
AutoJudge: Judge Decoding
Without Manual Annotation

Roman Garipov* 1,2,3 Fedor Velikonivtsev* 1,2 Ivan Ermakov 1,2

Ruslan Svirschevski 3 Vage Egiazarian 4 Max Ryabinin 5

1HSE University 2Yandex Research 3ITMO University 4IST Austria 5Together AI

Our Approach
Setup: solving problems with LLM inference, e.g. Chain-

of-Thought math reasoning or programming. LLM genera-

tion is sequential, predicting one token at a time.

Speculative Decoding [1]: generate tokens faster with an

auxiliary “draft” model — a faster but less accurate LLM:

Drafting phase: use the fast θdraft model to generate

multiple next tokens (draft tokens).

Verification phase: run the main θtarget model in parallel

on draft tokens to compare next token predictions. Re-

turn tokens up to the first mismatch. Repeat.

Not all mismatches affect the final answer (Figure 1→)

Important: errors in formula, program logic & syntax.

Unimportant: word choice, formatting, minor notation.

Judge Decoding [2]: ask humans to judge if a mismatch

is important (affects the final answer) or not. Train a linear

classifier to detect “unimportant” tokens from LLM hid-

den state at inference time. During verification, accept

mismatching tokens if they are unimportant for the task.

AutoJudge (Ours): Fire humans. Find important tokens

automatically with a semi-greedy search (Algorithm 1→)
For each mismatch between target and draft models, start

with the draft token and see if this affects response quality.

If it does, then the tokenwas important. If response quality

did not change, the mismatch is unimportant: accept it.

Response quality is task-specific. For math reasoning, two

responses are equivalent if they have the same final an-

swer (up to notation). For programming, the two programs

must pass the same tests. Can be extended: for general

QA, let LLM “judge” decide if responses are the same.

Train classifier: collect training data via Algorithm 1, fit a

2-class Logistic Regression to predict whether the current

token is important based on LLM hidden states.

Inference: run speculative decoding normally until the

first mismatch. If the classifier deems that the mismatch

is unimportant - accept that draft token and any fu-

ture matching tokens. Easy to integrate: see reference

vLLM [3] implementation. Compatible with any specula-

tive decoding: we test vanilla and EAGLE-2 [4].

   the  final  sum  of   the  (12, 34, 56) = 102

    and  the result  becomes : 12        34 + 56 = 102

...        34 + 56 = 34

  : 12  +  34 + 56  = 102

+

-

equals...

so...

mism
atc

h

target:

draft:

draft:

draft:

DATA GATHERING INFERENCE

target (parallel)
... the derivative becomes d/dx x^x = x^x (1        lnx)+

... the derivative   equals   d/dx x^x = x^x (1        lnx )-
draft (sequential)

mism
atc

h

mism
atc

h

classifier extra accepted tokens discard

...

Figure 1. AutoJudge pipeline: (left) data gathering: detect mismatching tokens that affect final response quality; these tokens

are then used to train a classifier (right) use the trained classifier to generate more tokens per cycle with speculative decoding.

Algorithm 1. Search for Important Tokens. The algorithm is

used during the data gathering stage (Figure 1 left) to label

which of the mismatching tokens affect the final answer.

1: Input: x: prompt, θdraft, θtarget: draft & target models
2: Output: labeled mismatching tokensM
3: M← ∅ . Tuples (position, tokens, is important?)
4: y ← generate(x, θtarget)
5: α← extractAnswer(y)
6: ỹ ← forward(x⊕ y, θdraft).argmax(-1)[len(x)-1:-1]
7: I ← {i | yi 6= ỹi} . Indices where models mismatch
8: while I 6= ∅ do
9: t← min(I) . Find the first unlabeled mismatch
10: ŷ = y1:t ⊕ ỹt ⊕ generate(x⊕ y1:t ⊕ ỹt, θtarget)
11: α̂←extractAnswer(ŷ) . Alternative answer with ỹt

12: if α ≡ α̂ then

13: . Equivalent answer, token yt is not important

14: M←M∪ {(t, yt, ỹt, False)}
15: y ← ŷ . Continue search from the new response
16: ỹ ← forward(x⊕ y, θdraft).argmax(-1)[len(x)-1:-1]
17: else

18: . Different answer, token yt is important, …

19: M←M∪ {(t, yt, ỹt, True)} . …so we keep it
20: end if

21: I ← {i|yi 6= ỹi ∩ i > t} . Keep mismatches past t
22: end while

23: return M

Table 1. Examples of mismatching tokens with [alternatives]
by Algorithm 1: labeled as important or unimportant. The first

example shows alternative responses (X if α ≡ α̂,×if not).

[GSM8K] Arnel had ten boxes of pencils ... how many
pencils are in each box? A: Arnel kept ten pencils
and shared the remaining pencils with his 5 friends.
[.] He shared the ... X [equally] with ... X
(continued) This means that the total number of
pencils he shared is 10 * x - 10. ...

