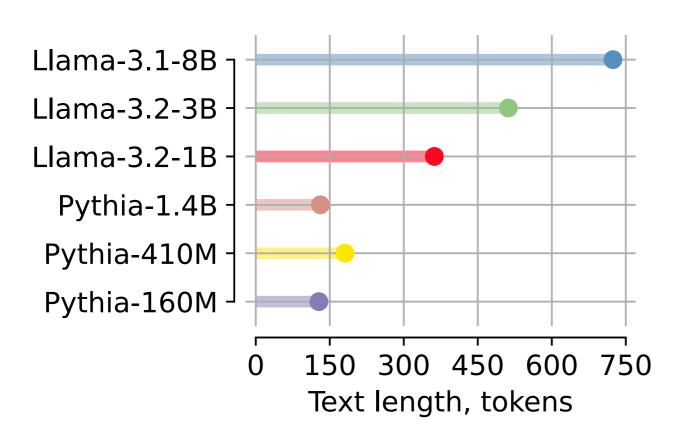
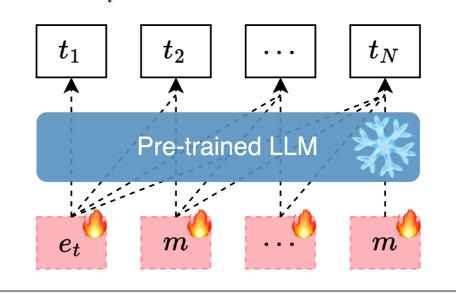
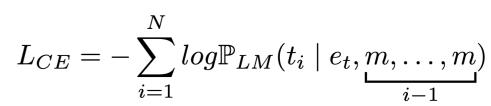


Exploring the Hidden Capacity of LLMs for One-Step Text Generation


Gleb Mezentsev, Ivan Oseledets

Main result


Frozen LLMs can generate hundreds of accurate tokens with non-autoregressive generation in a single forward pass if conditioned on a "proto-token" (special embedding).



Each dot shows the maximum exact reconstruction length in a single non-autoregressive forward pass with frozen weights, conditioned only on a single learned embedding — evidence of hidden multi-token capabilities.

Method

Two proto-tokens (trainable embeddings) are fed into frozen LLM and optimized in such a way that LLM predicts an arbitrary token-sequence in a **single forward pass**. e_t is trained for each text separately, while m is universal.

The loss function we optimise to find e_t and m

Arrangement	N = 1	N=2	N=4	N = 256
$\overline{[e]_{ imes N}}$	$1.00_{\pm 0.00}$	$0.45_{\scriptscriptstyle \pm 0.31}$	$0.17_{\pm 0.18}$	$0.01_{\pm 0.01}$
		$1.00_{\pm 0.00} \\ 1.00_{\pm 0.00}$		
$egin{aligned} [e][m]_{ imes N} \ [e][m]_{ imes (N-1)} \end{aligned}$		$1.00_{\pm 0.00} \\ 1.00_{\pm 0.00}$		

Shared	Agg	$S_g = 1$	$S_g = 16$	$S_g = 256$
e	max avg	$1.00_{\pm 0.00} \\ 0.98_{\pm 0.08}$	$0.99_{_{\pm 0.01}} \\ 0.90_{_{\pm 0.17}}$	$0.99_{_{\pm 0.02}} \\ 0.86_{_{\pm 0.20}}$
m	max avg	$1.00_{\pm 0.00} \\ 0.98_{\pm 0.07}$	$1.00_{\pm 0.00} \\ 0.86_{\pm 0.19}$	$1.00_{\pm 0.01} \\ 0.83_{\pm 0.18}$

Reconstruction accuracies for different input token arrangements across sequence lengths. Subscripts indicate the number of copies for each proto-token.

