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Motivation

We observe that real-world knowledge graphs may not consis-
tently align with the assumption of strict hierarchical internal
structure and may only partially follow a power-law distribu-
tion.

100 101 102 103 104 105

#entities

100

101

102

103

104

105

#l
in

ks

WN18RR
FB15k-237
YAGO3-10

Figure 1: Links distribution on three benchmark knowledge graphs con-
sidered in this work. Our MIG-TF approach outperforms both Euclidean
and hyperbolic models, see Table 1.

Hyperbolic Geometry

The Lorentz inner product for vectors x, y ∈ Rn+1:

⟨x, y⟩L = −x0y0 +
n∑
i=1

xiyi

x0 =

√√√√√√√√√β+
n∑
i=1

x2i ,

∥x∥2L = ⟨x, x⟩L

The corresponding n-dimensional Hyperboloid Hn,β ⊂ Rn+1

is defined as follows:

Hn,β =
{
x ∈ Rn+1

∣∣∣∣ ∥x∥2L = −β, β ≥ 0
}
.

The origin vector of the hyperboloid Hn,β equals to 0 =

(β, 0, ..., 0) ∈ Rn+1. The inner product of 0 and x is, hence,
⟨0, x⟩L = −βx0.

Geodesic and Lorentz Distance

The associated geodesic distance is defined as

dl(x, y) = arccosh(−⟨x, y⟩L).

We introduce the square Lorentz distance between x, y ∈ Hn:

d2
L(x, y) = ∥x− y∥2L = −2− 2⟨x, y⟩L. (1)
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Figure 2: Left score function landscape corresponds to our
Lorentz distance and right to Geodesic one.

Contributions
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Figure 3: Comparison of performances of the Euclidean, hyperbolic and mixed-geometry models on FB15k-237.

• We introduce a new mixed-geometry tensor factorisation (MIG-TF) model that combines Tucker decomposition
defined in the Euclidean space with a new hyperbolic ternary interaction term.

• We highlight intricacies of applying geometric approach to real-world knowledge graphs and demonstrate the
associated with it limitations of using single-geometry modelling.

• The proposed combined approach significantly reduces the number of model parameters compared to state-of-the-art
methods. It does so without sacrificing expressive power and achieves more accurate results in most of the common
benchmarks.

Mixed Geometry Tensor Factorisation

TuckER (frozen)

TPTF (trainable)
+ σ Loss

Update TPTF weights

Figure 4: The proposed MIG-TF model architecture.

We introduce a shared-factor mixed geometry model combin-
ing Euclidean TuckER and hyperbolic TPTF models. The
score function of our mixed-geometry model MIG-TF is the
sum of score functions of the Lorentzian and Euclidean mod-
els:

(SMIG-TF)i = (SE)i + (SH)i, (2)

In MIG-TF model, we utilize pretrained TuckER model and
optimize the hyperbolic term parameters (4) of the score func-
tion (2) to minimize the BCE loss:

LMIG-TF =
1

ne

ne∑
i=1

lBCE(ai, σ((SMIG-TF)i)),

Tetrahedron Pooling Tensor Factorization

We propose to modify triangle inequality to capture ternary
interactions in hyperbolic space. In particular, we utilize the
so-called tetrahedron inequality: for the points u, v, t, o in the
Euclidean space, it holds

d(u, v) + d(o, t) ≤ d(u, t) + d(v, t) + d(o, u) + d(o, v).

(3)
Consequently, we can naturally introduce the following
“smoothed” and differentiable everywhere score function:

SH(u, v, t) =

1

2

 d2
L(u, v) + d2

L(0, t) − d2
L(u, t)−

−d2
L(t, v) − d2

L(0, u) − d2
L(0, v)


⟨0, v⟩L⟨0, t⟩L + ⟨0, u⟩L⟨0, v⟩L + ⟨0, t⟩L⟨0, v⟩L

,

(4)

We optimize the Euclidean embeddings and map them to the
hyperboloid: v ∈ Rn maps to [

√
β+ ∥v∥22, v] ∈ Rn+1.

We propose to model ternary interactions in a
knowledge graph via combination of pairwise in-
teractions in hyperbolic space.

ut1

t2tn ...

Figure 5: Each embedding of a relation (t1, ..., tn) defines a
cone that encompasses the embeddings of the entities associ-
ated with that relation.

Results

Models FB15k-237 WN18RR YAGO3-10
TuckERSE+0·SH 4 · 106 8 · 106 25 · 106
RotH 40 · 106 80 · 106 120 · 106

Our models

TPTF0·SE+SH 2 · 106 4 · 106 12 · 106
MIG-TFSE+SH 5 · 106 10 · 106 31 · 106

Table 1: Approximate number of models’ parameters.

FB15k-237 WN18RR YAGO3-10
Models HR@1 MRR HR@1 MRR HR@1 MRR
TuckER 0.266 0.358 0.443 0.470 0.466 0.544
RotH 0.246 0.344 0.449 0.496 0.495 0.573

Our models

TPTF 0.186 0.238 0.252 0.314 0.383 0.481
MIG-TF 0.277 0.367 0.450 0.496 0.501 0.579
MIG-TFQR 0.276 0.365 0.452 0.499 0.502 0.580

Table 2: Metrics on knowledge graphs WN18RR, FB12k-237
and YAGO3-10. Underlined means the best metric.
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