Motivation

We observe that real-world knowledge graphs may not consis-
tently align with the assumption of strict hierarchical internal
structure and may only partially follow a power-law distribu-
tion.
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Figure 1: Links distribution on three benchmark knowledge graphs con-
sidered in this work. Our MIG-TF approach outperforms both Euclidean
and hyperbolic models, see Table 1.
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Hyperbolic Geometry

The Lorentz inner product for vectors x,y € R
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The corresponding n-dimensional Hyperboloid HP - R
1s defined as follows:

H™P = {x e R™'| |||z =—B, B = 0}.

The origin vector of the hyperboloid H™P equals to 0 =
(B,0,...,0) € R*"! The inner product of 0 and x is, hence,

(0,%X)r = —PXo.
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Figure 3: Comparison of performances of the Euclidean, hyperbolic and mixed-geometry models on FB15k-237.

e We introduce a new mixed-geometry tensor factorisation (MIG-TF) model that combines Tucker decomposition

defined in the Euclidean space with a new hyperbolic ternary interaction term.

e We highlight intricacies of applying geometric approach to real-world knowledge graphs and demonstrate the

associated with it limitations of using single-geometry modelling.

® The proposed combined approach significantly reduces the number of model parameters compared to state-of-the-art

methods. It does so without sacrificing expressive power and achieves more accurate results in most of the common

benchmarks.

Tetrahedron Pooling Tensor Factorization

We propose to modity triangle inequality to capture ternary
interactions in hyperbolic space. In particular, we utilize the
so-called tetrahedron inequality: for the points u, v, t, 0 in the
Euclidean space, it holds

d(u,v) +d(o,t) < d(u,t)+d(v,t) +d(o,u) + d(o,v).
(3)

Consequently, we can naturally introduce the following
“smoothed” and differentiable everywhere score function:

SH(U,\), t) —
1( dz(u,v) + dz(0,t) — dz(u, t)— (4)
2| —d3(t,v) — d2(0,u) — dZ(0, V)

(0, V) £{0,t) 2 + (0, W) £{0, V) 2 + (0, 1) £ (0, V)’

We optimize the Euclidean embeddings and map them to the
hyperboloid: v € R™ maps to [\/B + |[v||3,v] € R™HT

We propose to model ternary interactions in a
knowledge graph via combination of pairwise in-

teractions in hyperbolic space.

Figure 5. Each embedding of a relation (ty,...,t,) defines a
cone that encompasses the embeddings of the entities associ-
ated with that relation.
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(Geodesic and Lorentz Distance

The associated geodesic distance is defined as
di(x,y) = arccosh(—(x,y)z).
We introduce the square Lorentz distance between x,y € H™

dz(x,y) = Ix —yllz =-2-2(x,y)c. (1)
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Figure 2: Left score function landscape corresponds to our
Lorentz distance and right to Geodesic one.

Mixed Geometry Tensor Factorisation
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Figure 4: The proposed MIG-TF model architecture.

We introduce a shared-factor mixed geometry model combin-
ing Fuclidean TuckER and hyperbolic TPTF models. The
score function of our mixed-geometry model MIG-TF is the
sum of score functions of the Lorentzian and Euclidean mod-
els:

(Swictr)i = (Se)i + (SH)i, (2)

In MIG-TF model, we utilize pretrained TuckER model and
optimize the hyperbolic term parameters (4) of the score func-
tion (2) to minimize the BCE loss:

] &
Lygtr = " Z lgce(ai, o((Smic-r)i)),
€ i=1

Results
Models FB15k-237 WN18RR YAGO3-10
TuCkER5E+0.SH 4. 106 8- 106 25 - 106
RotH 40 - 10° 80 - 10° 120 - 10°
Our models
TPTFo.s. 45, 2-10° 4.10° 12-10°
MIG-TFs, s, 5-10° 10-10° 31-10°

Table 1: Approximate number of models’” parameters.

FB15k-237 WN18RR YAGO3-10
Models HR@1l MRR HR@1 MRR HR@l1 MRR

TuckER 0.266 0.358 0.443 0470 0.466 0.544
RotH 0.246 0.344 0.449 0496 0495 0.573

Our models

TPTF 0.186 0.238 0.252 0.314 0.383 0.481
MIG-TF 0.277 0.367 0.450 0.496 0.501 0.579
MIG-TFgor  0.276 0.365 0.452 0.499 0.502 0.580

Table 2: Metrics on knowledge graphs WNISRR, FB12k-237
and YAGO3-10. Underlined means the best metric.
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