[Arnel] ... X [-] x - 10 ...×
[GSM8K] Adlai has 2 dogs and 1 chicken. How many
animal legs are there in all? A: To find the total
number of animal legs, we need to calculate the
legs [total] of each animal and then add them up.
- 2 dogs have 4 [2] legs each, so 2 dogs have 2
* [times] 4 = 8 legs. - 1 chicken has 2 legs. ...

[LCB]Given a string S of lowercase...If there are ad-
jacent occurrences of a and b in S, print Yes; ...
def[#] solve[check](s):
for i in range(len(s) -[)] 1):
if s[i] == 'a' and s[i+1] == 'b':
return "Yes"

if s[i] == 'b[a]' and s[i+1] == 'a':
return "Yes"

return "No"

Experiments
We evaluate AutoJudge on math reasoning with

GSM8K [5] and programming on LiveCodeBench v5 [6],

focusing on two model families: Llama 3.x [7] and

Qwen2.5 [8]. In Figures 3 and 2, we compare the av-

erage number of accepted tokens (per verification phase)

for different classifier settings, showing that AutoJudge

produces significantly more tokens per speculation with

negligible loss in accuracy and can further speed up de-

coding at the cost of some accuracy drawdown. Tables 2

and 3 show real-world speedups on A100 GPUs with both

on-device inference and offloading. Both setups show

significant speed-up over vanilla speculative decoding. Ad-

ditional setups and evaluations, including larger models

and EAGLE-2 acceleration can be found in the paper.

Figure 2. LiveCodeBenchsv5 Pass@1 and accepted

tokens on for Llama 3.1 8B draft / Llama 3.1 70B target

15 20 25 30 35 40
Average Accepted Tokens

16%

18%

20%

22%

24%

26%

28%

30%

32%

34%

Pa
ss

@
1 

(c
or

re
ct

ly
 so

lv
ed

 ra
te

) Llama 3.1 70B Instruct 30.90%

Llama 3.1 8B Instruct 16.25%

Spec. Decoding
AutoJudge (ours)
Top-K (baseline)

Figure 3. Accuracy and accepted tokens on GSM8K for

(top) Llama 3.1 Instruct 8B draft / 70B target and

(bottom) Qwen 2.5 Instruct 0.5B draft / 7B target.

15 20 25 30 35 40 45 50
Average Accepted Tokens

85%

87%

89%

91%

93%

95%

Te
st

 A
cc

ur
ac

y

Llama 3.1 70B Instruct 95.52%

Llama 3.1 8B Instruct 86.05%

Spec. Decoding
AutoJudge (ours)
Top-K (baseline)

10 20 30 40 50 60
Average Accepted Tokens

35%
40%
45%
50%
55%
60%
65%
70%
75%
80%
85%

Te
st

 A
cc

ur
ac

y

Qwen2.5-7.5B-Instruct 87.33%

Qwen2.5-0.5B-Instruct 37.90%

Spec. Decoding
AutoJudge (ours)
Top-K (baseline)

Table 2. Inference benchmarks with vLLM on the GSM8K

dataset for Llama 3.1 8B Instruct draft / 3.1 70B target.

Llama 3.1 8B draft / 3.1 70B target

Threshold 0.005 0.031 0.145 0.230

Accuracy, % 92.0 91.9 89.9 88.0

Speed, tokens/s 63.8 94.6 108.5 108.0

Speculative Decoding: 70.9 tokens/s

Speedup(ours) 0.90 1.33 1.53 1.52

Table 3. Inference benchmarks with vLLM on the GSM8K

dataset for Llama 3.1 8B Instruct draft / 3.1 70B target

with offloading to CPU.

Llama 3.1 8B draft / 3.1 70B target

Threshold 0.03 0.05 0.11 0.18

Accuracy, % 95.4 94.8 93.4 92.9

Speed, tokens/s 0.7 0.7 0.9 1.1

Speculative Decoding: 0.62 tokens/s

Speedup(ours) 1.13 1.15 1.47 1.76

References
[1] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via specu-

lative decoding, 2023.

[2] Gregor Bachmann, Sotiris Anagnostidis, Albert Pumarola, Markos Georgopoulos, Artsiom

Sanakoyeu, Yuming Du, Edgar Schönfeld, Ali Thabet, and Jonas K Kohler. Judge decoding: Faster

speculative sampling requires going beyond model alignment. In The Thirteenth International

Conference on Learning Representations, 2025.

[3] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph

Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language

model serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems

Principles, pages 611–626, 2023.

[4] Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-2: Faster inference of

language models with dynamic draft trees, 2024.

[5] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,

Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John

Schulman. Training verifiers to solve math word problems. arXiv:2110.14168, 2021.

[6] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando

Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free

evaluation of large language models for code, 2024.

[7] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha

Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.

arXiv preprint arXiv:2407.21783, 2024.

[8] Qwen Team. Qwen2.5 technical report. arXiv:2412.15115, 2024.

NeurIPS 2025, 2-7 December 2025, San Diego, USA


	45 AutoJudge Judge Decoding Without Manual Annotation
	References


