

Knowledge Graph Completion with Mixed Geometry Tensor Factorization

Yusupov Viacheslav¹ Maxim Rakhuba¹ Evgeny Frolov^{2,1}

1. HSE University, 2. AIRI
v.yusupov.lab@gmail.com

Motivation

We observe that real-world knowledge graphs may not consistently align with the assumption of strict hierarchical internal structure and may only partially follow a power-law distribution.

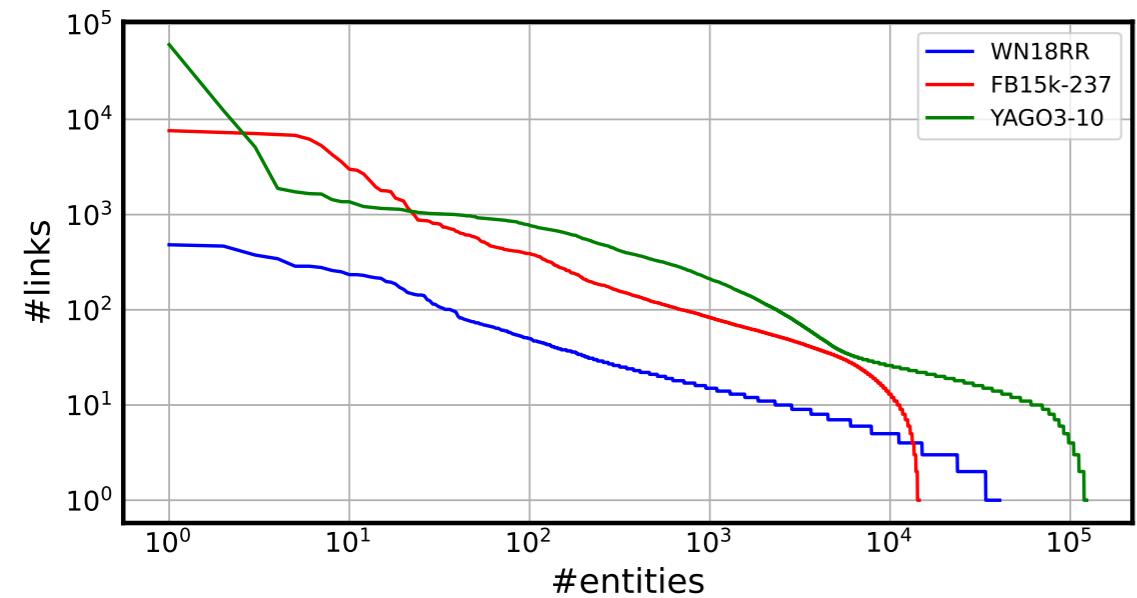


Figure 1: Links distribution on three benchmark knowledge graphs considered in this work. Our MIG-TF approach outperforms both Euclidean and hyperbolic models, see Table 1.

Hyperbolic Geometry

The Lorentz inner product for vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n+1}$:

$$\langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{L}} = -x_0 y_0 + \sum_{i=1}^n x_i y_i$$

$$x_0 = \sqrt{\beta + \sum_{i=1}^n x_i^2},$$

$$\|\mathbf{x}\|_{\mathcal{L}}^2 = \langle \mathbf{x}, \mathbf{x} \rangle_{\mathcal{L}}$$

The corresponding n -dimensional Hyperboloid $\mathcal{H}^{n, \beta} \subset \mathbb{R}^{n+1}$ is defined as follows:

$$\mathcal{H}^{n, \beta} = \{ \mathbf{x} \in \mathbb{R}^{n+1} \mid \|\mathbf{x}\|_{\mathcal{L}}^2 = -\beta, \beta \geq 0 \}.$$

The origin vector of the hyperboloid $\mathcal{H}^{n, \beta}$ equals to $0 = (\beta, 0, \dots, 0) \in \mathbb{R}^{n+1}$. The inner product of 0 and \mathbf{x} is, hence, $\langle 0, \mathbf{x} \rangle_{\mathcal{L}} = -\beta x_0$.

