" WA
(V)] 60 jf‘rfv“—»::’\'l\\’\l" -
(V] M\*F;ﬂ.“w»
2 b i
Q P "ﬂr::; »»»» /Nw_/\::\?'{:n
o5 W VAAA oo
Ll /‘::,, ,,,,, /\/\;'_‘J—.,."_\':’_:. _____ :;_’__v,.v-ﬂ""""::_
R e o P et
2 5 mAem= T
—
O R
(@] —— baseline
y—
45 wW=2 -
— W=4
40 | | l

2000 4000 6000 8000 10000 12000 14000 16000

kv cache length

Figure 5. Single forward pass duration for
QwQ-32B-AWQ shows near-linear scaling with worker
count, with 2 workers providing 1.8-2.0x improvement
and 4 workers achieving 3.2-3.6x.

Key Performance Metrics:

= ) workers: 1.8-2.0x tokens/second
Improvement

= 4 workers: 3.2-3.6x tokens/second
Improvement

= GPU utilization increases from 25% to 72%

= Works with QwQ), DeepSeek-R1, Qwen3,
Phi-4 out-of-the-box

= No fine-tuning required

Code:
https://github.com/eqimp/hogwild 11lm



https://github.com/eqimp/hogwild_llm

	51 Hogwild! Inference Parallel LLM Generation via Concurrent Attention

