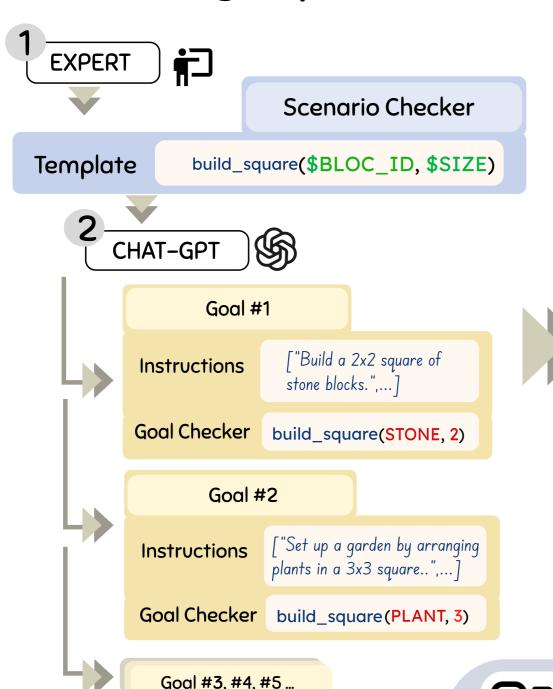


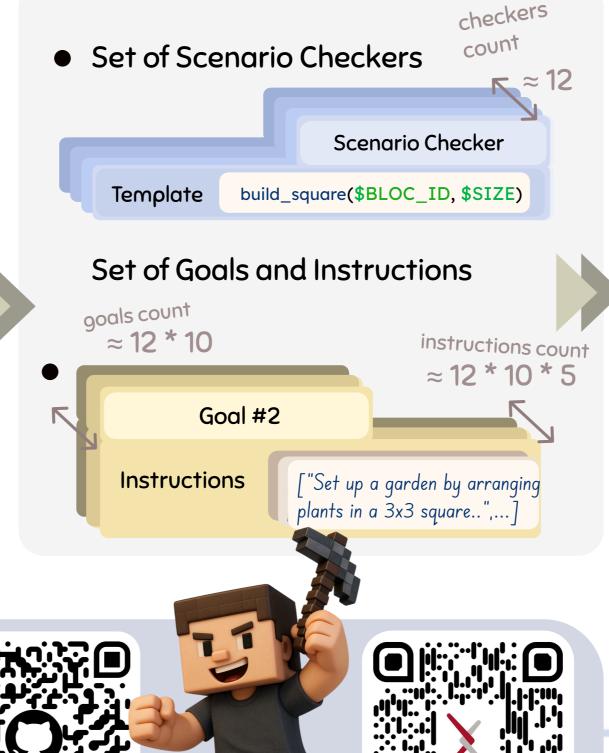
CrafText Benchmark: Advancing Instruction Following in Complex Multimodal Open-Ended World

Zoya Volovikova ^{1,2}, Gregory Gorbov^{2,3}, Petr Kuderov^{1,2}, Aleksandr Panov^{1,2,3}, Alexey Skrynnik^{1,2} ¹AIRI, Moscow, Russia, ² MIPT, Moscow, Russia, ³ FRC CSC RAS, Moscow, Russia