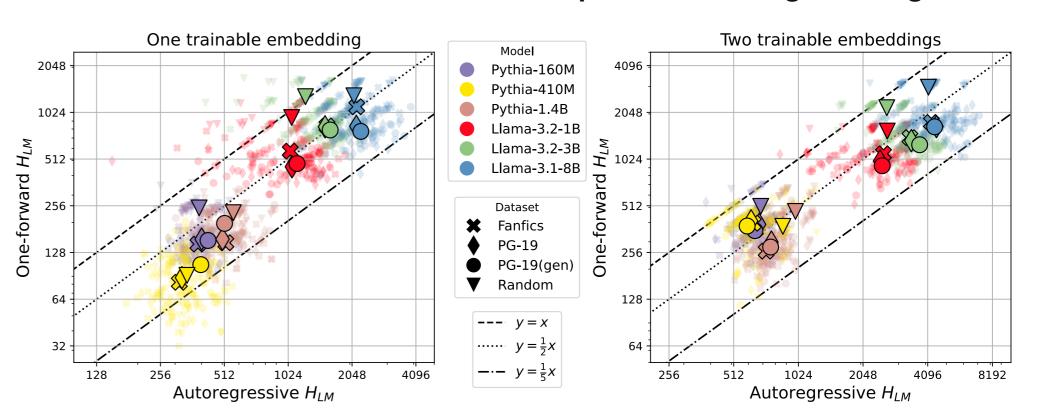
Reconstruction accuracy with one of proto-tokens shared within groups for different group sizes. "max" is maximum accuracy across ten random seeds, "avg" is the average accuracy.

Quantitative results

Main metrics:
$$C_{tokens} = \sum_{i=1}^{N} \mathbb{1}(\arg\max \mathbb{P}_{LM}(\cdot \mid e_t, \underbrace{m, \dots, m}_{i-1}) = t_i)$$

 $H_{LM} = -\sum_{i=1} log \mathbb{P}_{LM}(t_i \mid t_{< i})$

Maximum generation capacity for random/unseen/seen/generated texts across models of different sizes:


All that matters is whether it is real text or random tokens.

		Share m	Pythia		Llama			
			160M	410M	1.4B	3.2-1B	3.2-3B	3.1-8B
Kandom —	C_{tokens}	False True	90 45	92 22	90 45	256 181	362 256	512 256
	H_{LM}	False True	$507.5_{_{\pm 105.9}}\atop 247.9_{_{\pm 32.0}}$	$377.1_{_{\pm 133.1}}\\91.1_{_{\pm 30.8}}$	$470.7_{_{\pm 103.1}} \atop 231.0_{_{\pm 37.9}}$	$1551.3_{_{\pm 159.5}} \\ 947.7_{_{\pm 155.0}}$	${2193.4_{\pm 190.2}\atop 1292.2_{\pm 217.4}}$	
Fanfics	C_{tokens}	False True	128 45	128 45	131 45	362 181	512 288	724 362
	H_{LM}	False True	$358.9_{\pm 73.3} \\ 145.0_{\pm 26.2}$	$395.4_{\pm 97.8} \\ 82.3_{\pm 28.1}$	$261.0_{\pm 56.4} \\ 147.9_{\pm 29.7}$	$1107.6_{_{\pm 129.1}} \\ 576.4_{_{\pm 90.4}}$	${1408.4_{\pm 179.5}\atop835.9_{\pm 121.7}}$	$1763.3_{_{\pm 280}} \\ 1112.8_{_{\pm 168}}$
10-19	C_{tokens}	False True	128 45	167 32	128 64	362 181	512 256	724 362
	H_{LM}	False True	$388.4_{\pm 66.4}\atop156.0_{\pm 33.9}$	$408.8_{\pm 96.3} \\ 88.1_{\pm 30.3}$	$298.4_{\pm 77.4} \\ 156.0_{\pm 30.2}$	$993.8_{\pm 183.4}\atop456.5_{\pm 56.5}$	$1346.0_{\pm 218.4} \\ 826.1_{\pm 117.6}$	$1659.8_{\pm 344.} \\ 832.3_{\pm 171.0}$
(gen)	C_{tokens}	False True	128 45	181 32	128 64	362 181	512 362	724 362
	H_{LM}	False True	$354.1_{\pm 72.0} \\ 153.0_{\pm 17.8}$	$379.2_{\pm 82.6} \\ 106.9_{\pm 38.5}$	$277.6_{\pm 71.3} \\ 197.1_{\pm 39.3}$	$927.3_{\pm 103.4} \\ 478.7_{\pm 85.7}$	$1266.6_{\pm 125.9} \\ 788.6_{\pm 130.8}$	$1653.1_{\pm 211} \\ 771.7_{\pm 143.0}$

