
Hogwild! Inference: Parallel LLM
Generation via Concurrent Attention

Gleb Rodionov* 2 Roman Garipov* 1,2 Alina Shutova* 1,2

George Yakushev* 1,2 Erik Schultheis* 3 Vage Egiazarian 3

Anton Sinitsin 2 Denis Kuznedelev 2 Dan Alistarh 3

1HSE University 2Yandex Research 3IST Austria

The Sequential Inference Problem

Large Language Models face a fundamental

bottleneck: they generate tokens sequentially

despite having access to powerful parallel hard-

ware. This creates significant latency for com-

plex reasoning tasks that require long chains

of thought. Existing parallel approaches like

Self-Consistency and Skeleton-of-Thought rely

on rigid, pre-defined collaboration patterns

that cannot adapt dynamically during problem-

solving.

Our Solution: Hogwild! Inference

We introduce a novel parallel inference en-

gine where multiple LLM workers generate to-

kens concurrently through a shared attention

cache. This enables real-time collaboration

without any fine-tuning, working with modern

reasoning-capable LLMs out-of-the-box. Our

approach achieves up to 2.8x speedup with 4

workers while maintaining or even improving

accuracy across diverse benchmarks.

Core Technical Innovation

Hogwild! Inference enables concurrent atten-

tion through shared Key-Value memory, allow-

ing multiple LLM instances to run in parallel

while seeing each other’s tokens immediately.

Instead of re-computing KV representations, we

efficiently stitch them together by adjusting po-

sitional embeddings via RoPE rotation.

LLM.forward()

Common Cache

Task: compute x2 + x4 for x in {1, 2, 3}.

Workers history:

Alice [1]: Hey! Let's decide how we should
collaborate. 

Bob [1]: Hi, Alice! Let me suggest that I do x=1
and x=3, and you will do x=2. What do you think?

Alice [2]: Okay, let's go with that plan.

[Alice] Current Cache
Alice [3]: For x=2: ...

[Bob] Current Cache
Bob [2]: Perfect. Starting with x=1: ...

Bob viewAlice view

Cache Blocks

Common Alice Bob

Figure 1. Hogwild! Inference with 2 workers and 3

shared cache blocks. Workers see common prompts and

each other’s tokens through rotated positional

embeddings.

Emergent Collaborative Behaviors

Modern reasoning-capable LLMs naturally

coordinate without pre-defined frameworks.

Workers organically develop divide-and-

conquer strategies, perform real-time error

correction, and dynamically re-plan when initial

approaches fail. GPT-4o analysis confirms that

token-wise synchronization enables signifi-

cantly better collaboration.

Efficient Implementation

Our key technical innovation is query rotation

instead of KV cache rotation. Instead of rotat-

ing all cached keys (inefficient for long contexts),

we rotate only the current token queries. This

leverages RoPE properties to maintain atten-

tion consistency with minimal overhead, avoid-

ing O(n³) recomputation complexity.

Implementation

Query Alice

Query Alice

Common
cache

Alice Cache

Bob Cache

Query Alice

Query Alice

A
A +

 B
A +

 B
 + 

C

Offset: 0

C C+A C+A+B0

Query BobCommon
cache Alice Cache Bob Cache

Bob View
Positions

C+B C+B+AC0

Alice View

Query AliceAlice CacheBob CacheCommon
cache

Positions

Figure 2. Inference scheme with query rotation. Instead

of rotating cache blocks, we rotate current token

queries to equivalent angles, enabling efficient real-time

synchronization.

The implementation uses custom GPU kernels

based on Flash-Decoding principles, gather-

ing each KV cache block in contiguous mem-

ory buffers. This approach provides near-linear

scaling with worker count while maintaining

minimal constant latency overhead compared

to baseline sequential inference.

LIMO Mathematical Reasoning
Results

On the challenging LIMO mathematical rea-

soning benchmark, Hogwild! Inference main-

tains reasoning quality while providing substan-

tial speedup. With 2 workers, it achieves bet-

ter accuracy with the same token budget and

consistently outperforms Self-Consistency and

Skeleton-of-Thought baselines.

0 1000 2000 3000 4000 5000 6000 7000 8000

Forward passes

0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

Baseline (naive)
Baseline
Self-Consistency
SoT (unlimited)
Hogwild! 2w

Figure 3. Hogwild! Inference converges faster to correct

solutions on LIMO dataset with QwQ-32B,

demonstrating effective collaboration on complex

mathematical problems.

Evaluation across multiple model families in-

cluding QwQ-32B, Qwen3, and Phi-4 shows

consistent improvements. Workers naturally

identify opportunities for parallel sub-task ex-

ecution and error correction, often achieving

higher final accuracy than single-worker base-

lines.

LiveCodeBench Programming
Evaluation

Hogwild! Inference proves effective beyond

mathematical reasoning, demonstrating strong

performance on LiveCodeBench programming

tasks. The method improves Pass@1 across

multiple model families while maintaining code

quality.

0 1000 2000 3000 4000 5000 6000 7000 8000

Forward passes

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y

QwQ-32B
Qwen3-8B
Phi-4-R+
Baselines

Figure 4. LiveCodeBench results showing Hogwild!

improves Pass@1 across model families with 2 workers,

demonstrating versatility for code generation tasks.

Workers naturally divide coding responsibili-

ties, cross-verify implementations, and collabo-

ratively debug solutions. This emergent collab-

oration results in more robust and correct code

generation compared to sequential approaches.

Performance & Scalability

Hogwild! Inference demonstrates near-linear

scaling with worker count while maintaining

minimal overhead. Performance benchmarks

show consistent improvements across different

context lengths.

2000 4000 6000 8000 10000 12000 14000 16000

kv cache length
40

45

50

55

60

65

70

75

fo
rw

ar
d 

pa
ss

 / 
m

s

baseline
W=2
W=4

Figure 5. Single forward pass duration for

QwQ-32B-AWQ shows near-linear scaling with worker

count, with 2 workers providing 1.8-2.0x improvement

and 4 workers achieving 3.2-3.6x.

Key Performance Metrics:

2 workers: 1.8-2.0x tokens/second

improvement

4 workers: 3.2-3.6x tokens/second

improvement

GPU utilization increases from 25% to 72%

Works with QwQ, DeepSeek-R1, Qwen3,

Phi-4 out-of-the-box

No fine-tuning required

Code:

https://github.com/eqimp/hogwild_llm

NeurIPS 2025, 2-7 December 2025, San Diego, USA

https://github.com/eqimp/hogwild_llm

	51 Hogwild! Inference Parallel LLM Generation via Concurrent Attention