Geodesic and Lorentz Distance

The associated geodesic distance is defined as

$$d_{\text{L}}(\mathbf{x}, \mathbf{y}) = \text{arccosh}(-\langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{L}}).$$

We introduce the square Lorentz distance between $\mathbf{x}, \mathbf{y} \in \mathcal{H}^n$:

$$d_{\mathcal{L}}^2(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_{\mathcal{L}}^2 = -2 - 2\langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{L}}. \quad (1)$$

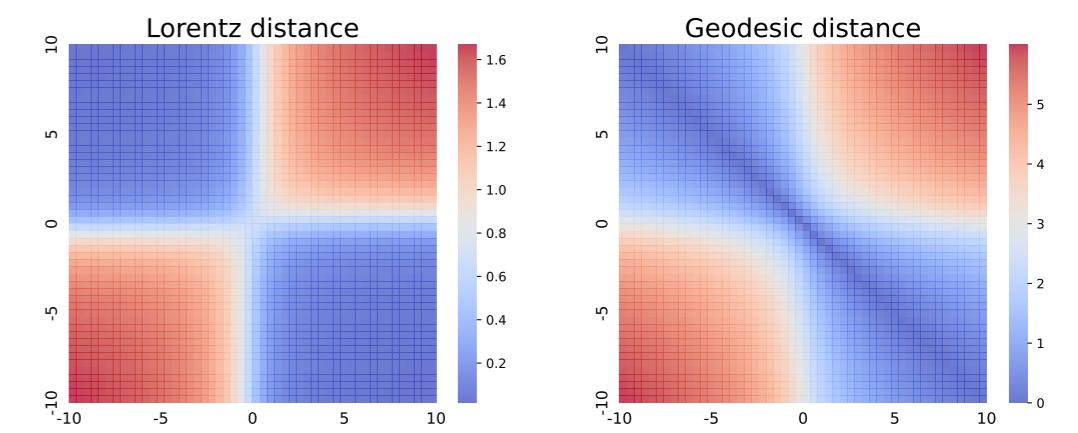


Figure 2: Left score function landscape corresponds to our Lorentz distance and right to Geodesic one.

