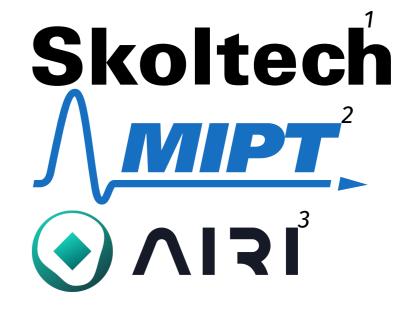


Learning of Population Dynamics: Inverse Optimization Meets JKO Scheme

Mikhail Persiianov¹ Jiawei Chen^{1,2} Petr Mokrov¹ Alexander Tyurin^{1,3} Evgeny Burnaev^{1,3} Alexander Korotin^{1,3}



4th conference on machine learning & Al

Problem Statement

We are given independent samples from marginals {/ $t_0 < t_1 < \cdots < t_K$. Importantly, each distribution ρ_k may be represented by a different number of samples.

The JKO Scheme

Jordan, Kinderlehrer, and Otto extended the idea of implicit Euler scheme to the space of probability measures, introducing a variational time discretization of the Fokker-Planck equation (5), now known as the JKO scheme:

$$\rho_{k+1}^{\tau} = \underset{\rho \in \mathcal{P}(\mathcal{X})}{\min} \left\{ \mathcal{J}(\rho) + \frac{1}{2\tau} d_{\mathbb{W}_2}^2(\rho, \rho_k^{\tau}) \right\} = \text{JKO}_{\tau \mathcal{J}}(\rho_k^{\tau}), \quad \rho_0^{\tau} = \rho_0$$

where $\tau > 0$ is the time step. As $\tau \to 0$, the sequence of the evolving distribution ρ_t at corresponding time points ρ_k , $k \in \mathbb{N}$ converges to the continuous solution ρ_t of (4), $t_0 < t_1 < \cdots < t_K$. Importantly, each distribution ρ_k may which motivates our assumption that the ground truth sequence of measures $\{\rho_k\}_{k=0}^K$ follows $\rho_{k+1} = \text{JKO}_{\Delta t_k \mathcal{J}^*}(\rho_k)$.

Theoretical Aspects

Theorem (Quality bounds for recovered potential energy) Let $\varepsilon(V) \stackrel{\text{\tiny def}}{=} \mathcal{L}(V^*, T_{V^*}) - \mathcal{L}(V, T_V)$ be the gap between the optimal and optimized value of inverse JKO loss with internal \min_T problem solved exactly, i.e., $T_V \stackrel{\text{\tiny def}}{=} \min_T \mathcal{L}(V,T)$. Let \mathcal{X} be a convex set; (modified) potentials $V_q \coloneqq au V + rac{1}{2} \| \cdot \|_2^2$ $\mathcal{X} o \mathbb{R}$ be strictly convex and $rac{1}{eta}$ -smooth. Then there exists $C = C(\tau, \beta)$ such that following inequality holds:

$$\int_{\mathcal{X}} \|\nabla V^*(y) - \nabla V(y)\|^2 d\rho_1(y) \le C\varepsilon(V).$$

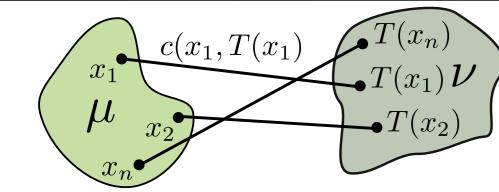
Single-Cell Data

Setup: We perform experiments using a leave-two-out setup. Since the **EB** dataset contains five timesteps, we remove the second (\mathbf{t}_2) and fourth (\mathbf{t}_4) timesteps, and then evaluate how well our method can reconstruct the data from the remaining \mathbf{t}_1 and \mathbf{t}_3 timesteps.

Method	$\mathbf{t_2}$	$\mathbf{t_4}$
Vanilla-SB	1.49 ± 0.063	1.55 ± 0.034
DMSB	1.13 ± 0.082	1.45 ± 0.16
TrajectoryNet	2.03 ± 0.04	1.93 ± 0.08
MMSB	1.27 ± 0.028	1.57 ± 0.048
JKOnet $_V^st$	1.145 ± 0.033	2.529 ± 0.014
$iJKOnet_V$ (Ours)	$\boldsymbol{1.082 \pm 0.011}$	$\boldsymbol{1.147 \pm 0.001}$
$JKOnet^*_{t,V}$	4.414 ± 1.499	2.771 ± 0.197
$iJKOnet_{t,V}^{r,r}$ (Ours)	$\boldsymbol{0.983 \pm 0.037}$	$\boldsymbol{0.849 \pm 0.021}$

5D experiment. \mathcal{W}_2 distance (\downarrow) comparison across t_2 and t_4 .