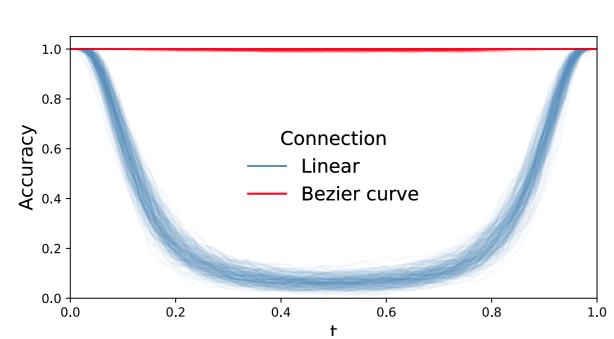
Maximum reconstruction capacities for different models on different datasets.

Maximum generation capacity **compared to autoregressive** setup:

You can fit half of the information compared to autoregressive generation.

Maximum language information (H_{LM} for a maximum text prefix that is accurately reconstructed) for different models and datasets.

On the left plot, a single [mem] token is used in the autoregressive setting, and in the non-autoregressive one, *m* proto-token is shared between all texts within each model.


On the right plot, two [mem] tokens are used and *m* proto-tokens are not shared. Each small point on the plots represents a single text, larger points indicate the average within each (model,

tach small point on the plots represents a single text, larger points indicate the average within each (mode

Solution-space structure

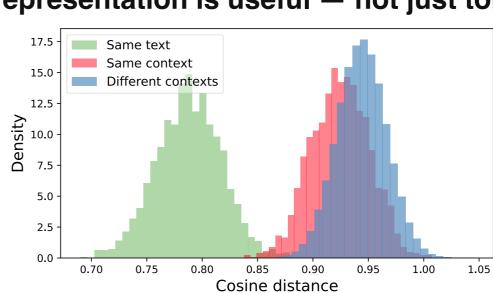
For a given text, solution is not unique and the **solution set** is non-convex, but connected and localized:

A solid potential for training practical encoder.

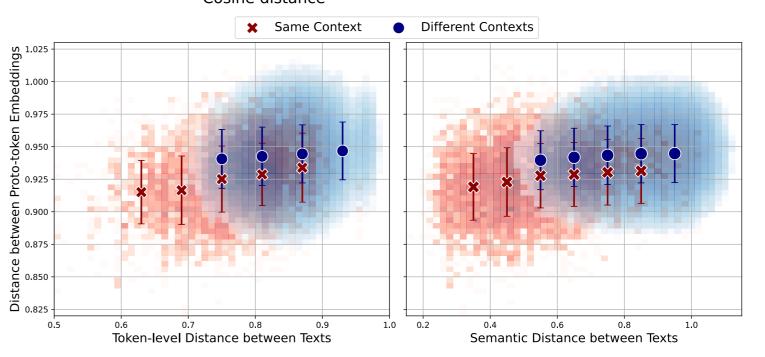
Pairwise interpolation accuracies between 10 solutions for 5 texts ($5 \times 10 \times 9/2$ pairs in total).

Each pair of solutions could be connected via degree-two Bezier curve with perfect accuracy along the curve.

$$\phi_{\pi}(\tau) = (1 - \tau)^2 p_1 + 2\tau (1 - \tau)\pi + \tau^2 p_2$$


$$l_{\pi} = \mathop{\mathbb{E}}_{ au \sim \mathcal{U}[0,1]} \sum_{i=1}^{N} -log \mathbb{P}_{LM}(t_i \mid \phi_{\pi}(au))$$

Bezier curve parameterisation and optimisation problem


Solution interpretation

Embeddings seem to **contain** information beyond the target text itself, with some **traces of the potential context**:

The representation is useful — not just token ids.

Cosine embedding distances for different pairings of proto-tokens. We select 50 contexts from PG19 and for each context, generate 10 continuation texts. We find one solution for each of the first 9 generations and 10 different-seed solutions for the last generation.

We compare proto-token embedding distances for same context text pairs and different-context text pairs. Token-level distance is measured as cosine distance between TF-IDF embeddings. Semantic distance is measured as cosine distance between semantic text embeddings