Gathering Pipeline

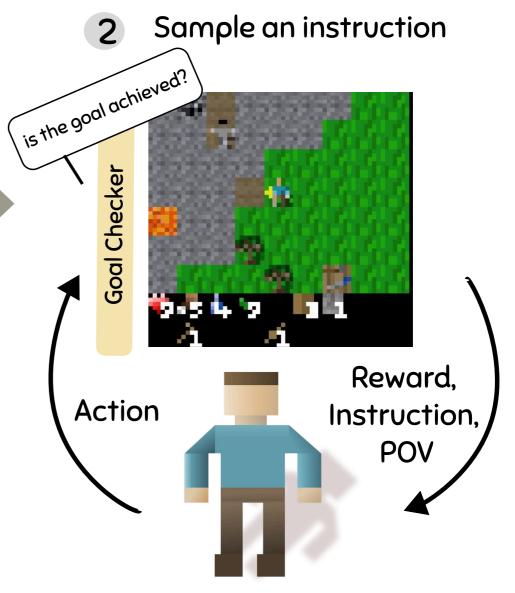


Dataset



Environment

Sample a goal



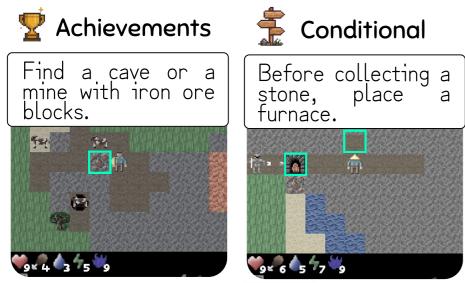
Task Definition

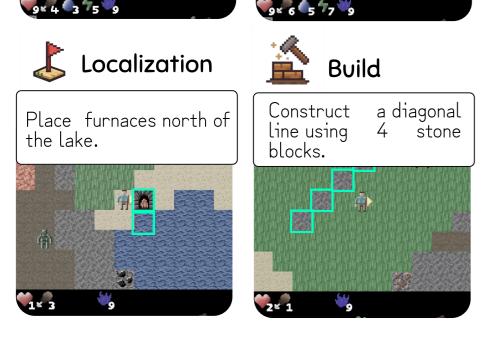
Instruction Following tasks involve providing the agent with an observation o = (I, g), where It is a visual input and $oldsymbol{g}$ is an instruction that defines the goal $\tau(g)$. The task is to extract the goal $\tau(g)$ from the instruction g and select actions $a \in A$ to maximize g reward. The environment transitions via P(s'|s,a). The optimal policy π^* maximizes the expected reward.

$$\pi^* = \arg\max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=0}^{T} \gamma^t R(s_t, a_t, g) \mid o_0 \right].$$

*At the same time, the environment is stochastic and dynamic.

Dataset Overview





Experiments

Baselines

PPO with BERT-based instruction embeddings for improved language understanding.

PPO-T+ - PPO-T model using ChatGPT-generated multi-step plans instead of single-step instructions.

Dynalang – Model-based RL with integrated language processing in the dreaming phase of learning.

FiLM - Feature-wise Linear Modulation layers in the actor-critic network.

Raseline Comparison

baseline Companson						
Instruction type	Algorithm	Conditional	≟ Build	Localization	Achievements	Total
Train Set	PPO-T	0.15	0.25	0.33	0.55	0.40
	PPO-T+	0.17	0.24	0.30	0.70	0.45
	Dynalang	0.00	0.12	0.15	0.17	0.15
	FiLM	0.07	0.38	0.29	0.76	0.43
Paraphrased	PPO-T	0.12	0.13	0.35	0.50	0.36
	PPO-T+	0.16	0.17	0.30	0.48	0.35
	Dynalang	0.00	0.09	0.13	0.10	0.05
	FiLM	0.10	0.20	0.30	0.53	0.35
New objects	PPO-T	0.12	0.13	0.17	0.34	0.22
	PPO-T+	0.20	0.17	0.19	0.43	0.28
	Dynalang	0.00	0.09	0.09	0.14	0.10
	FiLM	0.17	0.20	0.19	0.38	0.26

Results

— Handling complex instructions in dynamic environments remains a significant challenge for generalization.

baselines demonstrate limited training performance. Dynalang achieves only a 0.15 success rate (SR), while PPO-T (0.40 SR), PPO-T+ (0.45), and FiLM (0.43) perform moderately better using BERT-based instruction encoding.

Existing methods show limited robustness to linguistic variation.

All models show a performance drop on the Paraphrased test set. PPO-T+ is most affected (-0.10 SR).

— Transforming the instruction into a plan helps to generalize to unseen goals.

PPO-T+ achieves the highest SR on the New Objects test set (0.28), outperforming FiLM (0.26), PPO-T (0.22), and Dynalang (0.10). This suggests PPO-T+ generalizes better to novel goals by effectively decomposing instructions into reusable subtasks. FiLM shows competitive results, likely due to its flexible text-visual integration via FiLM layers

We aim for greatest challenges

- Solving Instruction–Following Tasks in **Dynamic Environments**
- Multi-Step Desidion Making with **Implicit Preconditions**
- Linguistic Variation and Paraphrasing
- Generalization to novel goals
- Balancing Environment Exploration and Instruction Following