C>ONSTRUCTOR

@) NIRRT

o ICM

International Conference
On Machine Learning

fall into

Diffusion on Language Model Encodings for
Protein Sequence Generation

V. Meshchaninov*! - P. Strashnov*2 - A. Shevtsov*Z - F. Nikolaev? - N. Ivanisenko? - O. Kardymon? - D. Vetrov'
1Constructor University, Bremen, Germany - 2AIRI, Moscow, Russia. *Core contributor.

Background & Motivation

» Protein language models encode sequence and structure

« Continuous diffusion works well for images but not explored for proteins

» Discrete methods produce repetitive, low-diversity sequences.

» Goal: develop a continuous diffusion framework that works across multiple protein

language models to enable efficient protein generation and design tasks.

Main contributions

 First encoder-agnostic continuous diffusion framework for proteins

 Single 35M architecture generalizes across diverse pLMs (8M-3B parameters)

» Achieves SOTA quality & diversity in unconditional generation

« Conditional fine-tuning enables family-specific design with high fidelity

 Structure-aware encoders (SaProt) solve motif-scaffolding and sequence infilling

* Pretraining with CHEAP enables fold-conditioned generation

DiMA: Diffusion Model for Aminoacids
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The framework consists of three main components:

Conditional generation

Motif
scaffolding

Fold
Conditioning

Family-specific
generation

1. a pre-trained protein language model encoder that maps amino acid sequences to continuous latent representations

2. a diffusion denoiser that generates latent vectors from Gaussian noise
3. decoders that reconstruct protein sequences and structures from the generated latent representations.
The approach enables joint sequence-structure generation while operating entirely in continuous latent space.

Performance Scaling with ESM-2 Encoders

Encoder FD-seq () pLDDT (1) CDos (1) Novelty (1)
Dataset 0.11 83.9 0.994 57.6
Random 2.55 22.16 1.000 84.7
ESM-2 8M 0.560 74.25 0.981 68.0
ESM-2 35M 0.340 75.71 0.986 69.1
ESM-2 150M 0.323 80.07 0.988 65.6
ESM-2 650M 0.318 82.48 0.986 64.1
ESM-2 3B 0.314 83.40 0.969 63.0
ESMc 300M 0.326 82.70 0.963 64.2
CHEAP-shorten-1 0.346 81.92 0.951 64.6
CHEAP-shorten-2 0.340 78.81 0.946 66.2
SaProt 35M 0.366 82.23 0.976 65.5
SaProt 650M 0.411 83.01 0.980 65.7
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Comparison with Pretrained Models
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Quality-Diversity Trade-off. Circle area represents parameter count.

Functional-motif Scaffolding
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Model size™?

Performance on Functional Motif-Scaffolding as a function of model size.

Fold-conditioned Generation

Seq. identity: 36.08%

Seq. identity: 46.30%
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