Contributions

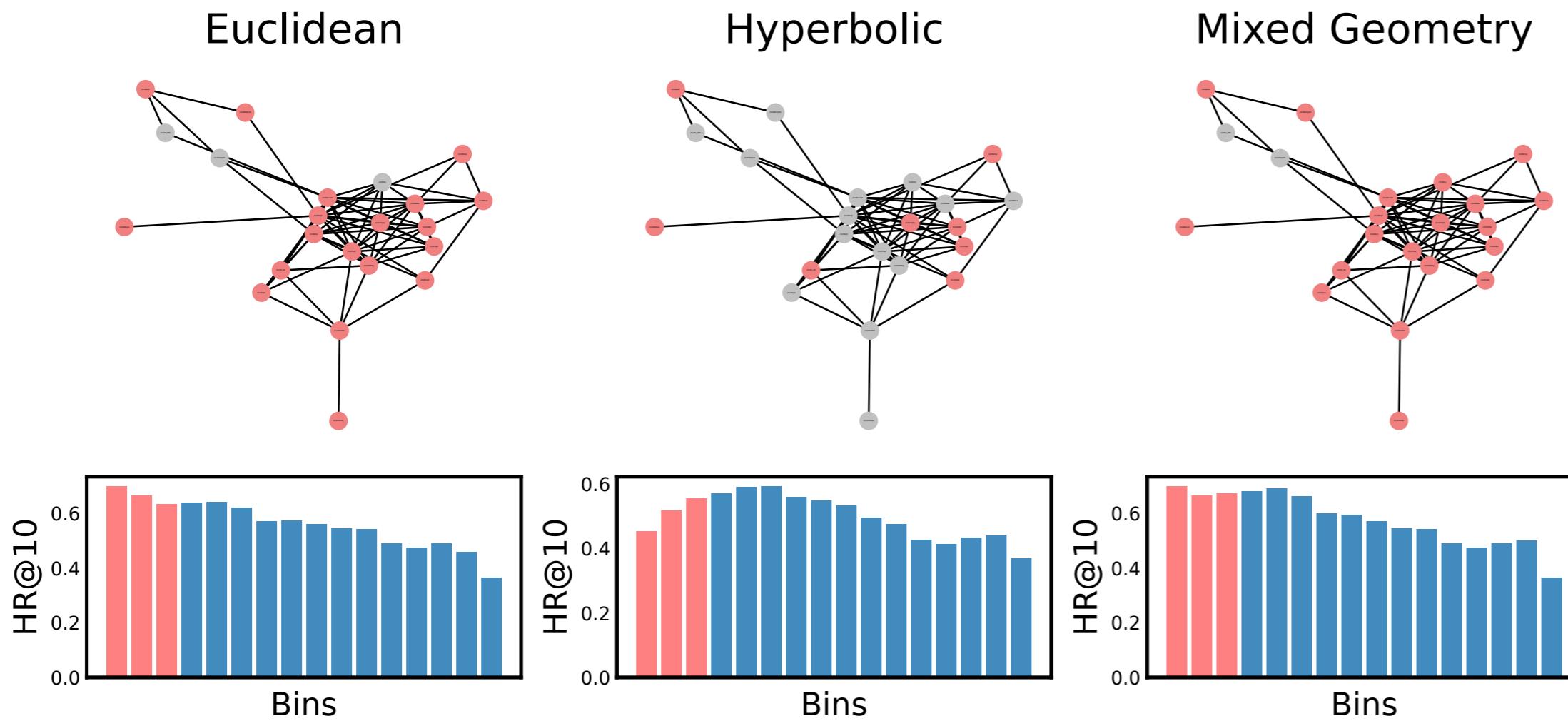


Figure 3: Comparison of performances of the Euclidean, hyperbolic and mixed-geometry models on FB15k-237.

- We introduce a new mixed-geometry tensor factorisation (MIG-TF) model that combines Tucker decomposition defined in the Euclidean space with a new hyperbolic ternary interaction term.
- We highlight intricacies of applying geometric approach to real-world knowledge graphs and demonstrate the associated with it limitations of using single-geometry modelling.
- The proposed combined approach significantly reduces the number of model parameters compared to state-of-the-art methods. It does so without sacrificing expressive power and achieves more accurate results in most of the common benchmarks.

Tetrahedron Pooling Tensor Factorization

We propose to model ternary interactions in a knowledge graph via combination of pairwise interactions in hyperbolic space.

We propose to modify triangle inequality to capture ternary interactions in hyperbolic space. In particular, we utilize the so-called tetrahedron inequality: for the points $\mathbf{u}, \mathbf{v}, \mathbf{t}, \mathbf{o}$ in the Euclidean space, it holds

$$d(\mathbf{u}, \mathbf{v}) + d(\mathbf{o}, \mathbf{t}) \leq d(\mathbf{u}, \mathbf{t}) + d(\mathbf{v}, \mathbf{t}) + d(\mathbf{o}, \mathbf{u}) + d(\mathbf{o}, \mathbf{v}). \quad (3)$$

Consequently, we can naturally introduce the following “smoothed” and differentiable everywhere score function:

$$S_H(\mathbf{u}, \mathbf{v}, \mathbf{t}) = \frac{1}{2} \left(d_{\mathcal{L}}^2(\mathbf{u}, \mathbf{v}) + d_{\mathcal{L}}^2(\mathbf{0}, \mathbf{t}) - d_{\mathcal{L}}^2(\mathbf{u}, \mathbf{t}) - d_{\mathcal{L}}^2(\mathbf{t}, \mathbf{v}) - d_{\mathcal{L}}^2(\mathbf{0}, \mathbf{u}) - d_{\mathcal{L}}^2(\mathbf{0}, \mathbf{v}) \right) \langle \mathbf{0}, \mathbf{v} \rangle_{\mathcal{L}} \langle \mathbf{0}, \mathbf{t} \rangle_{\mathcal{L}} + \langle \mathbf{0}, \mathbf{u} \rangle_{\mathcal{L}} \langle \mathbf{0}, \mathbf{v} \rangle_{\mathcal{L}} + \langle \mathbf{0}, \mathbf{t} \rangle_{\mathcal{L}} \langle \mathbf{0}, \mathbf{v} \rangle_{\mathcal{L}}, \quad (4)$$

We optimize the Euclidean embeddings and map them to the hyperboloid: $\mathbf{v} \in \mathbb{R}^n$ maps to $[\sqrt{\beta + \|\mathbf{v}\|_2^2}, \mathbf{v}] \in \mathbb{R}^{n+1}$.