Optimal Transport

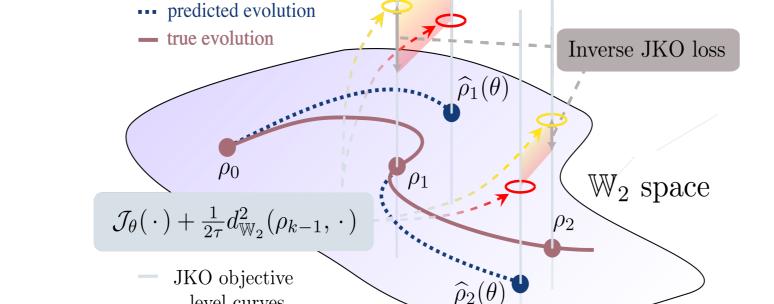


The (squared) Wasserstein-2 distance $d_{\mathbb{W}_2}$ between two a.c. probability measures $\mu, \nu \in \mathcal{P}_{ac}(\mathcal{X})$ is defined as:

$$d_{\mathbb{W}_2}^2(\mu,\nu) = \min_{T:T\sharp \mu = \nu} \int_{\mathcal{X}} \|x - T(x)\|_2^2 \,\mathrm{d}\mu(x), \tag{6}$$

where the optimal map T^* is known as the Monge map.

iJKOnet Method



Thanks to assumption $ho_{k+1} = ext{JKO}_{ au \mathcal{J}^*}(
ho_k)$, we can derive an inequality that becomes an equality if a candidate functional ${\mathcal J}$ matches the ground truth functional ${\mathcal J}^*$:

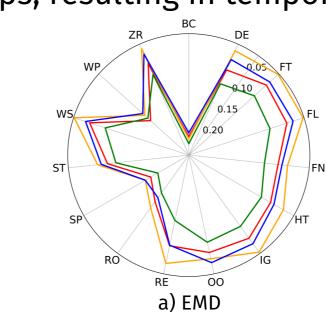
$$\min_{\rho} \left\{ \mathcal{J}(\rho) + \frac{1}{2\tau} d_{\mathbb{W}_2}^2(\rho_k, \rho) \right\} \leq \mathcal{J}(\rho_{k+1}) + \frac{1}{2\tau} d_{\mathbb{W}_2}^2(\rho_k, \rho_{k+1}).$$
 (8)

Moving the right-hand side to the left yields an expression that is always upper-bounded by zero, regardless of the choice of \mathcal{J} . Maximizing the resulting gap, we obtain loss:

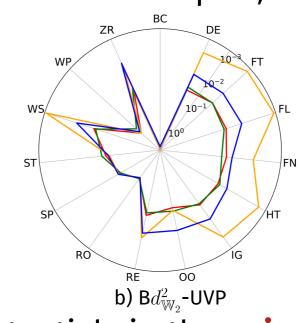
$$\max_{\mathcal{J}} \min_{T^k} \sum_{k=0}^{K-1} \left[\mathcal{J}(T^k \sharp \boldsymbol{\rho_k}) - \mathcal{J}(\boldsymbol{\rho_{k+1}}) + \frac{1}{2\tau} \int_{\mathcal{X}} \|x - T^k(x)\|_2^2 \boldsymbol{\rho_k}(x) \, \mathrm{d}x \right]$$

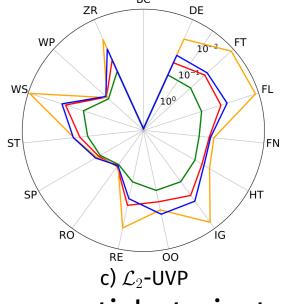
Learning Potential Energy

Goal: Evaluate how our method learns potentials in the unpaired setup, i.e., particle trajectories are resampled across time steps, resulting in temporally uncorrelated samples, demonstrating hardness of the corrected setup.



Styblinski-Tang





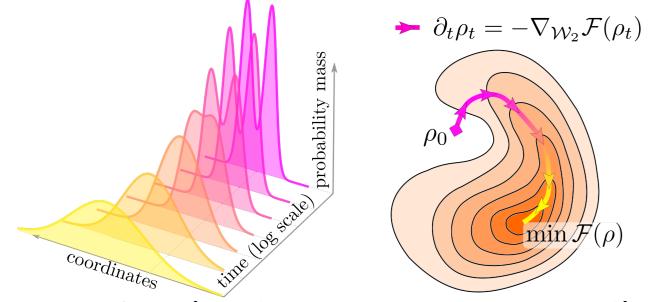
Flowers

Flat

Goal: Demonstrate how our method learns potentials in the paired setup, i.e., particle trajectories are preserved across time steps, resulting in temporally correlated samples, enabling a direct visual comparison with <code>JKOnet*</code>.

