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Our Approach

Setup: solving problems with LLM inference, e.g. Chain-
of-Thought math reasoning or programming. LLM genera-
tion is sequential, predicting one token at a time.

Speculative Decoding [1]: generate tokens faster with an
auxiliary “draft” model — a faster but less accurate LLM:

Drafting phase: use the fast 64,.5 model to generate
multiple next tokens (draft tokens).

Verification phase: run the main 64,4 model in parallel
on draft tokens to compare next token predictions. Re-
turn tokens up to the first mismatch. Repeat.

Not all mismatches affect the final answer (Figure 1 —)
Important: errors in formula, program logic & syntax.
Unimportant: word choice, formatting, minor notation.

Judge Decoding [2]: ask humans to judge if a mismatch
is important (affects the final answer) or not. Train a linear
classifier to detect “unimportant” tokens from LLM hid-
den state at inference time. During verification, accept
mismatching tokens if they are unimportant for the task.

AutoJudge (Ours): Fire humans. Find important tokens
automatically with a semi-greedy search (Algorithm 1 —)
For each mismatch between target and draft models, start
with the draft token and see if this affects response quality.
If it does, then the token was important. If response quality
did not change, the mismatch is unimportant: accept it.

Response quality is task-specific. For math reasoning, two
responses are equivalent if they have the same final an-
swer (up to notation). For programming, the two programs
must pass the same tests. Can be extended: for general
QA, let LLM “judge” decide if responses are the same.

Train classifier: collect training data via Algorithm 1, fit a
2-class Logistic Regression to predict whether the current
token is important based on LLM hidden states.

Inference: run speculative decoding normally until the
first mismatch. If the classifier deems that the mismatch
Is unimportant - accept that draft token and any fu-
ture matching tokens. Easy to integrate: see reference
vLLM [3] implementation. Compatible with any specula-
tive decoding: we test vanilla and EAGLE-2 [4].
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Figure 1. AutoJudge pipeline: (left) data gathering: detect mismatching tokens that affect final response quality; these tokens
are then used to train a classifier (right) use the trained classifier to generate more tokens per cycle with speculative decoding.

Algorithm 1. Search for Important Tokens. The algorithm is
used during the data gathering stage (Figure 1 left) to label
which of the mismatching tokens affect the final answer.

Table 1. Examples of mismatching tokens with [alternatives]
by Algorithm 1: labeled as important or unimportant. The first
example shows alternative responses (v if a = &, X if not).

1: Input: z: prompt, Ograt, Orarget: draft & target models [GSM8K] Arnel had ten boxes of pencils ... how many
2: Output: labeled mismatching tokens M pencils are in each box? A: Arnel kept ten pencils
3 M« () > Tuples (position, tokens, is important?) and shared the remaining pencils with his b5 friends.
4: y < generate(x, Oarget) [.] He shared the ... V [equally] with ... V
5: « < extractAnswer(y) (continued) This means that the total number of
6: y < forward(z @ y, Ograft) - argmax (=1) 110 xy-1:-1] pencils he shared is 10 * x - 10. ...
7T+ {i|y; #y} v Indices where models mismatch [Arnel] ... Vv [-1x-10 ... X
8: while Z # () do , .
9: t < min(Z) o Find the first unlabeled mismatch [GSMSK] Adlal has 2 dogs and 1 CthkeF' How many
N ~ ~ animal legs are there in all?” A: To find the total
10: Y = Y1t D Yt D generate(aj D Yt:t S Yt, 0target> .
_ A N : e~ number of animal legs, we need to calculate the
11:  a<—extractAnswer(f) > Alternative answer with ,
19 if o = & then legs rtota1] 0f each animal and then add them up.
13: > Equivalent answer, token y; is not important _* 2 dogs4 h_aVSG 14 2] leg31 eahc.h’k >0 h2 d02g51 have 2
14- M « M U {(t, yt,@f7False>} [times] = egs. cnickKken nas egs.
15: Yy < g > Continue search from the new response [ CB|Given a string S of lowercase...If there are ad-
16: y < forward(z @ y, Oaraft) . argnax (1) [len (o -1:-1] jacent occurrences of a and b in S, print Yes; ...
17: else . . def(y s0lve|cpecy (S):
18: > Different ansvver,~tol<en Yy 1S Important, ... | for i in range(len(s) - 1):
19: /\/l — MUA{(t,yr,y:, True)} > ..s0 we keep it if s[i] == 'a' and s[i+1] == 'b"'
20: end if . N . . return "Yes"
21: T <—.{z\y7; #y; N 1>t} > Keep mismatches past ¢ if s[i] == 'b,' and s[i+1]=="a":
22: end while return "Yes"
23: return M return "No"

Experiments

We evaluate AutoJudge on math reasoning with
GSM8K [5] and programming on LiveCodeBench v5 [6],
focusing on two model families: Llama 3.x [7] and
Qwen2.5 [8]. In Figures 3 and 2, we compare the av-
erage number of accepted tokens (per verification phase)
for different classifier settings, showing that AutoJudge
produces significantly more tokens per speculation with
negligible loss in accuracy and can further speed up de-
coding at the cost of some accuracy drawdown. Tables 2
and 3 show real-world speedups on A100 GPUs with both
on-device inference and offloading. Both setups show
significant speed-up over vanilla speculative decoding. Ad-
ditional setups and evaluations, including larger models
and EAGLE-2 acceleration can be found in the paper.

Figure 2. LiveCodeBenchsv5 Pass@1 and accepted
tokens on for Llama 3.1 8B draft / Llama 3.1 /0B target
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Figure 3. Accuracy and accepted tokens on GSM8K for
(top) Llama 3.1 Instruct 8B draft / 7OB target and
(bottom) Qwen 2.5 Instruct 0.5B draft / 7B target.
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Table 2. Inference benchmarks with vLLM on the GSM8K
dataset for Llama 3.1 8B Instruct draft / 3.1 70OB target.

Llama 3.1 8B draft / 3.1 /0B target
Threshold 0.005 0.031 0.145 0.230

9220 919 899 880
63.8 94.6 108.5 108.0

70.9 tokens/s
1.33 1.53

Accuracy, %
Speed, tokens/s

Speculative Decoding:

Speedup(ours) | 0.90

1.52

Table 3. Inference benchmarks with vLLM on the GSM8K
dataset for Llama 3.1 8B Instruct draft / 3.1 /0B target
with offloading to CPU.

Llama 3.1 8B draft / 3.1 /0B target
Threshold 0.03 0.05 0.11 0.18

Accuracy, % 954 948 934 92.9
Speed, tokens/s| 0.7/ 0.7 0.9 1.1

Speculative Decoding: 0.62 tokens/s
Speedup(ours) \1.13 1.15 147 1.76
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