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We propose a new equivariant neural network GLGENN that balances between expressiveness of geometric algebra-based models and parameter-efficiency.TL;DR:

Introduction & Motivation Our Contribution

In a Nutshell...


References

ExperimentsGeometric Algebras

Introduction of 

Generalized Lipschitz Groups (GLG).
They are applied in GLGENN and 
interesting for applications in 
theory of spin groups in physics 
and engineering.



New equivariant functions 
expand the toolkit for building 
equivariant neural networks.



GLGENN combine high 
performance with parameter 
efficiency, reducing overfitting and 
training time, while giving SOTA 
results on several benchmarking 
tasks.



GLGENN are adaptable to any 
pseudo-orthogonal groups 
equivariant task. 



Development and implementation 

of GLGENN architecture. 









General Problem

SOTA Equivariant Models


Superior performance. 


Equivariance proofs.

These networks have 
, where 

tasks inherently involve equivariance to 
pseudo-orthogonal transformations 
(pseudo-orthogonal groups):


various applications 
in natural and computer sciences

The research focuses on 

 
(rotations, reflections, etc.).





neural networks 
that are equivariant with respect to any 
pseudo-orthogonal transformation

This limits their 
scalability and 
effectiveness in real-
world applications 
requiring symmetry-
preserving architectures.


Excessive numbers of 
parameters increase the 
risk of  and lead 
to 

, especially in case of 
small train datasets.

overfitting
inefficient training 

times

Current equivariant 
neural networks, 
including SOTA models 
like CGENN, suffer from 
parameter inefficiency.


Clifford Group Equivariant Neural Networks (CGENN)
Geometric Algebra Transformer SE(3)-Transformers

...Clifford Group Equivariant Simplicial Message Passing Networks Equivariant Multilayer Perceptrons

Clifford-Steerable Convolutional Neural Networks
Group Equivariant Convolutional Networks

A neural network (function) L: X→Y is called iff it commutes with the actions     
and        of the group G onto the sets X and Y:

equivariant X

Y

In simple words: we get the same output if we transform the input to the neural network 
or transform the output.

modeling dynamical
systems

processing tasks involving point clouds

motion capture

particle physics

analyzing molecular and protein properties

estimating arterial wall-shear stress

robotic
planning

...

Figure 1. Example of how an equivariant neural network operates. 
In this example, the network detects edges of cats in images and 

is equivariant with respect to image rotations (a type of 
transformation from the pseudo-orthogonal group). What we have done:

Aim: 

, which we 
call Generalized 
Lipschitz Group 
Equivariant Neural 
Networks (GLGENN). 











design, 
implement, test, 
and compare with 
competitors a new 
parameter-light 
architecture of 
equivariant neural 
networks

Introduce and study 
generalized Lipschitz 
groups (GLG) in 
geometric algebras. 



Design GLGENN 
layers based on 
these mappings.

 


Show efficiency of 
the proposed 
parameterization 
technique.



Find mappings that are GLG-
equivariant. Prove their 
equivariance.
1. Projections onto the 
subspaces of geometric 
algebras determined by the 
grade involution and reversion.



2. Polynomials of geometric 
algebra elements.


3. Norm functions of geometric 
algebra elements.



Implement and 
test GLGENN

Prove that GLG are closely related to 
pseudo-orthogonal groups:


equivariance 
w.r.t. GLG



pseudo-orthogonal 
equivariance



parameter efficiencyexpressive power 

of CGENN

GLGENN

GLGENN (Generalized Lipschitz Groups Equivariant Neural Networks)
GLGENN 
equivariant with respect to any pseudo-
orthogonal transformation

is a new architecture of neural networks 

. 



Inputs outputs
multivectors


and  are represented as 
 (geometric algebra elements). 



GLGENN are
 , since they operate in 
a unified manner across 4
fundamental subspaces                     
-              of geometric algebras defined by the 
grade
involution (  ) and reversion (  ); they process 
geometric objects
in groups with a step size of 4.


parameter-light

e.g., signed 
volume

Figure 2. Scheme of how GLGENN operates on multivectors.

They encode geometric quantities such as
 , 
, oriented  and 

,
and higher-dimensional objects (4-
vectors, etc.):

scalars
vectors areas (bivectors) volumes 
(trivectors)

A multivector has the form:

where                 are geometric algebra basis 
elements and                      . 

e.g., mass, 
temperature, 
or a one-hot-

encoded 
feature

e.g., position 
or velocity

Geometric Algebra Linear Layer

Geometric Algebra Normalization 

Geometric Product Layer
Suppose                                   are input data 
multivectors, where      is a number of input 
channels. A        -linear layer is constructed 
using

A second order interaction term for the 
pair of multivectors       and       has the 
form                         , where                            . 
All terms from the subspace        ,                         
-                    , resulting from the interaction 
of       and       are parameterized as 

For numerical stability of         -geometric 
product layers, we apply normalization 
to the four projections

.                      f   for each multivector                                  
.                              :

where                                       is the logistic 
sigmoid function and                        are 
optimizable parameters. 

where                                                 is an output 
channel,                            are optimizable 
coefficients, and        and          are used to 
denote the number of the input and output 
channels respectively. 

where                       are optimizable 

parameters.

ProjectionPolynomial

Projections

Polynomial

Polynomial
Projections

Norm function

Conjugation Operations Layer
These layers are based on the concept 
of conjugation operations in geometric 
algebras. For an input data multivector                                 
,                               , a conjugation 
operations layer is constructed using 

where                               are optimizable 
parameters. 
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O(5)-Regression
Task: Estimate value of the equivariant function
where                           are vectors sampled from a Gaussian distribution.

Task: Given masses, initial positions, and velocities of N charged particles (bodies) in          , 
predict their final positions after the system evolves.

Architecture: We construct a graph neural network based on the message passing. 
Bodies are nodes, their pairwise interactions are edges. The message and update 
networks are GLGENN.

O(5)-N-body Experiment

Task: Estimate the volume of a convex hull generated by K=16, 256, or 512 points in         . 

O(5)-Convex Hull Volume Estimation

Architecture: For GLGENN, we adopt a similar architecture to CGENN but utilize our         linear 
and geometric product layers instead of ordinary linear and geometric product layers.


Let us consider  

                                                 over a vector space       with a 
symmetric bilinear form, where      can be real               or 

complex                   .  The identity element of       is denoted 
by            , the generators are denoted by                               , 
and satisfy 

geometric (Clifford) algebras

where                        is the diagonal matrix with     times +1,     
times -1, and      times 0 on the diagonal in the real case                        
and               times +1  and      times 0 on the diagonal in the 
complex case                         .                         
Grading
Consider the           ,                               
Their elements are linear combinations of basis elements  

                                                                           Any element 
( ) can be represented as the sum

subspaces of fixed grades

multivector

Consider such conjugation operations as  
and defined on an arbitrary                 as

grade involution
 reversion 

The grade involution and reversion define four 
:

subspaces of 
quaternion types
for                              I.e.
Any element                   can be represented as a sum  

Lipschitz Groups and Orthogonal Groups
Ordinary Lipschitz group:
Generalized Lipschitz group:

We have:

, where
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