Holder table

Wasserstein Gradient Flows



For an energy functional $\mathcal{F}:\mathcal{P}(\mathcal{X}) \to \mathbb{R}$, the gradient flow in $\mathbb{W}_2(\mathcal{X})$, called the Wasserstein gradient flow (WGF), is an absolutely continuous curve $\rho_t: \mathbb{R}_+ \to \mathcal{P}(\mathcal{X})$ starting at ρ_0 that follows the steepest descent direction of \mathcal{J} :

$$\partial_t
ho_t = -
abla_{\mathcal{W}_2} \mathcal{J}(
ho_t), \quad
ho_{(t=0)} =
ho_0,$$

It can be rewritten in the form of the continuity equation, and model predictions $\hat{\rho}_k$: expressing mass conservation under the velocity field v_t :

Examples of PDEs as WGFs

Consider the *free energy* functional:

$$\partial_t \rho_t + \nabla \cdot (\rho_t v_t) = 0, \ v_t = -\nabla \frac{\delta \mathcal{J}}{\delta \rho}(\rho_t).$$
 (3)

Related JKO-based Methods

KOnet formulates the task of population dynamics re-(2) covery as a bi-level optimization problem aimed at miniwhere $\nabla_{W_2} \mathcal{J}(\rho_t)$ denotes the Wasserstein gradient in \mathbb{W}_2 . |mizing the discrepancy between observed distributions ρ_k

(3)
$$\mathcal{L}_{\mathsf{JKOnet}}(\theta, \varphi) = \sum_{k=0}^{\infty} d_{\mathbb{W}_{2}}^{2}(\hat{\rho}_{k}, \rho_{k}), \quad \text{s.t. } \hat{\rho}_{0} = \rho_{0}, \quad \hat{\rho}_{k+1} = \nabla \psi_{k}^{*} \sharp \hat{\rho}_{k},$$

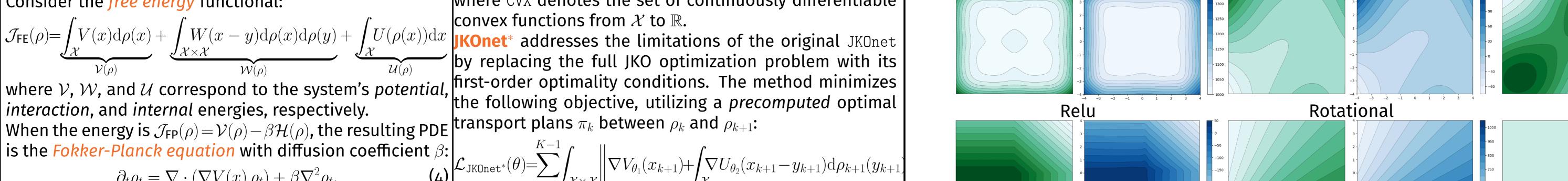
$$\psi_{k}^{*} \stackrel{\text{\tiny def}}{=} \underset{\varphi: \psi_{\varphi} \in \mathsf{CVX}}{\operatorname{arg\,min}} \mathcal{J}_{\theta}(\nabla \psi_{\varphi} \sharp \hat{\rho}_{k}) + \frac{1}{2\tau} \int_{\mathcal{X}} \|x - \nabla \psi_{\varphi}(x)\|^{2} \, \mathrm{d}\hat{\rho}_{k}$$

where CVX denotes the set of continuously differentiable convex functions from \mathcal{X} to \mathbb{R} .

by replacing the full JKO optimization problem with its first-order optimality conditions. The method minimizes where V, W, and U correspond to the system's potential, the following objective, utilizing a precomputed optimal transport plans π_k between ρ_k and ρ_{k+1} :

$$\mathcal{L}_{\mathsf{JKOnet}^*}(\theta) = \sum_{k=0}^{K-1} \int_{\mathcal{X} \times \mathcal{X}} \left\| \nabla V_{\theta_1}(x_{k+1}) + \int_{\mathcal{X}} \nabla U_{\theta_2}(x_{k+1} - y_{k+1}) d\rho_{k+1}(y_{k+1}) + \theta_3 \frac{\nabla \rho_{k+1}(x_{k+1})}{\rho_{k+1}(x_{k+1})} + \frac{1}{\tau} (x_{k+1} - x_k) \right\|^2 d\pi_k(x_k, x_{k+1}).$$

Oakley-Ohagan Watershed Ishigami Friedman Sphere Bohachevski Wavy plateau Zig-zag ridge Double Exponential



When the energy is $\mathcal{J}_{\text{FP}}(\rho) = \mathcal{V}(\rho) - \beta \mathcal{H}(\rho)$, the resulting PDE is the Fokker-Planck equation with diffusion coefficient β : $\partial_t \rho_t = \nabla \cdot (\nabla V(x) \, \rho_t) + \beta \nabla^2 \rho_t,$

interaction, and internal energies, respectively.

which is equivalent to the following *Itô SDE*:
$$\mathrm{d}X_t = -\nabla V(X_t)\,\mathrm{d}t + \sqrt{2\beta}\,\mathrm{d}W_t. \tag{5}$$