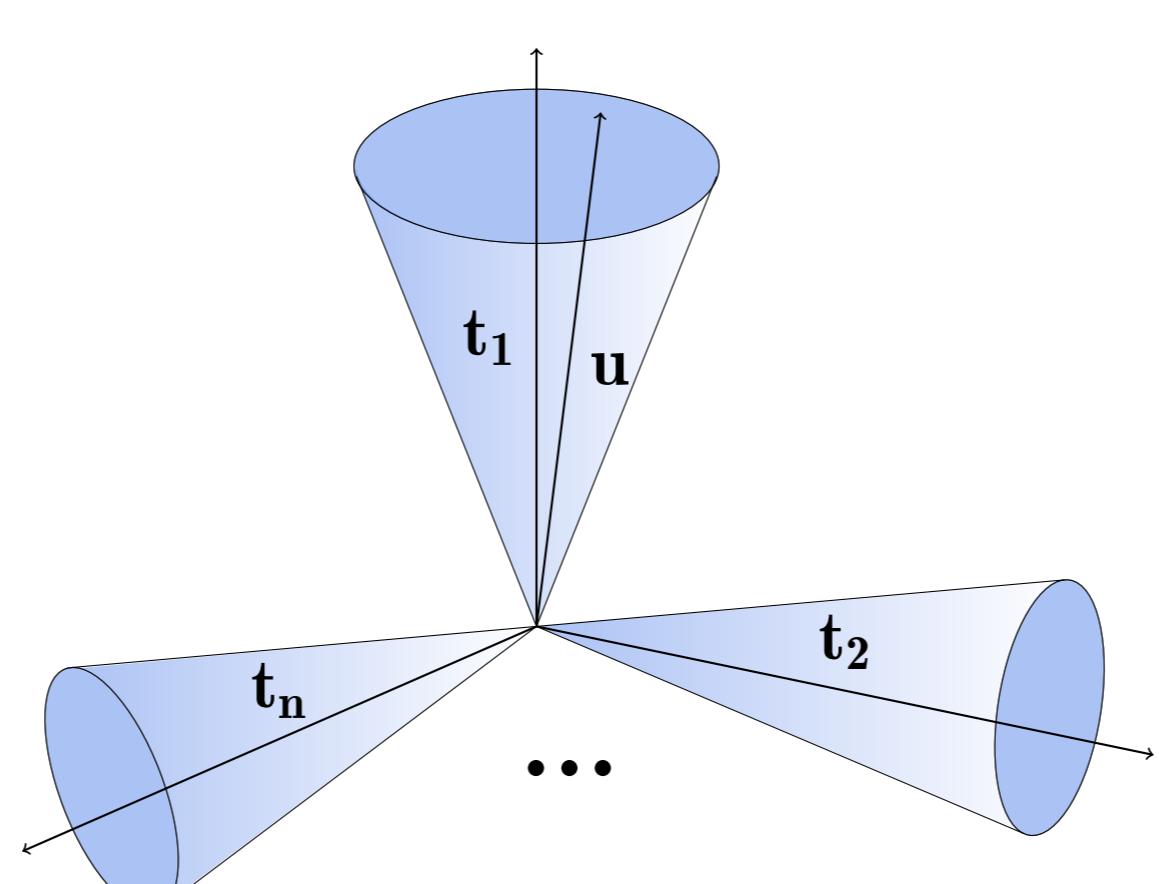


Figure 5: Each embedding of a relation $(\mathbf{t}_1, \dots, \mathbf{t}_n)$ defines a cone that encompasses the embeddings of the entities associated with that relation.

Mixed Geometry Tensor Factorisation

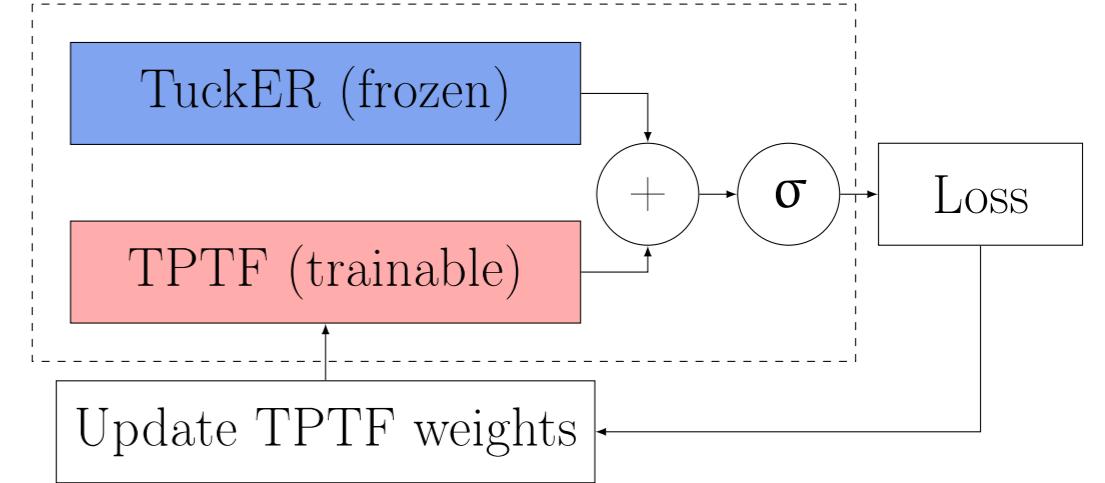


Figure 4: The proposed MIG-TF model architecture.

We introduce a shared-factor mixed geometry model combining Euclidean TuckER and hyperbolic TPTF models. The score function of our mixed-geometry model MIG-TF is the sum of score functions of the Lorentzian and Euclidean models:

$$(S_{\text{MIG-TF}})_i = (S_E)_i + (S_H)_i, \quad (2)$$

In MIG-TF model, we utilize pretrained TuckER model and optimize the hyperbolic term parameters (4) of the score function (2) to minimize the BCE loss:

$$\mathcal{L}_{\text{MIG-TF}} = \frac{1}{n_e} \sum_{i=1}^{n_e} l_{\text{BCE}}(a_i, \sigma((S_{\text{MIG-TF}})_i)),$$

Results

Models	FB15k-237	WN18RR	YAGO3-10
TuckER _{S_E+0·S_H}	$4 \cdot 10^6$	$8 \cdot 10^6$	$25 \cdot 10^6$
RotH	$40 \cdot 10^6$	$80 \cdot 10^6$	$120 \cdot 10^6$
Our models			
TPTF _{0·S_E+S_H}	$2 \cdot 10^6$	$4 \cdot 10^6$	$12 \cdot 10^6$
MIG-TF _{S_E+S_H}	$5 \cdot 10^6$	$10 \cdot 10^6$	$31 \cdot 10^6$

Table 1: Approximate number of models' parameters.

Models	FB15k-237		WN18RR		YAGO3-10	
	HR@1	MRR	HR@1	MRR	HR@1	MRR
TuckER	0.266	0.358	0.443	0.470	0.466	0.544
RotH	0.246	0.344	0.449	0.496	0.495	0.573
Our models						
TPTF	0.186	0.238	0.252	0.314	0.383	0.481
MIG-TF	<u>0.277</u>	<u>0.367</u>	0.450	0.496	0.501	0.579
MIG-TF _{QR}	0.276	0.365	<u>0.452</u>	<u>0.499</u>	<u>0.502</u>	<u>0.580</u>

Table 2: Metrics on knowledge graphs WN18RR, FB15k-237 and YAGO3-10. Underlined means the best metric.